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Entropy Block Bootstrap which preserves the rank correlation locally. Further, we also 
introduce the Maximum non-extensive Entropy Block Bootstrap to allow for fat tail behaviour 
in time series. Finally, we show the optimal finite sample properties of the proposed methods 
via a Monte Carlo analysis where we bootstrap the distribution of the Dickey-Fuller test.

Introduction

Since the seminal contribution of Efron (1979). for identically and independent 
distributed (i.i.d.) data, the bootstrap method has been extended to handle more 
complex data structures. In particular, time-series data fail to satisfy the i.i.d. 
assumption because both the data distribution might well change over time and 
the observations are far from being independent. In order to preserve the dependence 
structure, Künsch (1989) proposes the non-parametric block bootstrap technique 
which involves re-sampling blocks of data rather than individual observations. In 
the same spirit, Buhlmann (1997) develops a parametric alternative usually called 
sieve bootstrap which circumvents the dependence structure in the data by first 
fitting an AR(p) process — where p grows with the sample size T — and then 
resampling from supposedly i.i.d. residuals. Finally, another widely employed 
resampling scheme, aimed at dealing with heteroskedasticity, is the wild bootstrap 
method developed by Wu (1986) (see also Mammen, 1993). Other resampling 
schemes, or variations on the above mentioned ones, are however available and we 
refer the interested reader to Politis, Romano, and Wolf (1999) for an overview.

The above methods are designed to work with dependence structures that die 
away over time, i.e. with stationary processes. Yet, in economics and finance, we 
frequently study relationships that involve integrated processes and most typically 
integrated processes of order one. In this case, we are interested in bootstrapping 
the distribution of the statistical test to assess the unit root hypothesis. To this 
purpose, it is possible to follow two approaches: the first one consists in resampling 
the first differences of the data (which can exhibit their own dependence structure), 
the second one consists of resampling directly from the original non-differenced 
data. The first approach is by far the most widespread as after first-differencing it 
is possible to apply resampling schemes valid for stationary data (see Palm, Smeekes, 
and Urbain, 2007 for an overview of the alternative methods). On the contrary, 
resampling directly from non-stationary data seems to be still rather uncommon 
practice as it requires resampling schemes designed to mimic the stochastic trend 
exhibited by random walk processes. The major benefit of resampling directly 
from the original dataset is that we can ignore the dependence structure in the first 
differences. The only valid method providing consistency of the bootstrap procedure 
available in the statistical literature is the Continuous Path Block Bootstrap of 
Paparoditis and Politis (2001). In the econometric literature, the method is largely 
unexplored and although we have a theoretical validation of its consistency (Phillips, 
2010), its finite sample behaviour has not been explored yet.

Recently, Vinod and López-de Lacalle (2009) have proposed a new bootstrap 
method based on the entropy concept allowing for any degree of persistence in the 
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time series, including the unit root case. As pointed out for instance by Davidson 
and Monticini (2014), however, this resampling scheme has internal flaws, which 
cause significant size distortions.

In this paper, we show that this resampling scheme has significant size distortions 
when used to bootstrap the distribution of a test statistic under the null of unit root 
and we propose a correct entropy-based resampling scheme valid for non-stationary 
data. In particular, we identify the reason for the failure of the original entropy-
based algorithm of Vinod and López-de Lacalle (2009) to be the perfect rank 
correlation. We therefore relax the rank constraint and preserve the rank correlation 
locally; this is our proposed Maximum Entropy Block Bootstrap. Further, we 
employ the notion of non-extensive entropy allowing for power-law behaviour 
leading to the general Maximum non-extensive Entropy Block Bootstrap. Finally, 
we compare the finite sample properties of our proposed methods with respect to 
the existing ones via a Monte Carlo analysis where we bootstrap the distribution 
of the Dickey-Fuller test.

The remainder of the paper is organized as follows: In Section 1, we briefly 
introduce the Maximum Entropy Bootstrap and explore the reasons beyond its 
failure. In Section 2, we propose a correction and introduce the notion of the 
Maximum Entropy Block Bootstrap. In Section 3, we evaluate its finite sample 
properties for the unit root test case via an extensive Monte Carlo simulation. In 
Section 4, we generalize the concept of entropy to non-extensive one providing 
the definition of the Maximum non-extensive Entropy Block Bootstrap. The last 
section concludes.

1.	 Maximum Entropy Bootstrap

The Maximum Entropy Bootstrap (MEB), introduced by Vinod and López-de 
Lacalle (2009), is a fully non-parametric bootstrap technique designed to resample 
from time series with any level of persistence. The method is based on the maximum 
information entropy principle, which works as follows: the probability distribution 
to find a system in a given state conditional on the prior data is such that the 
information entropy is maximized. This principle allows one to avoid any functional 
assumptions on the probability distribution function.

Let f(x) be a probability density function to find the system in a state x, then 
the Shannon entropy, H

S
, is defined as: 

HS = E − log f x( )( )⎡⎣ ⎤⎦. 	 (1)

The maximum entropy principle leads to a probability distribution function 
which satisfies the following optimization problem

ƒ = arg max E − log f ' x( )( )⎡⎣ ⎤⎦..	 (2)f = arg
ʹ′f

maxE − log ʹ′f x( )( )⎡⎣ ⎤⎦.

There are several solutions to (2). First, for the system with finite and bounded 
support, the probability density function is the uniform distribution. Second, for 
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the system with half-infinite support and finite means, the probability density 
function is the exponential distribution. Third, for the system with infinite sup-
port and given mean and standard deviation, the normal distribution is the one 
which maximizes the entropy.

In order to use the Maximum Entropy principle to construct a bootstrap method 
valid for time series with any level of persistence, we have to ensure that the full 
set of prior information is correctly taken into account, and that persistence is 
preserved. Vinod and López-de Lacalle (2009) propose the MEB procedure as a 
solution to address both points; they suggest to impose the mass preserving and 
the mean preserving constraints to incorporate all the prior information, and to 
impose the perfect rank correlation to keep the memory of the system, respectively.

1.1	The MEB Algorithm

Let us consider an observed time series X = x
1
,…,x

T
 and denote the associated 

order statistics as x
(t)

. Further, let us assume we know the support of the order 
statistics x t( ) ∈ x 0( ) ,x T+1( )

⎡
⎣

⎤
⎦ . We define the midpoints z

t
 as

zt =
1

2
x t( ) + x t+1( )( ),t ∈ 1,…,T −1{ },

 
zt =

1

2
x t( ) + x t+1( )( ),t ∈ 1,…,T −1{ },

z0 = x 0( ) ,

zT = x T+1( ) .

Using the midpoints, we define T half-open intervals It = zt−1,zt( ]  
around each 

observation. The maximum entropy density function is the solution to (2) with two 
additional constraints: 

a. The mass preserving constraint imposed on the density function states that, 
on average, 1/T of the mass of the density function lies in each of the intervals I

t
.

b. The mean preserving constraint states that

t=1

T

∑xt =
t=1

T

∑x t( ) =
t=1

T

∑mt ,

where m
t
 is the mean of f over the interval I

t
.

The constrained solutions are given by the following choice of the density 
function

f x( ) =
1

z1 − z0

,x ∈ I1,m1 =
3x 1( )

4
+

x 2( )

4        
f x( ) =

1

z1 − z0

,x ∈ I1,m1 =
3x 1( )

4
+

x 2( )

4
       

f x( ) =
1

z1 − z0

,x ∈ I1,m1 =
3x 1( )

4
+

x 2( )

4
,	 (3)

f x( ) =
1

zk − zk−1

,x ∈ Ik k ∈ 2,…,T −1{ }, mk =
x k−1( )

4
+

x k( )

2
+

x k+1( )

4    
f x( ) =

1

zk − zk−1

,x ∈ Ik k ∈ 2,…,T −1{ }, mk =
x k−1( )

4
+

x k( )

2
+

x k+1( )

4
,	 (4)
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f x( ) =
1

zT − zT−1

,x ∈ IT ,mT =
x T−1( )

4
+

3x T( )

4
.

        
f x( ) =

1

zT − zT−1

,x ∈ IT ,mT =
x T−1( )

4
+

3x T( )

4
.

        
f x( ) =

1

zT − zT−1

,x ∈ IT ,mT =
x T−1( )

4
+

3x T( )

4
. 	 (5)

The mass of the distribution f over the intervals I
1
 and I

T
 depends on the choice 

of the x
(0)

 and x
(T + 1)

 respectively. We can therefore impose the alternative constraints 
to the one in (4), which would in fact define the x

(0)
 and x

(T + 1)
, respectively. On the 

other hand, Vinod and López-de Lacalle (2009) algorithm sets x
(0)

 and x
(T + 1)

 based 
on some distributional properties of the sample path. Then m

1
 and m

T
 are implied 

by this choice.

To create a single realization X → X* , the MEB is based on the following 
algorithm: 

Step 1 We create the order statistics x
(t) 

based on the empirical data set x
t 
and 

define the support of the order statistics x 0( ) ,x T+1( )
⎡
⎣

⎤
⎦ where: 

x 0( ) = x 1( ) − dtrm ,

x T+1( ) = x T( ) + dtrm ,

with dtrm = Etrim x t( ) − x t−1( )
⎡
⎣

⎤
⎦  being the trimmed mean of the distances between 

the consecutive sorted observations.

Step 2 We define a (T x 2) sorting matrix, S
1
, and place the index set t = 1,…,T{ } 

in the first column and the observed time series x
t
 in the second column.

Step 3 We sort the matrix S
1
 with respect to the second column, x

t
, and define 

the order statistics x
(t)

 We then define the midpoints z
t
 and the half-open intervals I

t
.

Step 4 We draw T uniform pseudo-random numbers ps U 0,1[ ], with 

s ∈ 1,…,T{ }  and assign the range Rt =
t

T
,
t +1

T
⎛
⎝⎜

⎤
⎦⎥

 

for t ∈ 0,T −1{ }  wherein each  

p
s
  falls.

Step 5 We match each R
t 
with I

t  
and using the density function defined in 

(3) - (5), we draw the new set xt
* .

Step 6 We define a corresponding (T x 2) sorting matrix S
2 
, analogous to S

1
. 

We sort the T elements xt
*

 in an increasing order of the magnitude to form the 
ordering statistics x t( )

* .

Step 7 We replace the second column of S
1 
, the order statistics  x

(t)
 , by the 

second column of S
2
, the order statistics x t( )

*

 
of the newly generated set. We sort 

the x t( )
*

 
based on the first column of S

1 
, and thus recover xt

* . The set xt
*

 
represents 

a resampled set of observations x
t 
.

The MEB algorithm can be iteratively employed to approximate the distribution 
of the desired statistic. The method thus combines the maximum entropy principle 
with the perfect rank correlation to resample from the observed data.
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1.2	The Maximum Entropy Bootstrap to Assess the Unit Root Hypothesis

Let us consider a standard AR(1) process frequently used in the econometric 
analysis

xt = ρ⋅ xt−1 + εt t = 1,…,T ,,xt = ρ⋅ xt−1 + εt t = 1,…,T , 	
(6)

where εt i.i.d.N 0,1( ) . In this paper we focus on the unit root case, i.e.,  ρ = 1. 

Figure 1 reports the plot of the sample path generated by (6) with ρ = 1 and 
the bootstrapped path obtained using the Maximum Entropy algorithm proposed 
above. The figure shows that the MEB algorithm provides a close replication of 
the original time series.

We employ the MEB to assess the rejection frequency of the test with null 
hypothesis ρ = 1 in (6) against the alternative of |ρ| < 1. In Figure 2, we plot the 
empirical rejection frequencies to assess the quantile of the bootstrap distribution 
of the t-statistic. We generate 1000 series from the data generating process in (6) 
and for each replication, we create 299 bootstrap samples. We consider T = 100 
and initial point to be set at x

0
 = 0.

FIGURE 1

The MEB Sample Path Replication

xt x*
t 

0 10 20 30 40 50 60 70 80 90 100

-10.0

-7.5

-5.0

-2.5

0.0

2.5

5.0
xt x*

t 

Note : �The figure reports the sample path of X and its bootstrapped counterpart X* obtained using the 
MEB algorithm. The true data generating process is given as xt = xt−1 + εt , with εt  N 0,1( ), 
x

0
 = 0, and T = 100.
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We report the Q-Q plot for the MEB of the test under the null H0 :ρ = 1 : ρ = 1 against 
the alternative H

A 
: |ρ| < 1. In our case, the Q-Q plot deviates from the 450 line, 

where the MEB has very low size and thus suggests the presence of significant 
flaws in the MEB suggested by Vinod and López-de Lacalle (2009).

1.2.1 Why the Maximum Entropy Bootstrap Fails?

The MEB test may fail for two main reasons, as suggested by Davidson and 
Monticini (2014): 

1. The distribution of the MEB statistic is on average more dispersed than that 
of the statistic itself. Thus, the mass of the bootstrap distribution to the right of the 
statistic is too large and so the p-value. Analogously, when the t-statistics is small, 
the p-value is small.

2. For each replication, the bootstrap statistics are positively correlated with 
the original statistic meaning that the bootstrap does not provide an independent 
draw of a sample.

In order to identify the cause of the MEB failure, we first plot the distribution 
of the t-statistic using the same setup we employ to generate the sample path. 

FIGURE 2

Empirical Rejection Frequencies of the MEB

45 Line MEB 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
45 Line MEB 

Note: �The figure reports the empirical rejection frequencies against the nominal levels of the test 

H
0
: ρ = 1 against H

A 
: |ρ| < 1 with distribution approximated by MEB.
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Figure 3 reports the plot of the distribution of the original t-statistic for 1000 
replications under H

0
: ρ = 1. Further, for each realization of the data generating 

process, we store the value of one boostrapped statistic to obtain the following 
series {τi

*}i=1
1000  and we plot its distribution. The figure shows that the two distribu-

tions are very close to each other and hence the first explanation does not apply. 
Therefore, we check whether the second one may explain the MEB failure. In order 
to study the relationship between the two statistics, we regress the bootstrapped 
t-statistics obtained using the MEB algorithm, τi

* , onto the t-statistics obtained 
simulating from the data generating process. The resulting estimates are

τ*
i
 = – 0.2452 + 0.8728 τ

i 
,
        

i = 1,…,1000,	 (7)
              (0.00326)      (0.00299)

with an adjusted R2 = 0.9445, suggesting that the samples obtained using the MEB 
mimics too closely the sample they are drawn from, as Figure 1 also shows. Thus, 
there is a strong positive correlation between the two t-statistics which explains 
the severe undersize of the unit-root test when bootstrapping its distribution using 
the MEB algorithm.

Another way to visualize why things go wrong is to plot the joint density of 
the Monte Carlo statistic and the bootstrapped counterpart. Figure 4 reports the 

FIGURE 3

Distribution of the MEB Statistic Under H
0
: ρ = 1

t t* 

-4 -3 -2 -1 0 1 2 3 4

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
t t* 

Note: �The figure reports the distribution of the original t-statistic and one corresponding bootstrapped 
replication under H

0 
: ρ = 1.
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kernel based joint density of (τi ,τ j
*)  (gaussian kernel) and the related contour plot 

which resembles an ellipse with the semi-major axis sloping upwards. This is 
symptomatic of the high correlation between the bootstrapped statistics and the 
corresponding Monte Carlo draws.

It is worth stressing that the maximum entropy principle itself is not the cause 
of the MEB failure. Rather, the perfect rank correlation between the true data and 
the bootstrapped draws is causing the problems. In the next section, we propose a 
novel procedure to overcome the issue with the perfect rank correlation.

2.	 A New Procedure: The Maximum Entropy Block Bootstrap

We introduce the Maximum Entropy Block Bootstrap (MEBB), which pre-
serves the perfect rank correlation locally, i.e. within each block, but not across the 
entire sample path. In order to ensure consistency of the bootstrap procedure, we 
apply the algorithm on the time series obtained as a partial sum of the demeaned re-
siduals as in Paparoditis and Politis (2001)1. In addition, it is free of tail trimmings.

2.1	The MEBB Algorithm

We propose to break the perfect rank correlation locally such that the MEB 
algorithm is employed block-wise. In each block, the perfect rank correlation is 
preserved, while over the entire sample path, the rank correlation between the 

1. Phillips (2010) shows that this initial step is not needed to achieve consistency under the 
null hypothesis; however, this is necessary to ensure the consistency of the bootstrap under the 
alternative hypothesis. 

FIGURE 4

Joint Kernel Density

(a) Gaussian Kernel (b) Contour
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entire data generating process and the bootstrapped sample is unrestricted. We 
define the MEBB algorithm as follows: 

Step A We choose the block length  < T  and let i0 ,i1,…,ik−1  i.i.d. uniform 
random numbers on the set [1,2,…,T − ]  where k = ⎣T / ⎦ , (number of blocks).

Step B For each i
j
, with j = 0,…,k −1 , we get the subset of the original time 

series X j( ) = xi j
,xi j+1,…,xi j+−1

⎧
⎨
⎩

⎫
⎬
⎭
.

Step C We apply the MEB algorithm corresponding to Steps 1-7 in Section 2 

for each subset X( j) separately and generate X* j( ) = xi j

* ,xi j+1
* ,…,xi j+−1

*⎧
⎨
⎩

⎫
⎬
⎭
.

Step D We recover the bootstrapped sample path by sewing the X* 1( ),…,X* k( )  
such that xi j+1

* − xi j+−1
*

 
is set in a way to correspond to the difference xi j+1

− xi j+−1
xi j+1

− xi j+−1. 

Step E If the length of the bootstrapped sample path is exceeding T, we take 
the first T values.

In addition, when employing the MEB, we omit the trimming in the algorithm. 
In such a case, Step 1 in the MEB algorithm is modified as follows: 

Step 1* We create an order statistics x
(t)

 based on the empirical data set x
t
 and 

define the support of the empirical data to be −∞,∞[ ] .
The constrained solution for the maximum entropy distribution on the half-open 

interval 0,∞[ )  is given by f = λe−λx

 with mass at 1 / λ . Therefore, the solution 
analogous to (3) and (5) for the intervals I1 ≡ −∞,z1( ⎤⎦ and IT ≡ zT ,∞⎡⎣ ) , respectively, 
is given by

fI1
x( )= β1λ1e

−λ1 z1−x( ) ,x ∈I1,m1 =
3x 1( )

4
+

x 2( )

4         
fI1

x( )= β1λ1e
−λ1 z1−x( ) ,x ∈I1,m1 =

3x 1( )

4
+

x 2( )

4
         fI1

x( )= β1λ1e
−λ1 z1−x( ) ,x ∈I1,m1 =

3x 1( )

4
+

x 2( )

4
,	 (8)

fIT
x( )= βTλTe

−λT x−zT( ) ,x ∈IT ,mT =
x T−1( )

4
+

3x T( )

4
,

     
fIT

x( )= βTλTe
−λT x−zT( ) ,x ∈IT ,mT =

x T−1( )

4
+

3x T( )

4
,

        
fIT

x( )= βTλTe
−λT x−zT( ) ,x ∈IT ,mT =

x T−1( )

4
+

3x T( )

4
, 	 (9)

where the parameters λ
1 and λ

T 
 are set such that the mean preserving constraints 

imposed on m
1
 and m

T
 are satisfied, respectively, while β

1
 and β

T 
 assures that the 

mass preserving constraints hold. Namely,

β1 = βT =
1

T
,	 (10)

and

λ1 :
3x 1( )

4
+

x 2( )

4
=

−∞

x
1( )+x

2( )
2∫ dx xλ1e

−λ1

x
1( )+x

2( )
2

−x
⎛

⎝
⎜
⎜

⎞

⎠

⎟
⎟
,	 (11)

λT :
x T−1( )

4
+

3x T( )

4
= x

T−1( )+x
T( )

2

∞

∫ dx xλTe
−λT x−

x
T−1( )+x

T( )
2

⎛

⎝
⎜
⎜

⎞

⎠

⎟
⎟

λT :
x T−1( )

4
+

3x T( )

4
= x

T−1( )+x
T( )

2

∞

∫ dx xλTe
−λT x−

x
T−1( )+x

T( )
2

⎛

⎝
⎜
⎜

⎞

⎠

⎟
⎟
	 (12)

giving λ1 =
4

x 2( ) − x 1( )  

and λT =
4

x T( ) − x T−1( )

, respectively.
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Finally, Steps 2-7 of the MEBB algorithm for a given subset X* are the same 
as for the MEB. To draw an observation from I

1
 and I

T 
, we employ the knowledge 

of the analytic solution to the cdf of fI1 
and fIT

, respectively. The advantage is that 
the mean preserving constraint is by construction satisfied for the tails, as opposed 
to use the trimmed values.

Such a modified algorithm forms the basis of the MEBB for the non-stationary 
time series, it preserves the perfect rank correlation locally and uses the proper 
form of the tails in the maximum entropy distribution function2.

2.2	A Numerical Illustration

In Figure 5, we report a bootstrap sample path based on the new MEBB algo-
rithm. We use the same setup as in Section 2 with T = 100 and x

0
 = 0. The original 

sample path and the bootstrap one are different and thus the new algorithm does 
not mimic the sample data too closely.

2. The tails are of the exponential form, which advocates the use of the trimming algorithm. 
On the other hand, it is the general properties of tails which allows us to introduce in the next section 
the notion of the generalized non-extensive entropy.

FIGURE 5

MEBB Sample Path Replication

xt x*
t 
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xt x*

t 

Note: �The figure reports the sample path x
t
 and the replicated path xt

*

 
by the MEBB. The true data 

generating process is given as xt = xt−1 + εt , with εt  N 0,1( ), x0
 = 0, and T = 100.
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FIGURE 6

The MEBB

(a) Empirical rejection frequencies

Note: �The A panel reports the plot of the empirical rejection frequencies against the nominal levels 
of the test under H

0 
: ρ = 1

 
against H

A 
: |ρ| < 1 with the distribution approximated by the MEBB. 

The B panel depicts the distribution of the original t-statistic and the distribution of the t-statistic 
obtained by bootstrapping under H

0 
: ρ = 1.
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(b) Distribution of the bootstrapped statistic under H
0
 : ρ = 1
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In order to provide evidence that our proposed method works, we report in the 
left panel of Figure 6 the empirical rejection frequency of the t-statistic to test for 
p = 1 using the same design as in the previous section. The MEBB rejection fre-
quencies coincide with the nominal values as required. In the right panel of Figure 
6, we present the distribution of the t-statistic based on the simulated series as well 
as the distribution of the corresponding bootstrapped t-statistic based on the MEBB. 
The two distributions coincides in the same manner as for the original MEB 
algorithm, see Figure 3.

By comparing Figure 6 with Figure 2, it is evident that our proposed procedure 
allows us to restore the correct size. Indeed, a regression similar to that in (7) gives

τ*
i
 = – 0.4541 + 0.005663 τ

i         
i = 1,…,1000,	 (13)

              (0.0354)      (0.0323)	

with the adjusted R2 = 0.00097. As a further evidence that the MEBB works properly, 
we report in Figure 7 the counterpart of Figure 4. As expected, the absence of 
correlation between τ and τ* results in a contour plot that resembles a circle rather 
than ellipse.

The link between the data generating process and the MEBB draws are weak 
in this case and therefore our method is able to preserve the perfect rank correlation 
locally for each block and it provides a truly viable and working entropy-based 
bootstrap algorithm.

FIGURE 7

Joint Kernel Density

(a) Gaussian Kernel (b) Contour
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3.	 Simulation Study of the MEBB

In this section, we carry out a comprehensive Monte Carlo simulation study to 
evaluate the finite sample properties of the MEBB. We compare the entropy-based 
resampling schemes with standard bootstrap approaches, i.e. residual-based bootstrap 
and non-parametric block-bootstrapping techniques. The comparison is based on 
the bootstrapped empirical rejection frequencies of the t-statistics for testing that 
the value of the AR(1) coefficient, p, estimated by OLS, equals unity (Dickey-Fuller 
test). The unit-root set-up is of particular interest as bootstrapping directly a 
non-stationary series is not common practice in the econometric literature. In 
particular, for non-stationary time series there exists in the literature only the 
Continuous Path Block Bootstrap (CPBB) developed by Paparoditis and Politis 
(2001) and studied also by Phillips (2010).

Bootstrapping unit-root tests is thus one of the potentially most interesting 
application of the entropy-based bootstrap method constituting an alternative to 
standard residual-based bootstrapped unit-root tests (see Palm et al. 2007 for a 
review) which are not easy to apply when the dependence structure of the residuals 
is difficult to ascertain.

3.1	Monte Carlo Design

We consider approximating by bootstrapping the t-statistic distribution for the 
AR(1) coefficient. As benchmark, we consider the empirical rejection frequencies 
based on the standard residuals-based bootstrap (RB) and CPBB. Then, we compute 
empirical rejection frequencies for the MEBB.

In particular, we generate a time series according to the following data generating 
process

xm,t = ρ0xm,t−1 + ηm,t

xm,0 = 0 t = 1,…,T ,

where m = 1,…,M denotes a realizations of the sample path. Further, we consider 
different sample sizes T = {50,100,300}  and we set ρ

0
 = 1 in order to assess the 

size, while we consider progressive deviations from the unit root hypothesis, 
specifically ρ

0
 = {0.99, 0.95, 0.90, 0.80, 0.70, 0.60, 0.5}, in order to assess the power.

Moreover, we generate the {ηm,t}  
series allowing for “progressive’’ fat-tails 

by considering in turn the following distributions

ηt ∼
iid

N(0,1)

τ(5)

τ(3)

⎧

⎨
⎪

⎩
⎪
⎪

,t

t

with t(k) denoting the standard t-distribution with k degrees of freedom. Next, we 
fit an AR(1) model and compute the t-statistic
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τm =
ρ̂m −1

σ̂ηm
(

t=1

T

∑xm,t−1
2 )−1/2

, for testing
H0 : ρ = 1

H1 : | ρ |< 1

⎧
⎨
⎪

⎩⎪ |ρ| < 1

ρ = 1

ρ̂m =
t=1

T

∑ xm,t−1
2( )

−1

t=1

T

∑ xm,t−1xm,t( )ρ̂m =
t=1

T

∑ xm,t−1
2( )

−1

t=1

T

∑ xm,t−1xm,t( )
,	 (14)

where ρ̂m =
t=1

T

∑ xm,t−1
2( )

−1

t=1

T

∑ xm,t−1xm,t( )  is the least squares estimator of the 

autoregressive coefficient and σ̂ηm
= (T −1)−1/2(

t=1

T

∑ η̂m,t
2 )1/2ρ̂m =

t=1

T

∑ xm,t−1
2( )

−1

t=1

T

∑ xm,t−1xm,t( )ρ̂m =
t=1

T

∑ xm,t−1
2( )

−1

t=1

T

∑ xm,t−1xm,t( ) 
is the residuals standard 

deviation.

To compute the empirical rejection frequencies, we draw b = 1,…,B bootstrapped 
samples under H

0
 denoted {xb,m,t

* }t=1
T  either by resampling from the residuals when 

using the RB approach or by resampling directly from levels {xm,t} 
when using 

both MEBB and CPBB.

3.1.1 Residuals Bootstrap

xb,m,0
* = xm,0 ,

xb,m,t
* = ρ0xb,m,t−1

* + ηb,m,t
* t = 1,…,T ,      xb,m,t

* = ρ0xb,m,t−1
* + ηb,m,t

* t = 1,…,T ,

where ηb,m,t
*

 
are drawn from the centred residuals η̂m,t −

1

T t=1

T

∑ η̂m,t

⎧
⎨
⎩

⎫
⎬
⎭t=1

T

  obtained

from the residuals of the regression of x
b,m,t

 on its first lag either parametrically or 
non-parametrically.

3.1.2 Continuous Path Block Bootstrap

Paparoditis and Politis (2001), we implement the CPBB procedure as 
follows: 

1. We compute the centred residuals

ûm,t = xm,t − xm,t−1 −
1

T −1
t=1

T

∑(xm,t − xm,t−1)

and define

xm,t =

xm,1 t = 1

xm,1 +
j=2

t

∑ûm, j t = 2,…,T .

⎧

⎨
⎪⎪

⎩
⎪
⎪

The null is imposed by building the intermediate time-series {xm,t} 
generated 

through {ûm,t}.

2. We choose the block length  < T  and let i0 ,i1,…,iu−1  
i.i.d. uniform random 

numbers on the set [1,2,…,T − ] , where u = ⎣T / ⎦  (number of blocks).
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FIGURE 8

Empirical Rejection Frequencies
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FIGURE 8 (CONTINUED)
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FIGURE 9

Power of the Tests
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Note: �The figure reports the empirical rejection 
frequencies for the MEBB and MnEBB. 
The data generating process is given as 
xt = xt−1 + εt  with ε

t  
~ N(0,1), t(3) and 

t(5), respectively, with x
0
 = 0, and T = 50, 

100, and 300 respectively.
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Note: �The figure depicts the power of the test for 
several bootstrap methods. The data generating 
process is given as x

t
 = x

t–1
 + e

t
, with e

t
~N(0,1),  

t(3) and t(5), respectively, with x
0
 = 0, and 

T = 50, 100, and 300, respectively.

FIGURE 9 (CONTINUED)
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3. We build the bootstrapped series of length l = u ⋅  as

xb,m, j
* = xm,1 + [ xi0+ j−1 − xi0

] first block,

xb,m,rs+ j
* = xb,m,r

* + [ xim+ j − xir
] (r +1)th block,

for j = 1,…,  and r = 1,…,u −1.

3.2 Simulation Results

We then use {xb,m,t
* }t=1

T

 
to compute the bootstrapped counterpart of (14),

τm,b
* =

ρ̂m,b
* −1

σ̂ηm,b

* (
t=1

T

∑xm,b,t−1
* 2)−1/2

b = 1,…,B,

	

(15)

and we select the a-quantile τm
* (α)  

of the distribution of the bootstrapped statistic 

(at the mth iteration) such that B−1

b=1

B

∑ I(τm,b
* ≤ τm

* (α)) ≈ α. The empirical rejection 

frequencies are computed as

1

M
m=1

M

∑I(τm ≤ τm
* (α))

	

(16)

being a one-sided test with rejection to the left.

To compare the size of the different approaches, we compute (16) for a ∈ [0.01, 
0.025, 0.05, 0.10, 0.20, …, 1] and we plot the calculated values against a. If the 
bootstrap works well, as we are simulating under H

0
, we should observe a graph 

close to the 450 line.

Figure 8 reports the rejection frequencies under H
0 
(size) for the bootstrap 

methods introduced in the previous paragraphs. For the CPBB and MEBB, the 
block length is set to u = ⎣T1/3 ⎦ . Overall, the figures suggest that even for small 
samples with T = 50, our proposed MEBB provides rejection frequencies close to 
the nominal level, outperforming the original MEB.

Figure 9 reports the power curves for the alternative bootstrap procedures. The 
closest method to the MEBB is the CPBB, which shows also very similar power 
to our proposed method. In conclusion, the MEBB provides a valid alternative to 
the (unique) existing bootstrap method, which allows to replicate the levels for 
non-stationary time series.

In the next section, we extend the MEBB and introduce the Maximum 
non-extensive Entropy Block Bootstrap, which is based on the generalization of 
the non-extensive entropy.
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4.	 Beyond the Shannon Entropy: The Maximum Non-extensive Entropy 
Block Bootstrap

We extend the Maximum Entropy Block Bootstrap to the case when the under-
lying principle is driven by maximization of the non-extensive entropy and define 
the Maximum non-extensive Entropy Block Bootstrap (MnEBB)3.

The key concept of our framework is the generalized Tsallis (1988) possible 
entropy defined in the discrete form as

Hq = −
1

1− q
1−

i=1

N

∑ pi( )q⎛

⎝
⎜

⎞

⎠
⎟⎟,

and in the continuous form as

Hq = −
1

1− q
1− ∫dx p x( )( )q( ),

where the parameter q governs the non-extensiveness of the system. The Tsallis 
entropy converges to the Shannon entropy in the limit when q→1 .

For a given q, the density function f
q
 is given as

fq x( )=
1−β 1− q( ) x⎡⎣ ⎤⎦

1/ 1−q( )

Zq

,

	

(17)

with normalization constant

Zq = ∫dx 1−β 1− q( ) x⎡⎣ ⎤⎦
1/ 1−q( )

.

The non-extensiveness of the system can be expressed for two systems A and  
B as

Hq A+ B( )= Hq A( )+ Hq B( )+ 1− q( )Hq A( )Hq B( ).

The density function resulting from the optimization of the Tsallis entropy has 
a finite integral over the semi-definite interval for q∈(1,2). The limit of this dis-
tribution function is exponential function for q→1. For q∈(1,2), we get power law 
behaviour and thus fatter tails for the distribution. For q < 1 , we get a non-standard 
behaviour of the distribution function as it is infinite over the semi-definite interval 
and thus it requires a normalization by an infinite normalization factor. This still 
allows for a comparison between the two draws as ∞/∞~c, but it provides unneces-
sary complications. As q→ 0 , we get uniform distribution, or, fq→0 x( )= c /∞, 
where c does not depend on x. For q > 5/3, we get a distribution with non-existing 

3. The MEBB presented in Section 2 is based on the Shannon entropy. Such an entropy is 
suitable for systems, which are extensive and thus do not depend on the initial conditions. Furthermore, 
extensive systems are additive, where two independent pieces of information additively sum up. Tsallis 
(1988) introduces the concept of the non-extensive entropy, where the information is not simply 
additive and the system itself depends on the initial conditions. In addition, the non-extensive systems 
leads to the power law behaviour and fat tails, which is a feature present in time series found in 
economics and finance.
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second moment, or E[x2] = 8 4. At q = 2, the first moment cease to exist. In this 
paper, we explicitly consider q ∈ [1,5 / 3), which covers a broad range specifications 
ranging from the standard Shannon entropy to cases with non-existent second 
moments and fat tails.

4.1	The MnEBB Algorithm

The MnEBB algorithm is defined as follows. First, the mass preserving con-
straint states that, on average, 1/T of the mass of the density function lies in each 
of the intervals I

t
. This is achieved by bootstrapping the set x

t
 as a T draws, each 

from the different interval I
t
. Second, the mean preserving constraint says that

t=1

T

∑xt =
t=1

T

∑x t( ) =
t=1

T

∑mt ,

where m
t
 is the mean of  f(x)

 
over the interval I

t
.

The new framework thus leads to the following choice of the density 
functions

fq x( )= αq 1−β 1− q( ) x( )
1

1−q ,x ∈I1m1 =
3x 1( )

4
+

x 2( )

4    
fq x( )= αq 1−β 1− q( ) x( )

1
1−q ,x ∈I1m1 =

3x 1( )

4
+

x 2( )

4 
fq x( )= αq 1−β 1− q( ) x( )

1
1−q ,x ∈I1m1 =

3x 1( )

4
+

x 2( )

4
,
	

(18)

αq :
I1
∫ xdxfq x( )= m1 ,

	
(19)

fq x( )=
1

zk − zk−1

,x ∈Ik k=2,�,T−1
mk =

x k−1( )

4
+

x k( )

2
+

x k+1( )

4    
fq x( )=

1

zk − zk−1

,x ∈Ik k=2,�,T−1
mk =

x k−1( )
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(20)

fq x( )=ωq 1−β 1− q( ) x( )
1

1−q ,x ∈IT mT =
x T−1( )

4
+

3x T( )

4   
fq x( )=ωq 1−β 1− q( ) x( )

1
1−q ,x ∈IT mT =

x T−1( )

4
+

3x T( )

4 
fq x( )=ωq 1−β 1− q( ) x( )

1
1−q ,x ∈IT mT =

x T−1( )

4
+

3x T( )

4
,

	
(21)

ωq :
IT
∫ xdxfq x( )= mT .

	
(22)

The remaining structure of the MnEBB algorithm is just as defined for the 
MEBB. The choice of q > 1 suggests using the distribution with fatter tails than 
implied by the standard entropy.

Figure 10 reports a bootstrap sample path based on the new MnEBB algorithm. 
We use the same setup as in the previous section with T = 100, y

0
 = 0 and two 

values of non-extensiveness parameter: q = 1.25 and q = 1.5. The figure supports 
the intuition that more the non-extensive the system is, the more variation in the 
replication sample is present.

4. In general, it would be more appropriate to deal with the q-expectations, which remain 
finite and have a proper meaning. However, this is goes beyond the scope of this paper.
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4.2	Simulation Results

We replicate the extensive simulation analysis as in Section 4 and focus on the 
comparison between the MEBB and the MnEBB with q = 1.25 and q = 1.5. Note 
that the MEBB corresponds to the case of the MnEBB with q = 1.

Figure 11 reports the rejection frequencies for three MnEBB methods with 
q = 1, 1.25, and 1.5, respectively, introduced in the previous paragraphs. The data 
generating process is given as xt = xt−1 + εt , with ε

t  
~ N(0,1), t(3) and t(5), 

respectively, with x
0
 = 0, and T = 100. Overall, the figures suggest that for q = 1.25, 

the MnEBB underperforms in terms of size the MEBB. However, with increasing 
q, the MEBB and MnEBB are becoming indistinguishable.

Figure 12 reports the power of the alternative bootstrap procedures. The power 
supports the inferiority of MnEBB with q = 1.25 to the original MEBB, while the 
MnEBB with q = 1.5 is dominating in terms of the power. Therefore, the MnEBB 
method with fatter tails provides a significant improvement to the entropy based 
algorithm even for the data generating process based on the Gaussian distribution.

FIGURE 10

MnEBB Sample Path Replication

xt x*
t with q=1.5 x*

t with q=1.25 

0 10 20 30 40 50 60 70 80 90 100

-10.0

-7.5
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-2.5

0.0

2.5

5.0 xt x*
t with q=1.5 x*

t with q=1.25 

Note: �The figure reports the sample path x
t
 and the replicated path xt

*

 
by the MnEBB. The short-dash 

line corresponds to MnEBB with q = 1.25 and dot line corresponds to MnEBB with q = 1.5. The 
true data generating process is given as xt = xt−1 + εt , with ε

t  
~ N(0,1), x

0
 = 0,

  
and T = 100.
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FIGURE 11

Non-Extensive Size
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	 (a) N (0,1) q = 1.25	 (b) t (3) q = 1.25

	 (c) t (5) q = 1.25	 (d) N (0,1) q = 1.5

	 (e) t (3) q = 1.5	 (f) T = 100 t (5) q = 1.5

Note: �The figure reports the empirical rejection frequencies for the MEBB and MnEBB. The data 
generating process is given as x

t
 = x

t–1
 + e

t
, with e

t
~N(0,1), t(3) and t(5), respectively, with  

x
0
 = 0, and T = 100. 
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FIGURE 12

Non-extensive Power
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Note: �The figure depicts the power of the test for the MEBB and MnEBB. The data generating process is 
given as  xt = xt−1 + εt  with ε

t  
~ N(0,1), t(3) and t(5), respectively, with x

0
 = 0, and T = 100.
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Conclusion

In this paper, we proposed the Maximum Entropy Block Bootstrap, a fully 
non-parametric bootstrap procedure, to resample directly from time series with a 
general persistence structure. Our procedure employed the maximum entropy bootstrap 
while preserving locally the rank correlation between the original sample and the 
bootstrap draws. We used unit root test to illustrate that our procedure performs well. 
In addition, we employed the notion of non-extensive entropy and introduce the 
Maximum non-extensive Entropy Bootstrap, which allows for the inclusion of fat 
tails and power-law behaviour. This generalized procedure outperforms the Maximum 
Entropy Bootstrap for large values of the non-extensiveness even when the underlying 
data generating process involves the normal distribution.

The results in this paper suggest some interesting developments. First, it would be 
useful to derive the limiting theory of the MEBB and MnEBB methods proposed in this 
paper. Second, it would be interesting to extend the proposed procedure to a non-stationary 
framework such as co-integration analysis. This is part of an ongoing research agenda.
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