Document généré le 25 avr. 2024 03:10

Algorithmic Operations Research

Preemptive scheduling with position costs

Francis Sourd

Volume 1, numéro 2, summer 2006
URI : https://id.erudit.org/iderudit/aorl_2art03

Aller au sommaire du numéro

Editeur(s)

Preeminent Academic Facets Inc.

ISSN
1718-3235 (numérique)

Découvrir la revue

Citer cet article

Sourd, F. (2006). Preemptive scheduling with position costs. Algorithmic
Operations Research, 1(2), 79-93.

All rights reserved © Preeminent Academic Facets Inc., 2006

Résumé de l'article

This paper is devoted to basic scheduling problems in which the scheduling
cost of a job is not a function of its completion time. Instead, the cost is derived
from the integration of a cost function over the time intervals on which the job
is processed. This criterion is specially meaningful when job preemption is
allowed. Polynomial algorithms are presented to solve some special cases
including a one-machine problem with a common due date and a two-machine
problem with linear nondecreasing cost functions.

Ce document est protégé par la loi sur le droit d’auteur. L’utilisation des
services d’Erudit (y compris la reproduction) est assujettie a sa politique
d’utilisation que vous pouvez consulter en ligne.

https://apropos.erudit.org/fr/usagers/politique-dutilisation/

erudit

Cet article est diffusé et préservé par Erudit.

Erudit est un consortium interuniversitaire sans but lucratif composé de
I'Université de Montréal, 'Université Laval et I'Université du Québec a
Montréal. Il a pour mission la promotion et la valorisation de la recherche.

https://www.erudit.org/fr/

https://apropos.erudit.org/fr/usagers/politique-dutilisation/
https://www.erudit.org/fr/
https://www.erudit.org/fr/
https://www.erudit.org/fr/revues/aor/
https://id.erudit.org/iderudit/aor1_2art03
https://www.erudit.org/fr/revues/aor/2006-v1-n2-aor_1_2/
https://www.erudit.org/fr/revues/aor/

Y
PN
Algorithmic Operations Research Vol.1 (2006) 79-93

Preemptive scheduling with position costs

Francis Sourd

2LIP6 - CNRS - Université Paris 6, 4, place Jussieu 75252 BAREDEX 05

Abstract

This paper is devoted to basic scheduling problems in whiehscheduling cost of a job is not a function of its
completion time. Instead, the cost is derived from the matémn of a cost function over the time intervals on which
the job is processed. This criterion is specially meanihgfien job preemption is allowed. Polynomial algorithms are
presented to solve some special cases including a one-neghoblem with a common due date and a two-machine

problem with linear nondecreasing cost functions.

Key words: Scheduling algorithm, preemption, primal-dual algorittdgnamic programming.

1. Introduction

In most scheduling models presented in the litera-
ture [5,14], the cost for scheduling a jab is a func-
tion of its completion time, usually denoted ;.
When preemptionis not allowed, the job must be wholly
scheduled in the time intervél’; — p;, C;) wherep;
denotes the processing time &f Hence, the process-
ing period of.J; is unambiguously defined ky;. When
preemption is allowed, there may be an infinite number
of ways to scheduld; so that it completes &t;. There-
fore, a model in which the cost af; only depends on
C; might be insufficient especially when the material
produced by the execution of is continuously deliv-
ered to the consumer, that is a fraction of the material

problems can be found in [12].

In this paper, we consider a new model which cor-
responds to a new criterion in the classic machine
scheduling theory [5]. As detailed in Section 2., the
main interest of the model is to avoid the use of time
periods (the number of time periods is usually not
polynomial). A cost functiory; is attached to each job
J;. It can be interpreted as follows: for an infinitesimal
positive duration ¢ f;(¢)d¢ is the cost for processing
J; betweent and ¢ 4+ dt (mathematical assumptions
aboutf; are given later). Therefore, the total cost of job
J; —called position costof J,— is f0°° fi(t)z; (t)dt,
where z; is a 0-1 function that indicates whethdy
is processed or not at each time. For obvious practical
reasonsy; should be constrained to have a finite num-

is delivered as soon as it is produced instead of being ber of discontinuities, which means that the number of

entirely delivered at its completion time.

However, it does not mean that the problem was
ignored by practitioners and researchers. In fact, it is
usually considered at the planning level. The planning
horizon is divided into time periods. In these models,
the whole production is not processed in a single pe-
riod, and production and holding costs are introduced
in order to penalize a part of the production that would

interruptions of each jol; is finite. We will prove, for

all the models presented in this paper, that the proposed
algorithms compute optimal solutions which satisfy this
condition. Finally, we observe that the condition that

is completely processed is expressed by the equation
fooo x;(t)dt = p;. As a trivial consequence, we have
that if the cost functions are modified by an additional
constant, that is the cost functions gtgt) + \;, the

be processed in a l_Jad time peript_j with respect to the change of the cost of a feasible schedul&is \ip;,
demand. More details about lot-sizing problems can be which is a constant. Therefore, an optimal schedule is

found in recent surveys [15,3]. The notion of preemp-
tion is also central in problems of balancing produc-
tion lines: the production of different products must be
rotated to satisfy the different types of demands while
limiting inventories and shortages. A survey of these

Email: Francis Sourd [Francis.Sourd@lip6.fr].

invariant with respect to the choice of the.

The optimization criterion for the problems addressed
in this paper is the minimization of the sum of the
position costs of all the jobs, which will be denoted by
> [fi in the v-field of the usuakv| 3|~ notation. Al-
ternatively, the max criteriomax [f; could also be of

(© 2006 Preeminent Academic Facets Inc., Canada. Onlineoversttp://www.facets.ca/AOR/AOR.htm. All rights reseds

80 Francis Sourd—Preemptive scheduling with position costs

interest but is not studied here. Moreover, the jobs are ous. Second, iff;(¢) is nonincreasing whetibecomes
assumed to be independent, that is there is no prece-infinite, thenJ; should be scheduled at an infinitely late
dence constraint between any pair of jobs. date. Thereforef; is assumed to be nondecreasing on
Preemptive scheduling in order to minimize the total a time interval[A;, oo) where A; > 0 is defined with
position costs also stems from the need of lower boundsrespect tof;. It can then be observed that there is an
for non-preemptive scheduling problems. An early ap- optimal schedule in which no job is processed after the
proach was proposed by Gelders and Kleindorfer [9] horizonT' = max; A; +), p;. This assumption on the
for the single machine weighted tardiness problem. An cost functionsf; implies that there is an optimal solu-
extension of this approach has been proposed by Clif- tion in which the number of interruptions is finite [16].
ford and Posner [7] for the earliness-tardiness problem Therefore, we will limit our attention to these schedules,
with a common due date and by Sourd and Kedad- which also means that we use the Riemann integral.
Sidhoum [18] and Bilbul et al. [6] for the problem Let us now assume that all the job starts and inter-
with general due dates. These lower bounds are shownruptions must occur at integer time points. Then, a job
to be efficient and can be used in a branch-and-bound.J; running or starting at is processed within the whole
method [18] and in lower-bound based heuristics [18,6]. interval [¢, ¢ + 1) and the contribution of this part of;

In these papers, the lower bounds are not strictly de- tg the total cost is equal tS(;:“ fi(t)dt. The problem
fined as problems with position costs, instead the jobs js classicaly solved asteansportationproblem (see for
are decomposed into unary operations, each operationinstance [1,5]).
being given a cost function. Sourd [16] introduces apo- As the processing times of the jobs are generally
sition cost based model to compute a lower bound for greater than 1, the resulting network is generaity
the earliness-tardiness problem and presents the relahgjanced which means that the number of demands
tionships between the new model and the ones of [18] (sinks) is significantly greater than the number of sup-
and [6]. pliers (sources). Hence, the problem can be efficiently
Section 2. provides some generalities and related re-solved by some variants of the classical network flow al-
sults. It is explained that no efficient strongly polyno- gorithms for unbalanced bipartite networks (Ahuja and
mial algorithms for problems with thg [f; criterion 3y [2]). Sourd and Kedad-Sidhoum [18] also presented

have been proposed in the literature. Therefore, the aima variant of the Hungarian algorithm that solves the
of the paper is to study classes of problems which can proplem in the special case = 1.

be well solved by combinatprial algorithms. Section 3 The main advantage of solving the scheduling prob-
is then devoted to two special cases of the one-machinejgy, as a transportation problem is the generality of the
problem. In Section 4., a parallel machine problem with approach: it works as soon #ﬂ f, can be computed
two machines is studied. Finally, Section 5 underlines __ appr;)ximated by a numericéi method— for any

thebtlnrlgmah_t)r/] of thg techmqueii gs(?d to solve these However, whenf; can be compactly encoded, the ap-
problems with position costs and indicates some 0pen .., js not so efficient. For instance, let us consider

problems. the case where we simply haygt) = |t — d;], that is
the function is encoded if(logd;) space. Then, the
2. Generalities and motivation horizonT" is not polynomial in the size of the input
of the problem even if it is bounded by a polynomial
Let us first consider the more general problem inthe values,,...,p, andds,...,d,. Therefore, the

P || > [fi. We first observe that this problem is equiv- transportation-based algorithm is not polynomial but
alent to the problem with release dates and deadlinespseudo-polynomial. We can also interpret this problem
P|r;,d;| 3 [f; because the value of; can be set as the problem of scheduling; , p; unit operations.

to an arbitrarily large value outside the time interval As thep; unit operations derived froni; are identi-
[r;,d;). Classically, the number of jobs is denoted/by cal, the problem is related to the field of high multiplic-
and, for eachi in {1,...,n}, p;, denotes the processing ity scheduling (see [4] for a recent discussion of these
time of J;. problems). In particular, Clifford and Posner [7] study

We also introduce some assumptions about the costseveral common due date earliness-tardiness scheduling

functions f; andx; in order to avoid technical issues. problems in the context of high multiplicity. They pro-
First, in order that the integr:;f[JOO fi(t)x; (t)dt always pose polynomial algorithms which relies on the solving
exists, we assume that all thfeare piecewise continu- of several linear programs. In particular, they show that

Francis Sourd— Algorithmic Operations Research Vol.1 G0®-93

when the processing times of the jobs are equal to 1,
the problem is polynomial. This problem is similar to
the problem we study in Section 3.2. when we add the
constraint that interruptions must happen at integer time
points. In contrast, we show that in our model with po-
sition costs, the algorithm is simpler and more efficient.

In what concerns position cost as defined in this
paper, Sourd [16] studies the one-machine scheduling
problem when the cost functions are piecewise lin-
ear (job interruptions are no more forced to occur at
integer times). It can be shown that the dual of this
problem is the maximization of a non-smooth concave
function and, as there is no duality gap, the problem
is polynomial. When there are parallel machines in-
stead of a single machine, the problem can be similarly
solved (Kedad-Sidhoum et al. [11]). However, in a com-
putational view, obtaining the optimal schedule, even if
polynomial, is not so easy because the optimum often
corresponds to a non-smooth point. Furthermore, the
algorithm is not combinatorial and not strongly polyno-
mial.

This observation motivates the study presented in this

81

Algorithm 1 Preemptive “largest slope first” rule

lett = min; r;
eat
selectJ;~ with r; > t andp; > 0 with the minimal
slopew;
lett’ = min (¢ + ps», min{r; | r; > t})
scheduleJ;~ betweent andt’
decreasey;- by t’ —t
let t = max (¢, min{r;, p; > 0})
until p; = 0 for all jobs

with the part ofJ; in [t2,t2 + 6). Simple calculations
show that the change of the cost of the schedule is
(w; —wj)(t2 —t1) < 0, which proves that the initial
schedule was not optimal.

The algorithm can clearly be implemented in
O(nlogn) time. Since the processing of a job can only
be interrupted by the release of another job, there are
at mostn — 1 interruptions in the schedule. In partic-
ular, there is no job interruption when all the jobs are
simultaneously released.

paper. Some special cases of the single and parallel ma-

chine problems are considered and polynomial combi-
natorial algorithms to solve them are given.

3. One-machine problems

3.1. Release dates and linear cost functions

We first consider that the cost functions are of the

form
fi(t) = {

wherer; > 0 is therelease dateof J; andw; > 0 is
the slopeof its cost function. We show that an optimal

if t < T
w;t otherwise

schedule can be obtained by scheduling the job accord-

ing to the preemptive “largest slope first” rule, which is
more formally described by Algorithm 1.

The algorithm can be proved by a classic interchange
argument. As mentioned in Section 2., we limit our at-
tention to schedules with a finite number of preemp-

3.2. Earliness-tardiness around a common due date

In this section, we consider that the cost functions are
of the form f;(t) = o; max(d—t,0) + 3; max(t — d, 0)
for acommordue datel > 0. For each johJ;, we also
have«; > 0 and3; > 0 because a job withs; = 0
can be scheduled after all the other jobs and there is
no release dates. A part of a job scheduled befiise
said to beearly otherwise it isate. We assume without
loss of generality thaty, # «; and 3; # (3, for any
1 # 7. This assumption is based on [16, Remark 3] that
shows that we sligthly modify the value of the slopes
with a very small perturbation the optimal schedule is
very slightly modified. Moreover, while this assumption
makes the proof shorter, the algorithm we propose can
be easily implemented to deal with equal slopes without
explicitly introducing the small perturbations.

This problem is clearly related to the class of schedul-
ing problems with earliness and tardiness penalties and a
common due date. Two recent surveys of these problems
have been proposed by Gordon et al. [10] and by Lauff

tions. Let us consider a schedule such that there is anand Werner [13] but only non-preemptive scheduling is

interval [t1,t; + d1) in which the scheduled job (say
Ji) violates the “largest slope first” rule. As the rule
is violated, there is a time intervéd,,to + d2) with
to > t; in which the scheduled jol§; verifiesw; > w;
andr; < t;. Let us defined = min(dq,d2). The part
of J; scheduled inft;,¢; 4+ §) can the be swapped

addressed in both articles. As mentionned in Section 2.,
the closest model is the one proposed by Clifford and
Posner [7] that considers unit jobs, which is similar to
constrain interruption times to be integer.

We first observe that there is an optimal solution with-
out idle time that completes at some timesuch that

82

t—P <d<twith P=3" p;. For agiven sched-
ule and for anyi, let p;” denote the length of; sched-
uled afterd and letp; = p; — p; be the length of/;
which is early. Clearly, according to Section 3.1., in an
optimal schedule, the late part of any job is not inter-

Francis Sourd—Preemptive scheduling with position costs

[max(d, P),d+ P]. The aim of the proposed algorithm
is to enumerate the optimal schedules whearies in
this interval in order to find the optimal cost f(t),
denoted byOPT(¢), and given by

In our approach, we are going to solve the dual prob-

rupted and the parts of jobs are sequenced in the or-|em of (1-4) which consists in the unconstrained maxi-

der of nonincreasing;-costs. Similarly, the early parts mization of
are sequenced in the order of nondecreasipgosts.
Therefore, these dominant schedules are mathematically n

defined by the vectop™ = (p{,...,p;): from this

vector, we can easily derive the early parts of the jobs
and the start times of both early and tardy parts. Let us

define thepseudo start timef J; ¢ =d—>_, -, p;
and itspseudo completion timg™ = d + > 8,26 P

If p = 0, J; iswholly earlyand is scheduled in the in-
terval(t; ,¢; + p;) otherwise it is —at least partially—
late and it completes &f . If p;” = p;, J; is wholly late
and is scheduled in the intenvig)” — p;, ;") otherwise
it is —at least partially— early and it starts @t. The
cost of the schedule is then denoted®®ST(p™).

In order to solve the problein we define the pa-
rameterized problerfP(t), which is the variant of our
problem in which the jobs are forced to be scheduled
in the time intervalt — P, t):

n t+P
P(t): min) / fi(0)2t(0)do (1)
i=171t
s.t. Xn:xz;(e) <1V0 € [t,t + P) (2)
"
/ ot (0)do = p;Vi € {1,...,n} (3)
t

24(0) € {0,1}V0 € [t,t + P) Vie{l,...,n} (4)

For anyt € [d,d + P], we will consider the opti-
mal solutionz’ of P(t) that also verifies the above

dominance properties. This solution is described by the

vector p(t) = (p{ (t),...
[2t (9)de.
Clearly, if t = d + P, all the jobs are wholly late

D (1)) where pf () =

so that they are sequenced in the order of the nonin-

creasingg;. Conversely, ifP < t < d (if possible),

t+P
Hipi + /
t

for 4 € R™ . The optimal solution of this dual problem

is denoted byu(t). Then, the optimal cosDPT(¢), is
equal toCOST(p*(t)) = q:(1u(t)). For a given value

of i, we can build a dual pseudo-schedule that execute,
foreachtime) € [t— P, t], the job.J; that minimizes the
valuef;(6)— ;). In general, this pseudo-schedule is not
feasible because the time spent to process a job differs
from the required processing time but it is feasible (and
optimal) whenu = p(t). The relationship between the
primal and dual solutions is central in the rest of the
section. The reader can refer to [16] for more details.

We now present the main theorem of the section that
shows howP(t — €) can be efficiently solved when the
optimal solution ofP(t) has already been computed. It
is illustrated by Figure 1. In the proof of the theorem
and in the followingP(¢) is considered as the “current”
problem so that the reference towill be omitted in
notations, that i9™ andy will denotep™ (¢) and u(t).

AIEDY

i=1

min (f;(0) — pi)do (5)

1<i<n

Theorem 1 For any ¢t > max(P,d), there exists a
valueé > 0 and a job index* € {1,...,n} such that,
for anye € [0,4],

TORE 20 if i # i
pi (¢ >_{p;;(t)—e if i — i*

In other words, an optimal solution &f(¢—e¢) is derived
from the solution ofP(t) by making early the tardy
guantitye of some jobJ;+, which is called théransfered

all the jobs are wholly early and they are sequenced’ ™

in the order of their nondecreasing-values. There-
fore, we study the problem whétrvaries in the interval

L An animated demonstration of the algorithm can be down-
loaded from the site of the author
http://lwww-poleia.lip6.fri-sourd/project/position

PROOF. In this proof, we consider the paip™, i)
formed by the primal and dual solutions &f¢) and
we build the optimal paifp™ (¢t — ¢€), u(t — €)). From
the dual solutionu, let us define the sets

Francis Sourd— Algorithmic Operations Research Vol.1 G0®-93 83

[I3 i IJ,I T J

t- P £ £+ 't
(e e T @)
t—b—e t_‘—e d t“"—e t—e¢

Fig. 1. FromP(t) to P(t — ¢)

E=E()={Ji|30 € [d, 1], V], fi(0) — pi
< f3(0) — i}
T="T(t)={J;|30 € [t — P.d], Vj, f(0)
i< 0 5}
M=M@H)=ENT

None of these sets is empty because they all contain the

job J; such thatf;(d) — p; is minimal. Let us define as
J;+ the job inM whose earliness cost is minimal. We
first show that the tardiness cgst of this job is also
minimal in M, that is3;+ = min{3;, .J; € M}. From
the definition of&, for any jobJ; € M — {J;-}, we
have thatf; (0) — ; < fi+(0) — ;= for somed < d. As
a» < g, we havef;(d) — p; < fix(d) — pg«. If we had
Bi < Bi+, we would have thaf; (0) — i < fix (0) — p
for anyd > d and J;» ¢ T, which is a contradiction.
Therefores;» < 3; and 3+ = min{p;, J; € M}.
Then, we can define the sét= {J; € £ |a; < a}}
and the time point~ = ¢_,. By definition of J;«, all

the jobs of € are wholly early and scheduled in the

intervalI(€) = [t — P,t~]. Symmetrically, let/ be the

set{J; € T | 6; < 5/}, these jobs are scheduled in the

interval I(7) = [t*,t] with ¢+ = ¢;.. We also observe

that, since the tardy jobs are sequenced according to th

tardiness costs, the tardy part f is scheduled just
before7, in the intervalt™ — p., ¢t*]. Therefore, for

anye € [0,p;.], we can build a feasible schedule for

P(t — ¢) by left-shifting the jobs o€ U 7 by e and by
moving e units of J;« from the intervalt™ —¢,¢) to

[t~ —¢,t7) (see Figure 1). A simple calculation shows

that the cost of a jol; in £ (resp. in7 increases by

a;pie (resp. decreased byg;p;€). Then, the change of

the cost of the schedule with respecttis

-
Z Qipi€ — Z Bipi€ +/ fi=(0)do

J»;Eg J»;E'f tm—e
t+

—L;ﬁ@M(Q

e

I |
t—P = d t t [4

Fig. 2. The functions®) — ¢~ (6,t) and@ — g™ (0,t)

We now show that, it is sufficiently small (less than
some value) to be determined), then the constructed
schedule is optimal foP (¢ — ¢). To this end, we build
the following dual feasible solution:

wi(t) — (e —ay)e if J; €€,
pit —e) = pi(t) + (B = Bi)e if Ji €T,
i(t) otherwise.

The end of the proof is to evaluate the variation of the
cost of the dual solutiom;_(u;(t — €)) — q:(pi(t))

in order to show that it matches the cost of the primal
solution. We only give the main steps of the calculation.
Let us consider the two functions depicted in Figure 2:

Simple calculations show that, for all € I(&),
g (0—e€,t—e)=g (0,t)+ai-eand, foralld € I(T),
gt (0 — e,t —¢) = gT(0,t) — Bire. By construc-
tion of £ and 7, we have that, for alb € I(€),
g (0,t) < g*(6,t). By continuity of g™, there ex-
ists 6/ > 0 such that, for any € [0,4'], we have
gt (0,t —€) > min; g7 (fi(0 — €) — pi(t — €)). Then,

84

for e < ¢’, we have (detailed calculations are omitted):

min (fi(6—) — pilt — €))

1<i<n

g (0 —et—e€) =g (0,t) + e if 0I(E)
=gt (0 —et—€) =gt (0,t)— pie ifOcI(T)
ming<;<n (fi(0 — €) — ui(t)) otherwise.

Using this result, we can compute

/tfpfe (g?eir%(fl(t?) — pi(t —€))do
N t—p }nen%’(fz(e —€) — pi(t —¢€))do

— Bix sz‘€+/

JiET tT—e

So, we finally have

Gi—c(i(t =€) = a(pi(t) =) aipie

JT',EE

-2 5z'pi€+/ efi* -

t tt
JT',ET &=

We have then proved that the variation of the cost of the
dual solution is equal to the variation of the cost of the
primal solution given by (6) so that the proposed primal
solution is optimal. Therefore, we have shown that if we
chooseJ;- and§ = min(p;., d’), the theorem is valid.

The theorem gives the main idea of the algorithm to
compute all the valueSPT(¢) whent varies. If we first
consider a “continuous” version of the algorithm, we
have to determine at any tintethe transfered joly;«.
The proof of Theorem 1 shows how to select this job but,

Francis Sourd—Preemptive scheduling with position costs

Sincee can be arbitrarily small, we define thearginal
transfer costn; of J; that correspond to the limit of the
transfer cost whean tends to0+:

m; = Z ajp; — Z ﬁjp;—i-ai

aj<ag Bi<Bi

>0

;>

> v

B85 2P
= Z min(ay;, ;)p; — min(B;, ﬁi)p;r
J

— B
(8)

In order that the schedule obtained after the transfer of
a very small quantity of J; is optimal, the transfered
job must be the job with the minimal transfer cost.

If there are several jobs that minimize;, the proof of
Theorem 1 shows that we must select the job with the
smallest valuey;.

Corollary 2 The functiort — OPT(¢) is convex.

PROOF. From the definition of the marginal cosis;,
we have that the derivatv@PT' () = — minj<;<, m;
(t). For anyt, ¢’ such thaimax(P,d) <t <t < d+P,
we have, forany, pf (t) < p; (t') andp; (t) > p; (/).
Therefore, for anyi, m;(t) > m;(t') and therefore
OPT'(t) < OPT'(t'), which proves the convexity of
OPT.

Once the transfered jah- is selected, we must deter-
mine the quantity to be transfered. Clearly, the transfer
of J;+ must be stopped when one of the four following
events is met:

(1) J;- has been wholly transfered (thapis becomes
null),

(2) when there is no room left if9), d] to realize the
transfer,

(3) when the minimum oOPT(¢) has been reached,

(4) when another job becomes more critical.

in order to have a simpler algorithm, we give a second /e now study the fourth type of events and, to this end,

characterization of the transfered job. We consider the

change of the cost of the schedule, when the quantity

€ € (0,p;] of a job J; is transfered.

7
Z a;p; € — Z Bipfe+ ~ fi(0)do
a;<a; B <Bi bty —e€
tt+

i
/tté
i

f:(6)de.

we consider the variation of the transfer costs while

is transfered. Since only,. andp;. in (8) are modified
during the transfer, we have for any with p;” > 0:

m; (t — 6) :mi(t) + S; (t)e with
5;(t) = min(ay, a;+) + min(3;, Bi<) (9)

Therefore, the variation of the transfer cost of each job

is linear. Clearly, ifs; > s;«, we will havem; (t — €) >

m;« (t—e) for anye > 0 and, conversely, by considering

Francis Sourd— Algorithmic Operations Research Vol.1 G0®-93

the cases; < s;+, we find thatm;- (¢ — ¢) is ensured
to be less tham;(t — €) as long as

egmin{

We now consider the case where the optimum of the
problem is reached after that the quantitgf J;- was
transfered (third type of events). Whilé. is being
transfered, since the derivative of the optimal cost is

My — Myj*
——— pf >0ands; <sz}
Six — 84

OPT'(t) = —m,-(t), the event cannot happen unless
m;(t —e€) = 0, thatise = — 2= = a:’:ﬁg_* (note that

mi» < 0anda« + B > 0).

The first two events are obviously detected(l)
time and we can now write Algorithm 2 that computes
the optimal schedule for the problem. The main loop
corresponds to the events that are iteratively met while
the jobs are transfered.

Algorithm 2 Solve the common due date problem

t—d+ P

for each i: let p;” = p;

for each i: initialize m; = — 377, min(3;, §;)p;
repeat

let J;« be the job that minimizegn;, «;, ;) in the
lexicographical order
for each i: compute s;

min(8;, Bi+)

min(a;,) —

M —M*
Sk —8;

,pi >0

— MM *

let § = min (pi't,t— P,min{
ands; < si*} ,)
t=t—9
decrease;. by &
for each i: updatem; = m; + s;0
until ¢ = max(P, d) or m;» =0
build the schedule according to thg¢ and compute
its cost

5%

The main difficulty to analyze the complexity of this
algorithm is to bound the number of events that may
occur. To this end, we first prove the following lemma.

Lemma 3 When the transfered jol;+ is changed but
pi. > 0, the new transfered joB; is wholly late p}“ =

;).

PROOF. According to the proof of Theorem 1, for any
job J; with p;” > 0 andp;” > 0, we haven; > a;- and
B; > [B;~. Therefore, by (9)s; > s;«, which means that
the transfer cost; (t—¢) of J; cannot become less than
m«(t — €) while J;« has not been wholly transfered.

85

Theorem 4 The common due date scheduling problem
can be solved iD(n?) time.

PROOF. The first event can happen at mestimes,

the second and the third at most once and the fourth
at mostn times according to the previous lemma.
Consequently, the main loop of the algorithm is run
O(n) times. Clearly the instructions inside the loop re-
quire O(n) time. Furthermore, the initialization of the
marginal transfer costs is doned{n?) time. Then, the
time complexity of the proposed algorithmdx(n?).

In the optimal schedule built by the algorithm, each
job is interrupted at most once but the job in process
at timed is not interrupted, so there are at mast 1
interruptions in the schedule.

In the special case where; = g3; for all i €
{1,...,n}, the problem can be solved ifi(nlogn).
First, if the common due daté is unrestricted, the
problem is clearly symmetric and there is an optimal
schedule such that; = p; = p;/2 for each job
Ji. The corresponding schedule can be scheduled in
O(nlogn) and it is optimal wheneved > P/2. We
observe that this schedule has exaotly- 1 inter-
ruptions. Ifd < P/2, we first order the jobs in the
decreasing order of the;’s and we then compute the
vectorp~ (and thereaftep™) by Algorithm 3.

Algorithm 3 Solve the common due date problem with
symmetric costs

1=1
t—=P
repeat

pi_ = min(pi/27 ti)

decrease¢™ by p;, and increase
untilt= =00ri=n
whilei < n do

b =0

increasei
end while

A last special case is when the jobs can be renum-
bered such that; < --- < «a, @and gy > -+ > G,
Then, the transfer of a job is never interrupted and the
schedule has no preemption (the jobs are sequenced in
the order of their indices). Since the job are simply trans-
fered in the same order, the choice of the transfered job
is easy and the fourth event cannot happened. There-
fore, Algorithm 2 can be simplified to run i®(n) time
(once the jobs are sorted).

86 Francis Sourd—Preemptive scheduling with position costs

4. A two-machine problem calculations show that if we swap the left partpfwith

B and the left part of/; with B, the variation of the
When preemption is not allowed, we often have a cost is equal to

strong relationship between one-machine scheduling

around a common due date and two-machine schedul- - (WB — (w; +wj)(ta — tll)) (th —t1)

ing: the schedule of the first (resp. second) machine)))

in the two-machine problem corresponds to the late Similarly, if we swap the right part of; with B, and

(resp. early) jobs in the common due date problem. the right part ofJ; with B, the variation of the cost is

However, this relationship disappears in preemptive egual to

scheduling because we have the constraint that a job B , ,

cannot be scheduled on two different machines at a (WE = (w; +w;)(t2 — 11)) (ty — t2)

single time. This constraint makes the preemptive two-

.) Theref ith i th hedul
machine deeply different from the problem addressed eretore efiner one move Improves e schedue or

: . both moves let the cost unchanged, which means that at
in Section 3.2.. : :
Thi ionis then d dioth hi b least one of the two interchanges does not increase the
IS section Is then devoted to the two-machine prob- .. By iterating such interchanges, we prove that an

lem. Then prs Ji s dn haye to be processed b_y optimal schedule satisfies the conditions of the lemma.
m = 2 identical parallel machines. They are all avail-

able at time0. As in Section 3.1., we consider that
fi(t) = w;t with w; > 0. We also assume that the jobs
are non-increasingly sorted according to their slopes
(wl Zzwn>0)

As in the previous section, the algorithm is presented
in the case where the slopes are assumed to be all dif-
ferent @, > --- > w,) in order to avoid some techni-
calities in the proofs. lfv; = w;; for some jobJ;, we
can change the weight; = w; + € for a very smalle.

We observe that the schedules that satisfy the condi-
tions of the lemma have at mostn + 1) job interrup-
tions since there are at mastn + 1) different job as-
signments for the two machines. The following lemma
reinforces the dominance properties.

Lemma 6 There is an optimal schedule with no idle
time such that the two following conditions hold:

(1) for anyt >0, J1(t) < Ja(t)

(2) forany0 <t < t'andj € {1,2}, J;(t) < J;(t')
4.1. Dominance properties

PROOF. From any optimal schedule, another optimal
schedule satisfying (t) < J2(t) can be built by swap-
ping the parts of jobs between the machines. Therefore,
we assume we have an optimal schedule that satisfies
the first property. LetS be the set of optimal schedule
with no idle time that satisfy the first property and the
conditions of Lemma 5. Since these schedule have at
mostn(n + 1) interruptions, the sef is compact. For
each schedule i§, let us consider the timeof theear-

liest violationof the second condition, that is the earliest
Lemma5 There is an optimal schedule such that if ; gych that there existé > ¢ such that7, (¢) > J1(t)
Ji(t) = (') andJa(t) = Jo(t') for some < ¢’ then or J2(t) > J2(t'). If there is no schedule that satisfy
J1(0) = J1(t) and 72(0) = J2(t) for all 6 € [¢,¢]. the second condition, all the schedules have an earliest

violation and we consider the schedule with the latest

PROOF. The proofis based on the simple interchange earliest violationt (such a schedule exists sinceis
argument illustrated by Figure 3. Joh and J; are compact).

respectively scheduled on machine 1 and 2 during the Let ¢ be such that there is no preemption in the two
intervals (¢1,t}) and (t2,t,). Let By and By be the intervals(t,t + €) and[t',t" + €). For example 7 (t)
parts of jobs processed in between the two intervals on denotes theonly job scheduled on machine 1 in time
machine 1 and 2 respectively. Lgf be the amount (in interval[t, ¢ +¢€) and, since there is no ambiguit; (¢)
processing time) of joly,, scheduled betweet{ and is also used to denote the part of joh(t) scheduled
th in By orin By. Let WP = "7 wypP. Simple in the intervallt, t + ¢).

Any feasible schedule can be described by the two
functions7; and 7> : Ry — {1,...,n,00}. Abusing
notation,J; (t) will both denote the job running aton
machinej and its index.7; () = co means that no job
is processed. As the objective function is regular and
there is no release dates, there clearly exists an optimal
solution with no idle time inserted, which means that if
J;(t) = oo for somet, thenJ;(t') = oo for all ¢/ > t.

Francis Sourd— Algorithmic Operations Research Vol.1 G0®-93 87

Machine 1 [I Jls I B I
Machine 2 [I Jj I Bo I
t1 tll

to t/2

&
-
|

&
-
N/

- Machine 1 [I B, /f\ Ji I i I j
Machine 2 [I By I Jj I I I }
- Machine 1 [I Ji I Ji /f\ B I j
Machine 2 [I Jj I Jj I By I }

Fig. 3. Proof of Lemma 5

e If there is a violation on both machines, that is n

P2 — T2 Pe — L6 = Pe
Ji(t) > (') and F2(t) > Jo(t'), we can swap . p—
J1(t) with 71 (') and, simultaneously.z(t) with H I I [
J2(t'). The swap operation does not increase the andine2 ())i

cost, does not violate the first condition but removes
the violation of the second condition at timewhich
contradicts the maximality of. Fig. 4. Variables of the quadratic program

o If 71(t) > A (') and Fa(t) < Ja(t'), we have that
jg(t/) > jQ(t) > jl(t) > N (t/) so that.7; (t)
and. 7 (t') can be swapped without violating the first
constraint. Once again, the violation of the second
condition at timet disappears.

o If 71(t) < A(t)andFa(t) > Jo(t'), we symmetri-

T 3 Ty =py 5 x7 s

Note that, in order to satisfy the conditions of Lemma 6,
the part ofJ,, scheduled after the completion of the first
machine should be moved from machine 2 to machine 1.

cally have that7; (t') > Ji(t) > Ja(t) > Jo(t') and A dominant schedule with jobs is then described by
we have the same conclusion when Swappﬁagt) n—2 VariableSTQ, P s | Wherea:l- is the part ijOb
and 7 (t'). Ji schedule on the second machine. For convenience, we

As the maximality oft is contradicted in every case, introduce the variable&’; = 77, z; (with X; = 0).

there is an optimal schedule that satisfy the two condi- According to the dominance ruleg; (1 < i < n) starts
tions. on the second machine & _; and is interrupted aX;.

Then, with the notatiorP; = 23:1 pj, the processing
is resumed on the first machine Bf ; — X;_; until

it completes atP; — X;. Finally, J,, is processed be-
tweenX, _; andX,,_1 + p,. Our problem can now be
formulated as a quadratic prograd®.

Even if our approach for solving is based on dynamic
programming, we first introduce a quadratic program-
ming formulation of the problem which will be useful to
clearly define the subproblems of the dynamic program.

4.2. Quadratic programming formulation n
min (wip1®/2 + Z wi(Xi—1 + 2 /2)x;

As a corollary of Lemma 6, jold; is scheduled with- i=2
out preemption on the first machine betweeand p, n
— hence its cost isv;p;2/2. Similarly, job J,, is also + Zwi(Pi—l = Xio1 4 (pi = 4)/2)(pi — :)

scheduled in an interval of length, and it can be com- =2

pletely scheduled on the second machine (see Figure 4). +wn(Xn—1 4 pn/2)pa) (10)

88 Francis Sourd—Preemptive scheduling with position costs

st. Vi<i<n 0<umz <p; (11) Xi=Y"_ Vi<i<k (16)
) i 2X; 142z <Py Vi<i<k a7
Vi<i<n Xi= ;% (12) X, <t (18)

Vi<i<n 2X; 14+ x; <Py (13) The objective function takes into account that the job
Ji can now be preempted (note also the presence of the
variablex;). Equations (15), (16) and (17) respectively
correspond to (11), (12) and (13). Finally, equation (18)
nomial in zs, . ..z, 1 where all the quadratic terms indicates that the second machine must complete before

have a nonnegative coefficient. Equations (13) mean that®" Clearly, all the functiong () become constant when

J; can start on the first machine only after it is stopped thbecomes large, It bﬁ the smallest time point such
on the second machine. that f;, is constant on the intervél},, oo). For anyk,

we observe that < T, < Py/2.
For the purpose of illustration, let us first consider
f1(t). Clearly, J; is scheduled without preemption on
4.3. Dynamic programming recursion M, so thatf,(t) = 01’1 w10do = %w1p12 for any t,
which means that}; = 0. When a second job is added,
In this section, we propose a dynamic programming the job can be scheduled without interruption between
approach to solve the two-machine problem. The main (andmin(py,) on M. If the job J, is not completed
idea is similar to other classic dynamic programming at this time,J, is interrupted and restarts da; at p; .
algorithms for two-machine problems (for example Therefore, simple calculations give
P2||Cinax [5])- The jobs are added to the partial sched-
ule in the order of their slopes and for each partial %(w1p12 + wopo?) if £ > min(p1,p2)
schedule, the dynamic program records all the optimal

The objective function (10) can be expressed in function
ofthex;’s using (12) so that it becomes a quadratic poly-

1 2
solutions for all the possible completion time of the f2(t) = §(w1p12
second machine. More formally, lg(¢) be the min- w2 (2% — 2t(p1 + p2)
imal cost for scheduling the firgt jobs such that the +2p1p2 +p22)) otherwise

second machine completestafwhich means that the

first machine completes db, — t). While scheduling

algorithms usually consider all the possible integer 0
0~

and the derivative is

if ¢ > min(p1,p2)

values oft, we here consider all the real valuestof .)
wa (2t — Pp) if t < min(py, p2)

It means that the functiong, will not be recorded as
an array of values but we will use a more compact
data structure using the property that the functions are
piecewise quadratic.

Clearly, we havel, = min(pl,pg). If p1 # P2, fI(TQ)
does not exist but the left and right derivatives exist.
As Ty < P,, we have thatf;(t) < 0 and f} is piece-

By animmediate adaptation of the proof of Lemma 6, wise linear and nondecreasing. Therefore, the function
it can be shown that the dominance properties remain f, is nonincreasing, convex and piecewise quadratic.
valid when this new constraint on the completiontime of Furthermore,fy (t) = 2w, for anyt € [0, T5).
the second machine is added. Therefore we can modify \We now show by induction that, for arly > 2, we
QP in order thatfy(t) is given by the optimum of the have the three following properties:
quadratic program)P(¢): (1) the functiony; is nonincreasing, convex and piece-

wise quadratic,
k (2) the derivative f; is nondecreasing and piece-
min (w1p1®/2 + Zwi(XFl +x;/2)x; wise linear and continuous on0,7%) and
i=2 110) < —wy Py,

k (3) the second derivativg! is piecewise constant and
Zwi(Pifl —Xio1+ (pi —) /2)(pi — 21)) foranyt € [0,T%), f//(t) € {2ws, ..., 2w} (ifit
=2 is defined) andf;/(t) = 0 for ¢t > Tj,.

(14) Clearly, the three properties are true fore= 2 (for
s.t. 0<z; <p; Vi<i<k (15) k =1, we havef’1(0) = 0 £ —w; P, but the other

Francis Sourd— Algorithmic Operations Research Vol.1 G0®-93

Fig. 5. The two cases when computifig

properties are satisfied). We then assume that, for some

k > 2, they are true forf,_, f;,_, and f;’_, and we
are going to buildf; and show that it satisfies the above
properties. In order to have simpler notations, let us
definef = fkfl, P=PFP._1,J=J,w= Wk, P = Pk,

F = fi andT = Ty. Let s denote the start time of

on the second machine.

We first compute the tim& when F' becomes con-
stant. We then solve the probleQP, (c0), which cor-
respond to the removal of equation (18). It was noted in
the previous subsection that, in an optimal solution of
this problem, the last job, that ig, is not interrupted.
Therefore, the cost of the schedul@‘(s)+fss+p 0do =
f(s)+wp(s+p/2) wheres is the start time off. Since
f has both left and right derivative — respectively de-
noted by f’ and f| — and f’ is nondecreasing, the
start times must satisfyf’ (s) < —wp < f', (s) in the
optimal schedule. As-wp < 0, we haves < T}, and
there is a unique solution, denoted by — we con-
ventionally definef” (0) = —occ to ensure the existence

89

339000
338500

8
O 338000 h

337500 -

337000 -

I I
120 125 130 s 135 P/2

Start time s of J

140

Fig. 6. Functionsp, for different values oft

is a fixed parameter if0, 7).

min F(s,t) (20)
st. t—-p<s<t (21)
s>0 (22)
t<P-—s (23)

Equation (21) indicates that the part.Hfscheduled on
the second machine is not greater thaiquation (22)
forcesJ to start after 0 while equation (23) prevents
J from starting on machine 1 before it is completed
on machine 2. The problem is then to minimize the
function ¢; : s — pi(s) = F(s,t) on the interval
I; = [max(0,t — p), min(¢, P — t)]. We note that this

of s*. Figure 5 represents the two cases that can hap-interval is not empty because> max(0,¢ — p) and

pen: either jobJ completes before machine 1 comple-
tion (so thatl’ = s* + p) or it completes later (so that
T =P —s*).

In an optimal solution 0QP, (t) with ¢t < T, .J starts
at s on the second machine and is interruptetithen it
is resumed aP — s on the first machine and completes
atP+p—t (possibly,s =torP—s=P+p—t).
Therefore, the cost of the schedule is
P+p—t
/ 0de
P—s
w
= f(s) + B

(*=s*+(P+p—1t)?>—(P-s)) (19)

F(t) = F(s,t) :f(s)—l—w/tHd@—i—w

In fact, the variable is subject to feasibility constraints
so thatF'(t) can also be expressed as the following
mathematical program, which is in fact a unidimen-
sional parameterized problem (the variablg ishile ¢

P—t=P-2t+t> P-2T+t > P-22f2 4t = t—p.
Disregarding constraints (21)-(23), let us consider the
partial derivative

_ 0F(s,1)
- 0s

w

= 1(s)+ 5
= /() + w(P — 2s)

@(s)

(=254 2(P —s))
(24)

Note thatf’(s) and thereafter)(s) may not exist at
some points but the left and right derivatives exist. For
simplicity and as long as it is unambiguous, we only
write one derivative instead of defining both left and
right derivatives.

Clearly, for any ¢, the derivative is null for
s = P/2 which corresponds to a local maxi-
mum of ¢, (see Figure 6). Sincef’ is nonde-
creasing andf’(0) < -—wp1P < —wP and
f(T) =0 > w(2T — P), there is at least one value
s € (0,77 such thatf’ (s) < w(2s — P) < f/.(s).
Moreover, asf” (t) > 2w for anyt € [0, 71, this solu-
tion is unique. Let us denote it by Clearly,s does not

90

L :
T P2

|
|
|
|
|
|
|
|
|
|
|
|
|
|
T
|
|
L
5

Fig. 7. Start times according tot whenT < P — s*

depend ort. In some degenerate cases, we can have
5 =T = P/2 but whenT < P/2, we havey'(t) > 0
for all t € (T, P/2), which means that is the unique
global minimum ofy’(¢) in the interval[0, P/2] (see
Figure 6).

In order to study the minimization af, on I, let us
first calculate

F(s%) +wP — 2ws*
—wp + wP — 2ws*

P_
:2w(—2 p—s*)

Let us now computd’(t) in each of the two cases
defined above (see Figure 5). Let us first consider that
T < P—s*. According to (25), we have that,(s*) > 0
becausel’ = s* +p < P — s* gives 52 — 5% > 0.
Therefore, we have < s* and I C [s5,P/2]. As
t < P —t, the intervall; is equal tojmax(0, ¢ — p), t].
Then, as illustrated by Figure 7, the start timef .J is
equal to

v (s)

(25)

t—p ffs+p<t<T
s§=143 ifs<t<s+p (26)
t ifo<t<s

The left column of Figure 8 illustrates how the schedul-
ing of J varies when decreases. From the value ©f
the cost of the schedule is immediately derived.
ft=p)+wp(t—p/2)if 5+p<t<T
fG)+2(* -5+ P+p—1)?

—(P-5)?%) ifs<t<s+p
f&)+wp(P—t+p/2)if0<t<35

F(t) =

(27)

Francis Sourd—Preemptive scheduling with position costs

and the derivative of this cost function is

flt—p)+wp ifs+p<t<T
P+ if 5 3

2w(t-L252) is<t<s+p (28)

() —wp if0<t<s

Let us now consider the second cdse- P — s

s*+p. According to (25), we now have that (s*)
and thens* <sandP—-s< P —s*=T.

F'(t)

* <
<0

P—t

S
t

(29)

S =

The right column of Figure 8 shows the corresponding
schedules and the cost function and its derivative are
equal to

f(P—=t)+wp(P—t+p/2)
if P—5<t<T

F(t)=qf(5)+%2(t* -2+ (P+p—1t)?
—(P-35)?) ifs<t<P-35
f@)+wp(P—t+p/2) if0<t<s

(30)
and
—f(P—t)—wp fP—-5<t<T

Fi(t)={2w(t-252) ifs<t<P-s

() — wp ifo<t<s
(31)

For the functionsF’ built in both cases, we clearly
have

(1) the functionF' is nonincreasing, convex and piece-
wise quadratic,

(2) the derivative I is nondecreasing, piece-
wise linear and continuous ovef0,7'), and
F'(0) < —w(P +p),

(3) the second derivativE” is piecewise constant and
foranyt € [0,7), F"(t) € {2wa,...,2w;} and
F'(t)y=0fort>T.

Therefore, we have proved by induction that the prop-
erty is true for any functioryy.

4.4. Algorithm

In order to describe the algorithm thatimplements the
dynamic programming scheme, the main work is to pro-
vide a data structure that encodes the functign€las-
sically, piecewise linear functions are represented as a

Francis Sourd— Algorithmic Operations Research Vol.1 @0®-93

91

()

s*

|

(a

=T
t

sF<s8<$§

)
)
(s
)

Fig. 8. Optimal scheduling of whent varies

sorted list of its segments [8,17] and piecewise quadratic later than the latest breakpoint ¢f Then, by select-

functions can similarly be represented by a sorted list:

ing p larger than—f! (0)/w, we haves* = 0. Since

each quadratic piece of the function is encoded by a —f/ (0)/w > P, the processing time is larger than

cell of the list that contains the left and right endpoints
of the segmentl,) and the three valudsy, 3, v) such
that the function is equal to — ax? + 3z + ~ on the
interval (1, r).

However, in the present algorithm, this encoding of
the function could lead to a non-polynomial algorithm.
To illustrate the point, let us use the notation of the
previous subsection and remind tlsadnd s* are such
that

f(3)
fL(s7)

w(25 — P) < fi.(5) and

<
< —wp < fi(s7).

P. Therefore,F is built according to (30). As the ab-
scissas of the breakpoints gfare all in the interval
[s*, 5], a breakpoint off with abscissa will cause two
breakpoints with abscisgeand P — b in the new func-
tions F'. Accordingly, the number of breakpoints 6t
is at least twice the number of breakpointsfoBy it-
erating this construction procedure, we can then build
instances in which the functiorfs have an exponential
number of quadratic pieces. To avoid the problem, we
adopt a non-explicit but more compact encoding of our
cost functions.

Each functionf}, is encoded by the following values,
which can be stored in simple arrays:

Consequently, assuming we are free to choose the pro-e the valueTy. If T, < Py, /2, fi was build according

cessing timep and the weightw of J, we can first
select a sufficiently small value fap such thats is

to equation (27) (first case). Otherwise, it was build
according to equation (30) (second case).

92

an interval (I, r) with I, = s, andr, = 5, +
pi in the first case or, = P, — 5 in the second
case §;, corresponds t@ whenF' = f). If &k =1,
then(l,r) = (0, min(p1,p2)). Clearly, f;, is an affine
function with slope2w on this interval.

the valuesf; (1), fu(r), fi.(1), fi(r) and f'(T%). As
/' may be discontinuous 4, the latest value cor-
respond to the derivative from the left.

With these informations fofy, ..., fx—1, we show we
can calculate;, andT}, and evaluatgy(x) or f,(z) for
anyz in O(k) time. We only illustrate how to solve the
equation

17.(8) = 2wys — wr Py_1

which givess,. The other procedures to compuig,
fr(x) or fi(x) are indeed very similar.

For k > 1, the values, is computed by calling the
recursive procedurebar (k — 1, wy, wi Pr_1). Algo-
rithm 4 sbar (k,w,7) solves the equatiorf;,(s)
2ws — m when f”(s) > 2w. It first checks whether
the solution isT}. Otherwise, using the fact that—
f1.(s) — 2ws is nondecreasing, it finds whetheiis in
[0,1k), [lk,r) OF [rr, Ty) and accordingly studies one
of the three cases:
if s € [rg,Tk), then according to equations (27)
and (30) we havef,(s) = f/_,(s) — wgpr SO that
we must havef;_,(s) = 2ws — T + wipy.
if s € [lx,), thenf; is affine over the interval and
f1(s) = fi.(lg) + 2wy (s — Ii). Sos is solution of the
linear equationf, (Ix) + 2wk (s — lx) = 2ws — 7.
if s € [0,lx), we must check whethef;, was built
with equation (27) or equation (30):

it Ty < Pr/2, fi(s) = fr_1(s—pr)+wips. After

changing the variable,is equal tat + p;, wheret is

the solution off,_, (t) = 2wt + 2wpy, — T — WPk
- otherwise,f/(s) = —f,._;(Px—1 — s) — wgpx. SO,

we haves = P,_; —t with f]_,(t) = 2wt —

WPk + T — 2wP;_1.

We observe that in the first and third cases, the prob-
lem is solved by recursively solving the same problem
with size k — 1. In the second case (which is the only
possible case when= 1), the problem is immediately
solved and the recurrence is stopped. Therefgras
computed inO(k) time.

The valued;, andr, are derived froms,. In order
to computeTy, we first compute the solutior* by
calling sbar (k — 1,0, wgpi), which takesO(k) time.
The evaluation offx (1), fi(r), fi.(1), fi.(r) and f'(T})
can also be done by a similar recursive procedure in
O(k) time. As a resulty;, can be derived fronfy,_; in
O(k) time and we finally have the theorem.

Francis Sourd—Preemptive scheduling with position costs

Algorithm 4 Algorithm sbar (k,w,) to computes

if fl/c(Tk) <2wWly —m then
return 713

eseif f(ry) < 2wry — 7 then
return sbar (k — 1,w, ™ — wipr)

eseif f;(lx) < 2wl — m then
return Le(l)—2wslitn

2(w—wy)
elseif T}, < Py/2 then
return pg + sbar (k — 1,w, 7 + (wg — 2w)px)
else
return P,_;—sbar (k—1, w, wgpx+2wP;_1—7)
end if

Theorem 7 The two-machine problem with linear costs
can be solved iD(n?) time.

We noted in Section 4.1. that the schedule has at most
n — 2 interruptions since the first and last jobs can be
scheduled without interruption. However this result can
be improved by the following lemma, in which, is
the start time ofJ;, on the second machine aidg, is
its completion time (on the first machine).
Lemma 8 In an optimal schedule, i€ > S + px
thenCri1 = Sky1 + Prr1-

PROOF. Let us consider an optimal schedule in which
we have botlCy > Sy + pr andCr1 > Sky1 + Prt1-

Let x5 be the part ofJ, on the second machine. We
modify the schedule such tha, is increased by and
Zr+1 1S decreased by. As long as0 < e < ¢ with

0 = min(zgy1,pr — i, Ck — Sk — pr) > 0, the new
schedule is feasible. Moreover, sinag;1 < ay, its
cost is strictly decreased, which contradicts the initial
assumption that we can ha€lg > Sy +pi andC1 >
Sk+1 + pr+1 in an optimal schedule.

Therefore, there are at mogin — 1)/2] jobs such that

C) > Sy + pi. Let us consider a job, with C), =

Sk + pr. and lett be the time whery, is stopped on ma-
chine 2 and starts on machine 1. From Lemma 6, a job
completes at on machine 1 and another one starts on
machine 2. Therefore, by swapping all the jobs sched-
uled aftert between machine 1 and machine 2, the in-
terruption of.J;, disappears and no new preemption ap-
pears. By iterating this transformation, a schedule with
at most| (n — 1)/2] interruptions is finally built.

5. Conclusion

In this paper, combinatorial algorithms have been
proposed to efficiently solve three preemptive schedul-

Francis Sourd— Algorithmic Operations Research Vol.1 G0®-93

ing problems with position costs. This new criterion
is fundamentally different from classical criteria of the
scheduling theory which are based on the completion
times of the jobs. Consequently, the algorithms to solve

these problems are not immediate adaptations of ex- [5]

isting scheduling algorithms even if they are based on

well-known Operations Research concepts (primal-dual [6]

approach and dynamic programming). The two main

algorithms presented in this paper use some techniquesm

that could be re-used to solve other problems: the aux-
iliary parameterized problem to solve the one-machine

common due date problem and the compact encodingg;

of the cost functions in the dynamic programming al-
gorithm.

Other scheduling problems with positions costs are
still to be investigated, in particular, problems with re-

lease dates and/or deadlines. The generalization of the

algorithm presented in Section 3.2. is also interesting.

For example, the same technique could be used to solve

the problem with general due dates, however the anal-
ysis of the algorithm should be far more difficult and

the number of events may not be polynomial. The algo-
rithm could also be used to compute a lower bound for

the non-preemptive common due date problem using the

lower bounding scheme presented by Sourd [16] even
if the relaxed problem to solve slightly differs from the
problem studied in Section 3.2. because cost functions
are not continuous anymore.

Acknowledgment

The author would like to thank Philippe Baptiste for
early discussions about this work.

References

[1] R.K. Ahuja, T.L. Magnanti, and J.B. OrlinNetwork
flows: Theory, algorithms, and applicatign®rentice
Hall, Upper Saddle River, NJ, 1993.

R.K. Ahuja, J.B. Orlin, C. Stein, and R.E. Tarjan,
Improved algorithms for bipartite network flopSIAM
Journal on Computatio3 (1994), 906—933.

N. Brahimi, S. Dauzere-Péres, N.M. Najid, and
A. Nordli, Single item lot sizing problems£uropean
Journal of Operational Researtf8 (2006), 1-16.

(2]

(3]

Received 28 April 2005; revised 5 December 2005; ac-
cepted 22 April 2006

93

[4] N. Brauner, Y. Crama, A. Grigoriev, and van de
Klundert, A framework for the complexity of
high-multiplicity scheduling problems Journal of
Combinatorial Optimizatior® (2005), 313-323.

P. Brucker, Scheduling algorithmsfourth edition ed.,

Springer-Verlag, Berlin, Germany, 2004.

K. Bulbul, P. Kaminsky, and C. YandRreemption in

single machine earliness/tardiness schedyliéprking

paper, 2004.

J.J. Clifford and M.E. PosnerHigh multiplicity in

earliness-tardiness schedulin@perations Researct8

(2000), 788-800.

R. Fourer and R.E. Marster§olving piecewise-linear

programs: Experiments with a simplex approa€iRSA

Journal on Computing (1992), 16-31.

L. Gelders and P. KleindorfeiCoordinating aggregate

and detailed scheduling decisions in the one-machine job

shop. I. TheoryOperations Resear@? (1974), 46—60.

[10] V. Gordon, J.M. Proth, and C. Ch# survey of the
state-of-the-art of common due date assignment and
scheduling researchEuropean Journal of Operational
Researct39 (2002), 1-25.

[11] S. Kedad-Sidhoum, Y. Rios-Solis, and F. Sourdwer
bounds for the earliness-tardiness scheduling problem
on single and parallel machinesWorking paper —
www. opt i mi zati on-onl i ne. or g, October 2004.

[12] W. Kubiak, Balancing mixed-model supply chai@raph
Theory and Combinatorial Optimization (D. Avis,
A. Hertz, and O. Marcotte, eds.), Gerad 25th Anniversary
Series, Springer, 2005, pp. 159-190.

[13] V. Lauff and F. WernerScheduling with common due
date, earliness and tardiness penalties for multimachine
problems: A survey Mathematical and Computer
Modelling 40 (2004), 637—655.

[14] 3. Y-T. Leung (ed.), Handbook of scheduling:
Algorithms, models and performance analy§Siesmputer
and Information Science Series, Chapman & Hall/ CRC,
Boca Raton, Florida, 2004.

[15] N. Rizk and A. Martel, Supply chain flow planning
methods: A review of the lot-sizing literaturdech.
report, CENTOR Working Paper, 2001.

[16] F. Sourd, The continuous assignment problem and
its application to preemptive and non-preemptive
scheduling with irregular cost functiondNFORMS
Journal on Computindg6 (2004), 198-208.

, Optimal timing of a sequence of tasks
with general completion costsEuropean Journal of
Operational Researct65 (2005), 82-96.

[18] F. Sourd and S. Kedad-Sidhourithe one machine
problem with earliness and tardiness penalti@surnal
of Scheduling6 (2003), 533-549.

9]

[17]

