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Abstract

Radio Frequency (RF) pulses cause elevated patient temperatures during Magnetic Resonance Imaging (MRI) proce-
dures. Generalized Variable Rate Selective Excitation (gVERSE) is a co-design method for Radio Frequency (RF) pulse
and slice gradient which minimizes Specific Absorption Rate(SAR) (the accepted predictor of patient heating). After
developing a rigorous mathematical model, the nonlinear gVERSE optimization problem is solved using two competitive
software packages. The gVERSE solutions generated by Sparse Optimal Control Software (SOCS) and AMPL–MINOS
produce two separate variations of SAR reducing pulses. Thedifferent software solutions are compared using numerical
simulations of slice selection. The computational experiments involved with the gVERSE model provided insight towards
using different software to solve highly demanding mathematical optimization problems.

Key words: RF pulse sequence, gVERSE, MRI, voxel, nonlinear programming, SOCS,
optimal control.

1. Introduction

Over the past decade Magnetic Resonance Imaging
(MRI) has had a profound impact on health care. Today,
many hospitals, sports clinics, and other types of health
facilities own or share the use of an MRI machine.
The machines provide high resolution cross-sectional
diagnostic images of various parts of the body. The
MRI machines operate by sending a selective Radio
Frequency (RF) pulse through a large magnet that is
accompanied by field gradients. The RF pulse and gra-
dient waveform are know as the RF pulse sequence
and they are responsible for producing a signal that is
transformed into the final image [12]. Recently, many
RF pulse sequences, or selective excitations, have been
designed that each have advantages and disadvantages
with respect to image quality, speed, safety, etc. One
important element of RF pulse sequences is the level of
SAR (Specific Absorption Rate) produced during exci-
tations. During MRI procedures high levels of SAR can
cause undesired side effects such as skin burns. This
is the focus of the gVERSE pulse, producing useable

1 This work was supported by NSERC Discovery grants, the
Canadian Research Chair program, and MITACS.

MR (Magnetic Resonance) signals while minimizing
patient SAR levels. The gVERSE pulse is generated
using a novel nonlinear optimization approach, which
is novel in allowing arbitrary changes in both RF and
gradient waveforms. The nonlinear program is cap-
tured in an optimal control framework, and presented
to SOCS, a solver adpated to optimal control problems.
The problem is also formulated as a general nonlinear
program (NLP) for the purposes of comparing SOCS
solutions to solutions provided by a general solver,
MINOS in this case.

With regards to RF pulse sequences, several re-
searchers have employed different optimization meth-
ods in their designs. Some of the most common are:
quadratic optimization [7], evolutionary algorithms
[17], simulated annealing [14], and optimal control
techniques [6,16]. However, most approaches are com-
putationally intensive and in many cases their design
for the pulse-envelope consists of relaxed conditions
to meet their desired profile. The optimal control ap-
proach in [16] seems to be the most promising, yet, the
models transform the Bloch equation into the Cheby-
shev domain leading to an ill-conditioned algebraic
problem. Conollyet al. (1986) designed the first ver-

c© 2011 Preeminent Academic Facets Inc., Canada. Online version: http://journals.hil.unb.ca/index.php/AOR. All rights reserved.
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sion of the Variable Rate Selective Excitation (VERSE)
pulse, which is aimed at reducing MRI SAR levels.
Several years later, Conolly and other collaborators
used VERSE pulses to minimize the duration of exci-
tation by increasing both RF and gradient amplitudes,
[8]. In this paper we define the generalized VERSE
(gVERSE) pulse, which uses Conolly’set al. original
idea but is expressed in a dynamic nonlinear optimiza-
tion setting that is directly aimed at reducing RF SAR
levels. The gVERSE pulse is a highly selective pulse
that differs from the VERSE pulse with respect to
how SAR is minimized. As well, the dynamics of the
problem are significantly increased by the addition of
restrictive constraints and enhanced degrees of freedom
[1,15]. We present two RF pulse sequences as a back-
ground to the optimization method that was used to
solve the gVERSE pulse. This investigation highlights
two different solution techniques used in solving the
gVERSE NLP problem and compares the validity of
their solutions.

This paper is organized as follows: we begin with
an overview of general RF pulse sequences and the
VERSE pulse model presented in [7]. In Section 3, the
gVERSE model is defined with the final NLP problem
and discretizations. The implementation issues in-
volved in computing the gVERSE pulse are described
in Section 4. Sparse Optimal Control Software (SOCS)
and AMPL–MINOS are used to solve the gVERSE
problem, important functionality issues are discussed
in this section. In Section 5, the computational results
for the gVERSE pulse are shown for the two different
test cases. The results are graphically illustrated and the
software performance is further tested using an MRI
simulation. Finally, we conclude on the different solu-
tions generated by the softwares and illustrate how not
only optimization, but optimization software, can have
a profound effect on improving RF pulse sequences.

2. RF Pulse Background

We begin with a basic review of MRI mathematics
and present the motivation and functionality of two dif-
ferent types of RF pulse sequences. For more informa-
tion the reader can refer to [5,11,12]. In the most basic
sense, an MRI alters a specimens (or objects) magnetic
field to obtain a reading that eventually produces an im-
age. The Bloch equation provides the rate of magneti-
zation (d

−→
M(t)/dt) of a specimen

d
−→
M(t)

dt
= γ

−→
M(t)×

−→
B (t) +

1

τ1
(M0 −Mz(t))ẑ

−
1

τ2

−→
M⊥(t),

wheret is time,
−→
B (t) is the external magnetic field in

thez-axis direction,γ is the gyromagnetic constant, and

−→
M(t) =



Mx(t)
My(t)
Mz(t)


 , and

−→
M⊥(t) =



Mx(t)
My(t)

0




are the net and transverse magnetization vectors, re-
spectively. In addition,̂z is thez-axis unit vector,M0

is the initial magnetization in thêz direction,τ1 is the
spin-lattice andτ2 is the spin-spin interaction parame-
ters. For our computations, we define

−→
B (t) =



bx(t)
by(t)
bz(t)


 ,

wherebx(t), by(t), andbz(t) are the external magneti-
zation vector coordinates. The basics MRI functionality
are as follows: (a) first a specimen is placed in a large
magnet and magnetized. This causes the magnetization
vectors (net spin of hydrogen nuclei) in the specimen to
“line up” and point in the same direction, called the di-
rection of the external magnetic field. (b) The RF pluse
sequence is applied to the specimen. The RF pulse tips
some of the magnetization vectors into what is called
the transverse plane, which is perpendicular to the di-
rection of the external field, and a signal is given off.
The accompanying gradient waveform alters the signal
by modulating the phase of the magnetization as a func-
tion of posiiton. (c) The signal is stored and combined
with other MR signals and transformed into an image.
This is a general description of how an RF pulse se-
quence generates a useable MR signal, for a detailed
analysis of this process one can look at [10–12,15].

2.1. Generic RF Pulse Sequence

To process an MR image, a number of precise RF
pulses are applied in combination with synchronized
gradients in different directions. As mentioned, the RF
pulse and gradient waveform make up the RF pulse se-
quence, in which a signal for imaging is generated. RF
pulses are only designed to excite a specific portion of
the object or specimen that the user intends to image,
although, both the RF and gradient waveforms interact
with the whole object. In the case of slice excitation,
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Fig. 1. A typical SINC pulse imaging sequence.

the gradient is restricted to a single direction, in con-
trast to the case of readout gradients, which are used
to spatially modulate the signal, [5]. There are many
different types of RF and gradient waveform combina-
tions that generate useable signals. Gaussian and SINC
pulses are just two examples of the various RF pulse
sequences used today. Figure 1 provides an illustration
of a slice select SINC pulse sequence [11]. These and
most more sophisticated pulses currently used hold the
gradient waveform constant during the RF excitation.
Although SINC pulse sequences are successful at excit-
ing particular magnetization vectors into the transverse
plane, they fail to account for side effects such as SAR
levels. The level of SAR is directly related to the heating
effect experienced by patients during MRI procedures.
This is a result of the RF pulse used and becomes partic-
ularly important with pediatric patients. For this reason
the FDA has strict limitations on SAR, which subse-
quently restricts RF pulse potential and other elements
involved in MRI procedures. With regards to MRI sys-
tems, the RF pulse sequence is one area that tends to be
a bottle neck. Researchers are developing faster scan-
ners, higher field magnets, enhanced software compo-
nents, and improved RF coils; however, they are still
limited by SAR levels produced by current RF pulse
sequences.

2.2. The VERSE Pulse Sequence

As defined in [8], VERSE is a technique that uses
a time-varying gradient to change the shape of the RF
pulse without changing the spatial excitation profile on
resonance. Originally proposed by Conollyet al. in
1986, VERSE pluses generate MR signals similar to
generic RF pulses while reducing SAR levels via differ-
ential time scaling. As mentioned, the SAR of a selec-

tive RF pulse is a critical parameter in clinical settings
and may limit the use of a particular pulse sequence if
the SAR limit exceeds given FDA requirements [12].
Due to the high SAR levels of various RF pluses the
scan time for given pulse sequences are restricted, which
contributes to the overall time of MRI procedures [7].
The VERSE pulse provides a trade-off between time
and amplitude that allows the duration of the pulse to
be extended [7]. As shown in Figure 2, VERSE pulses
contain a flattened center peak and their gradient wave-
form posses two additional steps. The uniform redistri-
bution of the pulse area allows for a decrease in the level
of SAR. Conollyet al. (1986) designed three different
types of SAR reducing VERSE pulses. The first model
consisted of a minimum–SAR facsimile pulse, whereby
for a specified duration the gradient waveform and RF
pulse were integrated in the objective and subject to
maximum gradient and constant duration constraints.
The second model used a minimum time formulation
approach, whereby it searched for the smallest pulse that
would generate a signal, which was constrained by an
RF amplitude and gradient upper bound. The paramet-
ric gradient was the final model presented by Conolly
et al., it was constrained by both the maximum gradi-
ent and slew-rate, and involved the parametric gradient
and the RF pulse in the objective function. The first two
models contained3κ+1 variables, whereκwas the total
number of samples or RF pulses. The third model, the
parametric gradient, containedκ(p + 1) + 1 variables,
wherep represents the dimension of a parameter vector.
For their results, a total of 256 sample values were used,
which kept the variable count relatively low [7]. Of the
three algorithms, the parametric formulation offered the
best SAR reduction, however, the design still had areas
for improvement as the results contained gradient and
RF timing mismatches. Although further experimenta-
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Fig. 2. The VERSE pulse imaging sequence.

tion was necessary, Conollyet al. (1986) were the first
to motivate this innovative concept.

3. The gVERSE Pulse Sequence

The generalized VERSE (gVERSE) pulse is designed
to further minimize RF pulse amplitudes and SAR lev-
els over that of its VERSE predecessor. Conollyet al.
(1986) provide evidence that SAR can be reduced by
combined RF/gradient reductions and time dilations. An
idea of the gVERSE pulse is illustrated in Figure 3, for
more information the reader may refer to [1,15]. Our
aim is to lower RF pulse energy and evenly distribute
the pulse signal. This equates to searching for a larger
parameter space by allowing arbitrary gradient wave-
forms (subject to machine constraints), including sign
changes. By convention, the flattened RF pulse shown in
Figure 3 will allow for a longer signal reading and a de-
crease in the level of SAR. Mathematically, this equates
to minimizing the energy of the external magnetic field
generated by the RF pulse (

−→
B rf(t)), and therefore our

objective is

min SAR=

∫ T

0

|
−→
B rf(t)|

2dt =

∫ T

0

b2x(t) + b2y(t)dt,(1)

whereT is the time at the end of the RF pulse and

−→
B rf(t) =



bx(t)
by(t)
0


 .

MRI is based on the interaction of nuclear spin with an
external magnetic field, hence,

−→
B rf(t) is the vertical and

horizontal components of
−→
B (t). Also note that if low

pulse amplitudes are produced by the gVERSE pulse
then the duration,T , of the pulse can be increased.

Since all magnetization vectors are spinning in the
same direction, a product of the large magnet over the
specimen, there exists a rotational frame of reference.
We set up our equations in the rotating frame of refer-
ence to exclude the uniform magnetic field generated
by the main super-conducting magnet,B0. Thus, we
are left with the magnetic field present in the RF pulse,
−→
B rf(t), and our gradient

−→
G(t, s) =




0
0

sG(t)


 ,

wheresG(t) is the gradient value at coordinate position
s, which we define in thêz direction. As mentioned
at the start of this section, the primary function of
the gradient is to produce a temporally and spatially
varying magnetic field such that the MR signal can be
spatially modulated [11]. Therefore, by changing the
gradient field strength, different parts of a specimen
experience different field values as a function of their
spatial coordinate position. By multiplying a constant
gradient value by different coordinate positionss, we
observe a linear relationship. Designing gradients to
produce uniformly linear fields is another interesting
design optimization problem in MRI. For our analysis,
coordinate positionss split a specimen (or object) into
planes or “slices” along thêz direction, as illustrated
in Figure 4. The coordinate positions measures the
position in what is usually called the “slice” direction,
and in single slice imaging, the external magnetic field
at a point is always a function ofs and time alone. The
example pulses in this paper seek to excite specified
magnetization vectors into the transverse(x, y) plane.
This is not a restriction of the model or software, but it
simplifies the explanation. In MRI a voxel corresponds
to a unit volume of protons which together produce a
pixel of graphic information [11], and as this is directly
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Fig. 3. The gVERSE pulse imaging sequence.
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Fig. 4. Specimen (or object) separated into slices across the
z-axis.

related to a group or unit volume of magnetization
vectors, for our analysis we will use the word voxel
and magnetization vector interchangeably. Thus,s al-
lows us to distinguish between voxels that are excited
into the transverse plane and those that are not. Note
that in order to obtain a useable signal some of the
voxels are tipped into the transverse plane and others
point in the direction of the external magnetic field,
B0. Coordinate positionss of voxels that are excited
into the transverse plane will be referred to as being
“in the slice.” Magnetization vectors that are not tipped
into the transverse plane, which remain in the direc-
tion of B0, will be referred to as being “outside the
slice.” Given the set of all coordinate positionss ∈ S
we divide the voxels that are in the slice and outside
the slice. Thus, letSin represent the set of coordinate
positionss in the slice andSout represent the set of
positionss that are outside the slice. ThenS becomes
the disjoint union of the setsSin ·∪Sout, whereS ∈ R.
In practice, the image area of any specimen (or object)
that a signal is generated will have a fixed length,Sin

represents this area. Thus, for each coordinate position
s ∈ S we add constraints corresponding to the Bloch
equation, however, boundary constraints correspond to
different conditions depending on the position of the
slice. Voxelss ∈ Sin uniformly tip into the transverse
plane, whereas voxelss ∈ Sout certify that external
magnetization is preserved.

Expressing the magnetic field
−→
B (t, s) with respect

to coordinate positionss, wherebybx(t) andby(t) are
independent ofs, we have

−→
B (t, s) =

−→
B rf(t) +

−→
G(t, s).

Also, since
−→
B (t, s) has divided thêz component of our

external magnetization into coordinate components, the
same notation is introduced to our net magnetization
vector. Therefore, we have

−→
M(t, s) =



Mx(t, s)
My(t, s)
Mz(t, s)


 .

As VERSE pulses typically have short sampling times
we will assume the same for the gVERSE pulse leav-
ing proton interactions and relaxation out of the formu-
lations. Therefore, including positionss into the Bloch
equation we have

d
−→
M(t, s)

dt
= γ

−→
M(t, s)×

−→
B (t, s),

which expands to

−→
M(t, s)×

−→
B (t, s) =


0 −sG(t) by(t)

sG(t) 0 −bx(t)
−by(t) bx(t) 0





Mx(t, s)
My(t, s)
Mz(t, s)


 ,
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and finally

d
−→
M(t, s)

dt
= γ




0 −sG(t) by(t)
sG(t) 0 −bx(t)
−by(t) bx(t) 0


−→
M(t, s).

(2)

Under practical situations, when stimulating a seg-
ment of a specimen by an RF pulse some of the magneti-
zation vectors are fully tipped into the transverse plane,
partially tipped, and those lying outside the slice pro-
file are minimally affected. The second case, pertains to
magnetization vectors that are only partially tipped into
the transverse plane. These voxels are described as hav-
ing off-resonance and tend to disrupt pulse sequences
and distort the final MR image [11]. In anticipation of
removing such in-homogeneities we introduce two con-
straints to the model that allows the final position of
the magnetization vectors to be in the direction of the
transverse plane or the external magnetic field. Using an
angleα, the net magnetization of the voxels inSin from
the ẑ direction to the transverse plane are defined. By
convention,α will be the greatest at the end of our RF
pulse, at timeT , and since we are in the rotating frame
we can remove they-axis from our equations. Thus, we
eliminate off-resonances coordinates by boundingSin

voxels affected by the pulse in
∥∥∥∥∥∥



M0sin(α)

0
M0cos(α)


−



Mx(T, s)
My(T, s)
Mz(T, s)



∥∥∥∥∥∥
≤ ε1, (3)

and those inSout (α = 0)
∥∥∥∥∥∥




0
0
M0


−



Mx(T, s)
My(T, s)
Mz(T, s)



∥∥∥∥∥∥
≤ ε2, (4)

whereε1, ε2 ≥ 0. By comparing constraints (3) and
(4) we can determine thes coordinates from which
we would like the signal to be generated and exclude
off-resonance.

The last factor we must consider in our RF pulse
sequence is slew rateW (t), also known as gradient
rise time. This identifies the speed at which a magnetic
gradient field can be ramped to different gradient field
strengths [7]. As the signal generated by the RF pulse is
dependent on the gradient waveform, higher slew rates
allow for shorter measurement times. Also, the gradient
field strength can not exceed particular values otherwise
it may distort the signal being processed for imaging.

Thus, the gradient field strength and slew rate must be
bounded, in which we have the constraints

|G(t)| ≤ Gmax, (5)

W (t) =

∣∣∣∣
dG(t)

dt

∣∣∣∣ ≤Wmax . (6)

Combining equations (1) – (6), we obtain the following
nonlinear optimization problem

min SAR=

∫ T

0

b2x(t) + b2y(t)dt , (7)

subject to,

d
−→
M(t, s)

dt
= γ




0 −sG(t) by(t)
sG(t) 0 −bx(t)
−by(t) bx(t) 0


−→
M(t, s),

(8)

∥∥∥∥∥∥



M0sin(α)

0
M0cos(α)


−



Mx(T, s)
My(T, s)
Mz(T, s)



∥∥∥∥∥∥
≤ ε1, (9Sin)

∥∥∥∥∥∥




0
0
M0


−



Mx(T, s)
My(T, s)
Mz(T, s)



∥∥∥∥∥∥
≤ ε2, (10Sout)

|G(t)| ≤ Gmax, (11)

∣∣∣∣
dG(t)

dt

∣∣∣∣ ≤Wmax, (12)

Mx(0, s) = 0, My(0, s) = 0, Mz(0, s) =M0,
(13)

where equations (7) – (13) hold for∀ s ∈ S, t ∈ [0, T ].
One may note that depending on whether the voxels
are inSin or Sout, constraints (9Sin) or (10Sout) are ap-
plicable. Thus, the gVERSE model presented in (7) –
(13) has various sources of implementation issues, as
we will discuss in the next section.
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3.1. gVERSE Discretization

By separating our specimen into coordinate positions
we have ultimately created two dimensional segments
that are similar to records in a record box, whereby
s ∈ S represents the plane of a particular position in
the specimen. In this section we discretizeS into co-
ordinate positionss1, s2, . . . , sn, wheren is the total
number of slices. AsSin refers to the coordinate po-
sitions whose magnetization vectors have been tipped
into the transverse plane by an RF pulse, we can now
define the finite band of particular coordinate positions
in Sin. Thus, the coordinate positions corresponding to
sk, . . . , sk+δ will represent the voxels inSin, where
1 < k ≤ k + δ < n, δ ≥ 0 and k, δ ∈ Z. The
coordinate positions that are not excited in the trans-
verse plane, those which belong toSout, will consist of
the remaining coordinate positions. Therefore,Sout =
s1, . . . , sk−1, s(k+δ)+1, . . . , sn. Figure 5 provides an il-
lustration of how magnetization vectors for coordinate
positionssi ∈ S, ∀ i = 1, . . . , n are separated into
those that have been tipped into the transverse plane,
and those that have not. In addition, one should note

S
1
   
 ... 
   S
k-1
               S
k 
        
...
          S
k+
                S
k+   +1 
... 
S
n


Fig. 5. Discretizing magnetization vectors into coordinate
positionsSin andSout.

that we have only discretized with respect to coordi-
nate positionssi ∈ S and not with respect to timet.
We next define the first coordinate position inSin ass
and the last position ass. Thus, we haves = sk and
s = sk+δ, and the coordinate positions in the slice be-
comeSin := [s, s]. Conversely, the position where RF
stimulation is a minimum and closest tos, but inSout (to-
wards the direction ofs1) will be defined assl. The same
will be done forsu, the position closest tos that is in
Sout (towards the direction ofsn). Therefore,sl = sk−1

and su = s(k+δ)+1, andSout := [s1, sl] ·∪[su, sn]. As
shown in Figure 5,Sin is located between the two subin-
tervals ofSout, wheresi ∈ Sin is centered around 0,
leavingSout subintervals,[s1, sl] < 0 and[su, sn] > 0.
In addition, coordinate positions that reside in[s1, sl]
and[su, sn] have symmetry. Hence, the length of these
subintervals are equivalent,sk−1−s1 = sn−s(k+δ)+1,

and the difference between respective coordinate posi-
tions are equal to one another such that,

s2 − s1 = sn − sn−1

s3 − s2 = sn−1 − sn−2

...
... (14)

sk−1 − sk−2 = s(k+δ)+2 − s(k+δ)+1.

Also note that the discretization points,si, within any
interval[s1, sl], [s, s] or [su, sn] are not necessarily uni-
formly distributed. For instance, more coordinate po-
sitions may be positioned closer to the boundaries of
Sin andSout. However, the distance between(sl, s) and
(s, su) will be much larger in comparison to other in-
crements ofsi. This is typically the area where off-
resonance resides. As mentioned earlier, off-resonance
disrupts pulse sequences and distorts MR imaging sig-
nals. Thus, we define tolerance gapsS0 of finite length
between(sl, s) and (s, su). Hence, the setS can now
be partitioned intoSin ·∪Sout ·∪S0, where the sequencing
of the intervals areSout, S0, Sin, S0, Sout.

4. Implementation

We now adapt the model described in the previous
section to the forms of input accepted by Sparse Opti-
mal Control Software (SOCS) and AMPL (the model-
ing language used to define the problem for the solver
MINOS).

4.1. SOCS Implementation

The gVERSE model defined in the previous section
proved to be a difficult NLP problem to solve, hence,
Sparse Optimal Control Software (SOCS) from The
Boeing Company was employed for this task. In this
section, we will highlight the critical steps taken in con-
verting the NLP from (7) – (13) into an optimal con-
trol problem. An optimal control problem is simply an
infinite-dimensional extension of an NLP problem. In
fact, practical methods for solving optimal control prob-
lems require iterations with a finite set of variables and
constraints [3]. Typically, optimal control problems are
formulated as a collection of state, control, and inde-
pendent variables. By definition, state variables collec-
tively capture the trajectory of the system, whereas con-
trol variables determine the course of the process [9].
For the gVERSE pulse problem the state and control
variables are defined within the dynamics of the system.
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Thus, for a problem withn slices, the state variables
are defined by at(3n+ 1) dimensional state vector

Ω(t) = [Mx(t, s1),My(t, s1),Mz(t, s1),

. . . ,Mx(t, sn),My(t, sn),Mz(t, sn), G(t)]
T
,

whereΩ(t) ∈ R
3n+1. Similarly, the three dimensional

control vector is

Φ(t) = [bx(t), by(t),W (t)]
T

with Φ(t) ∈ R
3. Subsequently, for any gVERSE pulse

problem we solve, the total number of state and control
variables aret(3n + 4). Our system is governed by
differential equation (8) and slew rate, where fori =
1, . . . , n we have

dMx(t, si)

dt
= γ[−siG(t)My(t, si) + by(t)Mz(t, si)],

(15)

dMy(t, si)

dt
= γ[siG(t)Mx(t, si)− bx(t)Mz(t, si)],

(16)

dMz(t, si)

dt
= γ[−by(t)Mx(t, si) + bx(t)My(t, si)],

(17)

dG(t)

dt
=W (t). (18)

This can then be represented as a function of state and
control variables, namely

f
(
Ω(t),Φ(t)

)
=




dMx(t,s1)
dt

dMy(t,s1)
dt

dMz(t,s1)
dt

...

dMx(t,sn)
dt

dMy(t,sn)
dt

dMz(t,sn)
dt

dG(t)
dt




, (19)

wheref
(
Ω(t),Φ(t)

)
is a t(3n + 1) dimensional vec-

tor. In addition, the solution must also satisfy path con-
straintsG(t) andW (t). For our problem bounds can be
imposed on the state and control variables,

−Gmax ≤ G(t) ≤ Gmax (20)

−Wmax ≤W (t) ≤Wmax, (21)

which pertains to constraints (11) and (12), respectively.
Therefore, we will define our path constraints by the
vector

Ψ
(
Ω(t),Φ(t)

)
=

[
G(t)
W (t)

]
, (22)

which satisfies

ΨL ≤ Ψ
(
Ω(t),Φ(t)

)
≤ ΨU , (23)

where

−ΨL = ΨU =

[
Gmax

Wmax

]
.

In anticipation of finding an optimal solution, boundary
conditions define the values of particular state variables
at the start and end time of our evaluation. This allows
the value of the dynamic variables at the beginning and
end of our time interval to be pre-defined [3]. Thus, the
initial conditions at the start of the time interval,t = 0,
are

Mx(0, si) = 0, (24)

My(0, si) = 0, (25)

Mz(0, si) =M0, (26)

again fori = 1, . . . , n. Hence, the values from (24) –
(26) are entered intoΩ(0) at the beginning of our eval-
uation. Terminal conditions that must be satisfied at the
end of the time interval are different for magnetization
vectors inSin, than for those inSout. As depicted in
constraints (9Sin) and (10Sout), at the end of our time
interval t = T , the terminal condition for the voxels
si ∈ Sin are

−ε1 ≤



M0sin(α)

0
M0cos(α)


−



Mx(T, si)
My(T, si)
Mz(T, si)


 ≤ ε1. (27)

Whereas, for voxelssi ∈ Sout, we have the following
terminal condition

−ε2 ≤




0
0
M0


−



Mx(T, si)
My(T, si)
Mz(T, si)


 ≤ ε2. (28)

Therefore, the values for (27) and (28) are entered into
Ω(T ) and the boundary conditions for the gVERSE
pulse problem are expressed by

ψL ≤ ψ
(
Ω(t),Φ(t)

)
≤ ψU , (29)
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whereψL and ψU contain the respective initial and
terminal condition values found in (24) – (28). Note
that equality constraints can be imposed by simply set-
ting upper and lower bounds equal to one another, i.e.
ψL = ψU . Finally, the objective function to be mini-
mized will be expressed as

∫ T

0

w
(
Φ(t)

)
dt =

∫ T

0

b2x(t) + b2y(t) dt, (30)

wherew
(
Φ(t)

)
is known as the quadrature function in

optimal control literature [4]. Collectively, we refer to
the functions evaluated during the time interval as

F (t) =




f
(
Ω(t),Φ(t)

)

Ψ
(
Ω(t),Φ(t)

)

w
(
Φ(t)

)


 , (31)

the vector of continuous functions, however, boundary
conditions evaluated at specific points are referred to
as point functions [4]. Therefore, the solution to the
optimal control problem requires

J(t) =

∫ T

0

w
(
Φ(t)

)
dt (32)

to be minimized. Once the explicit details of the optimal
control formulation have been established, it is then
possible to solve the gVERSE pulse problem after the
independent time variable has been discretized. Thus,
time t is divided intoN discretization points over the
interval[0, T ], including the end points. Hence, the time
discretizations are as follows:

0 = t1 < t2 < ... < T = tN .

For more information on how an NLP is transformed
into an optimal control problem the reader may consult
[3,?,?].

Finally, we address the important subroutines and
functions that were used in finding the solution to our
optimal control problem. SOCS possesses powerful
tools that can evaluate the gVERSE nonlinear constraint
derivatives and the integral in the objective function.
For a more detailed description of all the defaults and
built in functions that SOCS contains one can refer to
[4]. The key functions employed to solve the gVERSE
problem are as follows:
HDSOCS
The subroutine HDSOCS is a powerful optimal control

routine provided by SOCS that was called to determine
the t(3n + 4) dimensional control and state vectors to
minimize

J(x) = θ(x) +
T∑

j=0

(∫ tj

0

w(Φ(tj) dtj

)
. (33)

HDSOCS was the central subroutine in the gVERSE
pulse program, all other routines were eventually passed
to HDSOCS in finding the optimal solution.
ODEINP
An important subroutine that must be present in HD-
SOCS is one that sequentially defines the variables and
parameters involved in the optimal control problem.
The generic name for this routine, which can be found
in the SOCS manual [4], is ODEINP. This subroutine
declares the gVERSE pulse variables, the number of
time discretizations, the number of continuous and dis-
crete user defined functions, the transcription method
used to solve the problem, and other parameters used
in locating the optimal solution. To solve the gVERSE
pulse problem we utilized a Trapezoidal transcription
method, which proved to provide the best results when
compared to the other methods supplied by SOCS.
Also, within this routine the user is required to assign
certain values to particular functions defined within the
software that ensures the problem is minimized.

ODERHS
HDSOCS also requires a subroutine known as
ODERHS that supplies the quadrature function,
w(Φ(tj)), and the dynamic variables implemented in
the arrayf(tj , n̂), shown above. This subroutine was
carefully implemented as it was called many times by
SOCS during computation.

ODEPTF
The last important subroutine is ODEPTF, which is
responsible for the terminal constraints outlined in the
algorithm. This subroutine sets the appropriate terminal
conditions for vectors inSin andSout to be relayed to
HDSOCS.

Finally, a subroutine that initializes the data, assigns
values forsi positions, and separates them intoSin and
Sout was also included in the implementation. This ini-
tialization subroutine has the capacity to input values
for each time discretization point in what SOCS calls
a guess function. With regards to the overall function-
ality of SOCS, although it is one of the most compet-
itive NLP solvers, it is very difficult to use. For exam-
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ple, defining the state and control variables in ODEINP
have to be precisely ordered and counted. As well, to
set up the quadrature objective, values are given to spe-
cific functions in SOCS that depend on how the model
is formulated. Hence, careful planing on how to arrange
the algorithms in your program is critical. For more de-
tail on other routines and declarations necessary to the
functionality of SOCS one can consult the SOCS man-
ual [4].

4.2. AMPL–MINOS Implementation Issues

The results using SOCS optimal control software was
compared to a well know NLP solver, AMPL–MINOS.
Unlike SOCS, AMPL does not have built in functions
that can evaluate integrals and derivatives. We used stan-
dard techniques to handle these areas of the gVERSE
model and address them in this section. To begin, the
objective function was calculated using a Riemann sum

∫ T

0

b2x(t) + b2y(t)dt = lim
n=∞

T − 0

n

n∑

i=0

b2x(i) + b2y(i),

(34)

wherei was uniformly distributed over the interval and
for the implementationn < ∞, hence (34) becomes
an approximation. Next we address the methods used
to evaluate the derivatives found in the constraints. The
Bloch equation

d
−→
M(t, s)

dt
= γ




0 −sG(t) by(t)
sG(t) 0 −bx(t)
−by(t) bx(t) 0


−→
M(t, s),

(35)

becomes

dMx(t, si)

dt
= γ[−siG(t)My(t, si) + by(t)Mz(t, si)],

(36)

dMy(t, si)

dt
= γ[siG(t)Mx(t, si)− bx(t)Mz(t, si)],

(37)

dMz(t, si)

dt
= γ[−by(t)Mx(t, si) + bx(t)My(t, si)],

(38)

after expanding (35). For (36) – (38) a number of dif-
ferent integrating techniques can be employed, in which
we tested a number of them and report the best results
in the next section. Some of the techniques used include

a Taylor approximation, Multi-step approximation, up
to symbolic integration over a time step. As an exam-
ple, using a first order Taylor approximation aboutM0

we have

Mx(t, si) ≈Mx(0, si) +
dMx(t, si)

dt
(t−Mx(0, si))

(39)

= 0 + γ[−siG(t)My(t = 0, si)

+ by(t)Mz(t = 0, si)](t− 0) (40)

= γ[−siG(t)My(0, si) + by(t)Mz(0, si)]t,
(41)

and similarly

My(t, si) ≈ γ[siG(t)Mx(0, si)− bx(t)Mz(0, si)]t,
(42)

Mz(t, si) ≈ 1 + γ[−by(t)Mx(0, si)

+ bx(t)My(0, si)](t− 1). (43)

Thus, this constraint would be used in place of (8) for
the AMPL implementation∀ t ∈ [0, T ]. If a multi-step
approximation is used then (41) – (43) becomes

Mx(t+ 1, si) ≈Mx(t, si)

+h(γ[−siG(t)My(t, si) + by(t)Mz(t, si)]),
(44)

My(t+ 1, si) ≈My(t+ 1, si)

+h(γ[siG(t)Mx(t, si)− bx(t)Mz(t, si)]),
(45)

Mz(t+ 1, si) ≈Mz(t, si)

+h(γ[−by(t)Mx(t, si) + bx(t)My(t, si)]),
(46)

∀ t ∈ [0, T ], whereh ∈ (0, 1) is a user defined step
size that is typically set to 0.5 for our comparisons.
The Bloch equations without relaxation can be solved
analytically, but the resulting expression is highly non-
linear. This changes one type of complexity for another.
Finally, the constraint on Slew rate, namely

∣∣∣∣
dG(t)

dt

∣∣∣∣ ≤Wmax, (47)

may be evaluated using the techniques mentioned
above. However, since Slew rate bounds the slope of
our gradient function, the following constraint

∣∣∣∣
G(t+ 1)−G(t)

(t+ 1)− t

∣∣∣∣ ≤Wmax (48)
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may also be used in place of (12). Using the techniques
presented in this section, the gVERSE model was then
implemented and solved using AMPL–MINOS.

4.3. Slice Assignment

In the gVERSE model of Section 3.1.,S was dis-
cretized into coordinate positionss1, s2, . . . , sn and par-
titioned into the setsSin andSout. The coordinate posi-
tions inSin were bounded by[s, s] andSout was com-
posed of coordinate positions in[s1, sl] and [su, sn].
More specifically,sl = sk−1, s = sk, s = sk+δ and
su = sk+δ+1 for 1 < k ≤ k + δ < n andδ ≥ 0. Thus,
for an application withn slices, eachsi ∈ S was given
a scalar value defined by

si =





β + ρ1(i) i ≤ k − 1,

β + ρ2(i) k ≤ i ≤ k + δ,

β + ρ3(i) i ≥ (k + δ) + 1,

(49)

where β, β, β ∈ R. In order to include the off-
resonance characteristics found between(sl, s) and
(s, su) the piecewise function in (49) is designed such
thatβ + ρ1(k − 1) < β ≤ β + ρ2(k + δ) < β. Also,
ρ1(i), ρ2(i), ρ3(i) are strictly monotonically increasing
functions that can uniformly or randomly disperse in-
crements ofsi. As stated in Section 3.1., the subinterval
[s, s] is intended to be centered around 0, and hence,β
is chosen such thatβ + ρ2(i) has the same features for
k ≤ i ≤ k + δ. Also, the valuesβ < 0 andβ > 0 are
assigned such that the positionsβ+ρ1(i) for i ≤ k− 1
andβ + ρ3(i) for i ≥ (k + δ) + 1 are symmetric with
respect to each other, as shown in equation (14). By
construction,β + ρ2(i) will contain the values for the
magnetization vectors inSin, whereasβ + ρ1(i) and

β + ρ3(i) will control the si ∈ Sout values. The initial
positionsβ, β, β for this piecewise step function will
be chosen depending on how many slicesn we have,
and how far we would like to disperse our RF pulse.
For example, generally we would assign values such
that β ≈ s1, β ≈ sk andβ ≈ s(k+δ)+1. Also notice,
we can set the distance betweenβ + ρ1(k − 1) < β

andβ + ρ2(k + δ) < β (S0) to be as large or as small
as we like. Thus, potentially controlling the negative
imaging effects described in Section 3., which are
experienced by off-resonance magnetization vectors.
After the slices are separated into the setsSin andSout

with appropriate values, they are ready to be evaluated
within constraints (8) – (13). As mentioned, att1 = 0

the values ofMx(0, si), My(0, si), andMz(0, si) are
initialized for i = 1, . . . , n in an input routine.

5. Computational Results

The gVERSE pulse was designed to minimize MRI
SAR levels, however, in doing so a complex mathe-
matical model was developed that challenges most soft-
ware packages. In the previous section we highlighted
different implementation issues between the two soft-
ware packages that may be used to solve the model
presented in (7) – (13). Using the SOCS SQP based
optimal control software package and AMPL–MINOS
the gVERSE RF pulse results are presented in this sec-
tion. The number of decision variables in the problem
isN(3n+4), wheren is the total number of slices and
N is the total number of time discretization points. For
our comparison we used 15 slices and over 200 time
evaluation points, in which SOCS has the capacity to
increase this amount upon implementation. This pushed
the softwares to their limits as memory limitations be-
came an issue when the variable count was increased.
Nonetheless, the given variable number captures the es-
sential features of the problem and provides a meaning-
ful comparison between the softwares. After consult-
ing the MRI literature, the following parameter values
were set:γ = 42.58 Hz/mT,Gmax = 0.02 mT/mm, and
Wmax = 0.2 mT/mm/ms, where Hz is Hertz, mm is mil-
limeters, ms is milliseconds, and mT is millitelsa. Also,
α = π/2 such that theSin magnetization vectors were
fully tipped into the transverse plane withε1, ε2 = 0.1
degrees of freedom. Finally, the magnitude of the initial
magnetization vector for each coordinate position was
set toM0 = 1.0 spin density units.

5.1. Fifteen Slice gVERSE Comparison

The gVERSE 15 slice model accounted for the
largest size problem that SOCS could solve. As the
distance fromsl to s ands to su decreased the model
became even more difficult to solve. For our compu-
tational comparisons we used moderate settings for
the distances between these magnetization vectors. To
ensure the symmetric structure of the problem was
maintained, the three middle magnetization vectors
were part ofSin and the rest were included inSout.
Therefore, coordinate positions{s7, s8, s9} ∈ Sin,
while {s1, . . . , s6, s10, . . . , s15} ∈ Sout. An idea of
how the magnetization vectors in the various coordi-
nate positions should act is shown in Figure 6 and the
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Fig. 6. The 15 coordinate positions of magnetization vectors s1, ..., s15 into Sin andSout.

coordinate position values are as follows:

−30 −28 −26 −24 −22 −20 −0.2 0
s1 s2 s3 s4 s5 s6 s7 s8

0.2 20 22 24 26 28 30
s9 s10 s11 s12 s13 s14 s15

where the positions are given in mm. The best results
for the gVERSE 15 slice positions using SOCS and
AMPL–MINOS are illustrated in Figures 7 – 11. Due
to the symmetric structure of the problem, coordinate
positionss1, . . . , s6 ands10, . . . , s15 were identical, as
were s7 and s9. For this reason, we present the first
eight coordinate positions. Figures 7 – 9 correspond to
magnetization vectors inSout and Figure 10 refers to
the vectors inSin. The resulting RF pulse and gradient
waveforms are shown in Figure 11, wherebx(t) was
equal to zero for the SOCS results.

Examining the SOCS results in Figures 7 – 9 (a,
c, e, g, i, k) one can observe the precession of the
magnetization vectors inSout. The starting pointM0 is
within the range of the magnetization vectors preces-
sion, where it takes less than one full rotation to orbit
uniformly. As theSout vectors get closer to the RF pulse
range (Sin) their orbiting radius increases. Hence,s1, s15
and s2, s14 magnetization vectors are tightly precess-
ing versus that ofs5, s11 ands6, s10. This corresponds
to expectations based on analytic constant coefficient
solutions [11], thus, for theSout magnetization vectors
SOCS performs very well. Observing theSout AMPL
results in Figures 7 – 9 (b, d, f, h, j, l) one can see that
precession is not evident. Although precession is not
there, the data points do seem to get further apart from
one another or are not as clustered as the magnetiza-
tion vectors get closer to the RF pulse range. Hence, the
AMPL results are not as strong as the SOCS results for
theSout vectors because they lack visually identifiable
precession. This is not unexpected because SOCS has

the capacity to increase the number of time discretiza-
tion points adaptively as a function of the controls, and
therefore track the solution of the Bloch equation dur-
ing time periods of large variation. For the magnetiza-
tion vectors inSin, Figure 10, the SOCS results – graphs
(m, o) – smoothly tip into the transverse plane. Note
that the model was designed in the rotating frame of
reference, hence, these graphs should not show any ro-
tation (refer to Section 3.). There are small differences
between magnetization vectorss7, s9 (Figure 10 (m))
ands8 (Figure 10 (o)), however, below 0.8 spin density
units they act very similar. Also note that the vectors tip
to just below 0.1 spin density units, as this was the up-
per bound set byε1. Again, SOCS has produced results
that are very similar to expectations. The AMPL results
are better for theSin voxels than that of theSout, with
regards to magnetization vector behavior. In Figure 10
(n, p) the magnetization vectors tip into the transverse
plane, however, the sharp projections seem to be some-
what unrealistic. As with the SOCS results, there are
differences with respect tos7, s9 (Figure 10 (n)) ands8
(Figure 10 (p)), wheres8 seems to be more smooth. In
addition, the magnetization vectors triangular projection
are more of a result of the integration method and low
temporal resolution used, than the expected solution.
Finally, Figure 11 presents the RF pulse and the accom-
panying gradient waveform. For the SOCS results the
external magnetization components,bx(t) andby(t), are
constant and linear. As mentioned,bx(t) was zero and
by(t) is shown in Figure 11 (a). This is precisely what
the gVERSE pulse was designed to do as our objective
function optimized these two values. In the AMPL re-
sults, Figure 11 (b),by(t) andbx(t) were constant for
parts of the pulse but produced an uncommon triangu-
lar function. For both gradient waveforms in the SOCS
and AMPL results, Figure 11 (c, d), the graphs are non-
smooth functions and are predominantly negative func-
tions. For the SOCS results the gradient function starts
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Fig. 7. Magnetization vectors corresponding to coordinatepositionss1, s15: (a), (b) ands2, s14: (c), (d). SOCS results are shown
in graphs (a) and (c), and AMPL–MINOS results in graphs (b) and (d).

off negative and ends up positive. This is quite the op-
posite to what is used in typical MRI sequences, how-
ever, as we will investigate in the next section it proves
to be proficient. Of the two results, the AMPL sequence
(Figure 11 (d)) has more smoother pieces than that of
the SOCS (Figure 11 (c)), yet, either gradient sequence
may be implemented using an MRI. The objective value
for the SOCS computations was 0.0385 SAR units and
for the AMPL computations it was 0.0006 SAR units.
For comparison, the SAR value of a conventional RF
SINC pulse is 0.5923 SAR units, hence, both optimal
values were significantly below what is currently used.

5.2. Signal Verification

To obtain a better understanding of how the gVERSE
pulse would perform in vivo we designed an MRI sim-

ulation. From the literature [10–13] one can find infor-
mation on how the signal is mathematically amplified,
digitized, and transformed to form a final image. The
simulation was implemented in Matlab, where a 1D
imaging coverage was used as shown in [1,15]. Using
the gVERSE SOCS and AMPL RF pulse and gradient
waveform results we conducted a number of MR imag-
ing simulations over various tissues. We present one of
the imaging results, for more examples the reader may
refer to [15].

The MR signal generated by the RF pulse has a di-
rect relationship with that of the tissues spin density. We
used cerebrospinal fluid, which has a spin density value
of 1.0. Also, the cerebrospinal fluid was placed on an an-
gle as an MRI performance technique, shown in Figure
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Fig. 8. Magnetization vectors corresponding to coordinatepositionss3, s13: (e), (f) ands4, s12: (g), (h). SOCS results are shown
in graphs (e) and (g), and AMPL–MINOS results in graphs (f) and (h).

12 (a). For the pulse to work as designed only the vox-
els in coordinate positions corresponding toSin should
produce a signal, which equates to a peak. Hence, only
in this region should a reading be produced, any signal
before or after this region would be accounted as noise
and reduce the performance of the pulse. Figure 12 (b) is
an illustration of an MR signal produced from a generic
SINC pulse sequence when run through the simulation.
The central peak in the signal represents when the pulse
reaches theSin region. Since discrete time points were
used in our model the plot is not a smooth function,
but in practice it would be. Figure 12 (c) is the sig-
nal reading when the gVERSE pulse is used with the
SOCS results. As shown, the gVERSE pulse seems to
have a larger central peak and less noise. The base of
the signal in Figure 12 (c) is very representative to the
voxels inSin of the fluid, and the peak remains con-

stant throughout the duration of the signal. This would
produce a high quality signal with more data points to
process for imaging. The AMPL results do not produce
a strong signal under the same conditions. In addition,
as shown in Figure 12 (d), it is not as representative as
the SOCS results with respect to when the voxels enter
Sin, which was expected given the poor voxel results in
the previous section.

6. Conclusions and Future Work

The gVERSE model was designed to reduce the
SAR of RF pulses by maintaining a constant RF pulse
strength (

−→
B rf value) while generating high quality MR

signals. The observations made in Section 5. deserve
some additional reasoning and explanation. To begin,
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Fig. 9. Magnetization vectors corresponding to coordinatepositionss5, s11: (i), (j) and s6, s10: (k), (l). SOCS results are shown
in graphs (i) and (k), and AMPL–MINOS results in graphs (k) and (l).

the reader should understand that the symmetry dis-
played between coordinate position vectors in each of
the result cases was precisely designed in the gVERSE
model. The precession of the the magnetization vec-
tors illustrated in the SOCS results, however, was not
directly part of the gVERSE design, rather it was a
consequence of the Bloch equation in constraint (8).
Nonetheless, the precession shown in the SOCS re-
sults validated the design. This was not the case for
the AMPL results, precession was not present in any
of the graphs pertaining toSout. Furthermore, investi-
gating the precession of the magnetization vectors in
the SOCS results, it was shown that they had a much
tighter radial orbit towards the outer coordinate posi-
tions than those closer tosl andsu. With regards to the
magnetization vectors inSin, the SOCS results were
much more realistic than the AMPL cases. Finally, in
terms of our optimal solution, which directly relates

to the level of SAR produced during the RF pluse se-
quence, both AMPL and SOCS were able to greatly
reduce this value.

As the voxel behaviour of the SOCS solutions were
very close to expectations, the RF pulse and gradient
waveforms performed very well with regards to the
MRI simulation. This was not the case for the AMPL-
MINOS results, and the unrealistic voxel behaviour
may have accounted for the poor signal readings. One
should note that our AMPL implementation was based
on general mathematical techniques. Analytic integra-
tion of the Bloch equations did not help. Some type of
adaptive time stepping might have helped the AMPL
results, but this would have required substantial pro-
gramming and not been in the spirit of comparing
the applicability and performance results of the two
software packages. The most interesting part of the
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Fig. 10. Magnetization vectors corresponding to coordinate positionss7, s9: (m), (n) ands8: (o), (p). SOCS results are shown
in graphs (m) and (o), and AMPL–MINOS results in graphs (n) and (p).

gVERSE results was the gradient waveform. The RF
pulse in our model was optimized such that this pro-
cess returned a gradient waveform that would provide
the appropriate spatial signal. In other words, in order
to use thebx(t) and by(t) pulse design, the accompa-
nying gradient waveform would have to be imposed to
acquire a useable signal. With regards to practical MR
gradient waveforms, the AMPL results seem to be the
easier of the two to implicate. However, regardless of
the difficulty, recent improvements in gradient hard-
ware will allow either gradient to be implemented, as
mentioned in [8]. In addition, both results have similar
features in the sense that they each started off negative
and then ended up positive. As shown in Section 2.,
conventional gradient sequences usually have the op-

posite characteristics. In terms of our SOCS MRI sim-
ulation results, strong signal readings were produced
using the gVERSE SOCS RF pulse sequence. For this
reason, various MRI studies utilizing gVERSE pulses
may be considered for future research developments.

In this paper, we investigated the different solutions
produced by two competitive softwares. The SOCS and
the AMPL results show that not only is the design of the
RF pulse sequence important, but the software used to
solve the NLP can have a profound effect on the qual-
ity of the solution. Although one may argue that SOCS
has more features to accommodate the model presented
in (7) – (13), even if a biased comparison was used, the
AMPL tests using analytic solutions to the Bloch equa-
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Fig. 11. External magnetization components presented in graphs (a) and (b), and gradient sequenceG(t) in graphs (c) and (d).
SOCS results are shown in graphs (a) and (c), and AMPL–MINOS results in graphs (b) and (d).

tions and increasing the number of time steps to the
final number of time steps reported by SOCS did not
have any significant impact on the final results. Such ad-
ditions resulted in substantially increased computation
time without producing solutions containing the desired
features (i.e. precession) apparent in the SOCS solu-
tions. Again, while it is possible to implement adaptive
time stepping and other features of SOCS in AMPL,
this would involve substantial programming, and could
not be considered as a comparison of the existing soft-
ware packages. Also, in that case SOCS could also be
improved by providing it with symbolic derivatives, or
improving memory allocation to take advantage of the
fact that the Bloch equations at different slice positions
are independent, and can therefore reuse memory in
their integration. Therefore, a few of the areas of inter-
est for future investigations include:

• Solving the gVERSE problem using alternative NLP
software than the ones presented;

• Designing a customized method to handle the coding
obstacles presented in Section 4.2.;

• Including other aspects in the gVERSE model such
as spin-lattice and spin-spin proton interactions;

• Applying the gVERSE pulse sequence to an MRI
machine.
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