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Abstract

We consider a generalization of the well known greedy atbonj calledm-step greedy algorithm, where elements
are examined in each iteration. When = 1 or 2, the algorithm reduces to the standard greedy algorithm: Fo
m = 3 we provide a complete characterization of the independesystem, called trioid, where the:-step greedy
algorithm guarantees an optimal solution for all weight étions. We also characterize the trioid polytope and prepos

a generalization of submodular functions.
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1. Introduction

Let E = {1,2,...,n} and F C 2F so that(E, F)
is an independence system, (i.edife 7 andB C A
thenB € F). Letw : E — R be a prescribed weight
function. We consider the following linear combinato-
rial optimization problem (LCOP):

Maximize {w[S] : S € F},

wherew[S] = >, g w(i), if S # 0, andw[f] = 0.
The well known greedy algorithm for LCOP can be
described as follows.

In his path-breaking work [7], Edmonds showed that
an independence systgt, F) is amatroid[22] if and
only if the greedy algorithm computes an optimal so-
lution to the corresponding instances of LCOP for all
weight functions. By relaxing the restriction of an in-

Algorithm 1: The Greedy Algorithm

Input: E={1,2,...,n}; F: the family of
feasible solutions (possibly given as an
oracle);

Output: X, the solution obtained.

Order the elements af such thatw(1) > w(2) >
o> w(r) >0>wlr+1) > > w(n);
X« 0;
k+1;
while k£ <r do

if XU{k} e Fthen

| X« XU{k};

end

k+—k+1,
end
Output X

dependence system and/or mod|fy|ng the greedy a|go_ fun_ctions. These_ discrete Systgms incIude pseudoma-
rithm appropriately, various classes of discrete systems troids [4], greedoids [16], matroid embeddings [12], su-
(E, F) are identified by researchers that guarantee op- Permatroids [6,10,21], among others [9,13,15]. Various

timality of the solution produced by the algorithm for

modifications of the greedy algorithm have also been

the corresponding instances of LCOP for all weight analyzed extensively as approximation strategies with

guaranteed average performance [17] and worst case

Email: Santosh N. Kabadi [kabadi@unb.ca], Abraham P. Pun- performance [18] for various classes of linear combi-

nen [apunnen@sfu.cal.

natorial optimization problems. In each of these algo-
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the current solution to build the optimal (approximate)
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solution. 2. Notations and Basic Definitions

Jenkyns [14] considered a generalization of the finit A di h
greedy algorithm, called/-Greedy algorithm, where Definition 1 : A discrete systeniE, 7), where &' =

P .
more than one element is added in each iteration. His {12+ -» 7} andF C 2%, is an independence system
algorithm can be described as follows: if and only if A € 7 and B C A implies thatB € F.

Each element of is called an independent set of the

system.
Throughout the paper, we only consider discrete sys-
Algorithm 2: The J-Greedy Algorithm tems that are independence systems.

Input: E = {1,2,...,n}; an independence For a given positive integer., we introduce then-
system(E, F) (possibly given as an step greedy algorithm which can be summarized as fol-
oracle); and a functiod : F x E — Z*+; lows. We order the elements &f = {1,2,...,n} such

Output: X, the solution obtained. thatw(1) > w(2) > --- > w(n) and we start with the

empty set as the initial solution and with all the ele-

? qu_); ments ofE as unscanned. In each iteration, we scan the
. : ) ’ first m of the currently unscanned elementsiofn the
v ;

orderl, 2,3, ...,n and augment the current solution by
adding all thesen elements or a subset of it (the subset
could be empty as well) so that the resulting solution is
feasible and gives maximum improvement. Theele-
ments of £ scanned in this iteration are then marked as

while |X| < nandd > 0do
ChooseS C E — X such that

w[S] = > g w(e) is maximized subject to
|S] < J(X,i)andX US € F;

X+ XUS§s, . . .
5=1S]; scanned. In the last iteration, depending on the value of
Coomr n, the number of unscanned elements could be less than
11+ 1; . s .
end m and all of them are scanned in this iteration. In ev-
ery other iteration, we always scan exaectlyelements.
Output X y y ¥e

A formal description of then-step greedy algorithris
given below.
Definition 2 An independence systdift, ) is an m-

If J(X,i) =1 for all i, the above algorithm reduces step greedy system if and only if for any weight function
to the greedy algorithm. Unlike the greedy algorithm, w : E — R, the m-step greedy algorithm produces an
no simple characterization of an independence systemoptimal solution to the corresponding LCOP.
that guarantees optimality of the solution produced by It may be noted that thé-step greedy algorithm is
the J-greedy algorithm is known. Further, while the ma- precisely the greedy algorithm (Algorithm 1). Hence,
troid polytope can be elegantly defined, no similar rep- the class ofl-step greedy systems is precisely the class
resentation of such an independence system is known. of matroids. The following result shows that the class

In this paper, we consider another generalization of Of 2-Step greedy systems is also precisely the class of
the greedy algorithm which we call the-step greedy ~ Mmatroids.
algorithm As in the case of Jenkyns’ algorithm, our al- Observation 1 An independence systeifi, F) is a2-
gorithm allows more than one element (in fact, at most Step greedy system if and only if it is a matroid.

m elements, for a given integer) to be selected ineach ~ Proof.Itis easy to observe that for any given instance of
iteration. However, the two algorithms are quite differ- LCOP, the outputs of the-step greedy algorithm and
ent. Form < 3, we give a complete characterization the1-step greedy algorithm are the same. The proof of
of the class of independence systems, for whichthe ~ the observation follows from thism

step greedy algorithm guarantees an optimal solutionto  However, a3-step greedy system is not necessarily a
the associated LCOP for all weight functions. The re- matroid as illustrated in the following example.

sulting mathematical structure generalizes the class of Example 1 Consider the systertE, F) where E =
matroids. We also characterize the polytopes associated{1, 2,3} and F = {0, {1}, {2},{3},{2,3}}. (E, F) is
with this class of systems. Further, our study leads to the not a matroid but it is 83-step greedy system.
identification of an interesting new class of set functions  Thus it is interesting to examine the properties of a
that are closely related to submodular functions [11].  3-step greedy system, which is the primary focus of this
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Algorithm 3: Them-step Greedy Algorithm
Input: E ={1,2,...,n}; an independence
system(E, F) (possibly given as an
oracle); integerm.
Output: X%, the solution obtained.

Order the elements df such that
w(l) > w(2) = > wn);
SO — 0;
k < 0;
while £ < [X] do
k+—k—+1,
if n > mk then
| AF — {m(k—1)+1,m(k—1)+2,...,mk}
else
| AF=FE—-{1,2,....m(k—1)}
end
Find X C A* such thatS*~' U X € F and
w[X] is maximum;
Sk = Sk=1y X {* X could be empty set}
end
OutputX @ = S*

paper. We shall call 8-step greedy systemteoid.
Definition 3 : An independence systeift, F) is a tri-

oid if and only if for any weight functiow : £ — R,
the 3-step greedy algorithm produces an optimal solu-
tion to the corresponding LCOP.

We need the following additional definitions.
Definition 4 : For an independence systgi#, ) and
anysetA C E, F/A={X:X e F,XNA=0}
We say that the systefiv — A, 7/A) is obtained from
(E, F) by deleting elements of.

Definition 5 : For an independence systeif, F), any
set A C FE and any maximal seB C A such that
BeF,F\(AB)={X:XCE—-AXUB e F}.
We say thatE— A, F\ (4, B)) is obtained from E, F)
by contractingA with respect taB.

3. Independence Axioms for GG System

In this section, we shall give a complete characteri-
zation of the family of independent sets of a trioid. We
start with some observations.

Observation 2 If (E, F) is a trioid then for anyA C
E,(E—A,F/A)is atrioid.

Proof. Extend any weight functiow : (E— A) — R to
a weight functionv’ : E — R as follows:w’ (i) = w(i)
for eachi € E — A andw’'(i) = —M for eachi € A,

where M is a sufficiently large positive number. Then
the corresponding instances of LCOP @#, F) and
(E — A, F/A) have the same optimal solution and the
3-step greedy algorithm for the two instances of LCOP
results in the same outpuis

Observation 3 Let (E, F) be a trioid. For anyA C E
suchthaiA| = 3, and anyB C A such thatB € F and

is a maximal such setE — A, F \ (A, B)) is a trioid.
Proof. Extend any weight functiom : (E — A) = R

to a weight functionw’ : E — R as follows:w'(i) =
w(i) for eachi € E — A, w'(i) = 3M for eachi €

B andw'(i) = M for eachi € A — B, where M

is a sufficiently large positive number. The result now
follows. m

Theorem 4 Let(E, F) be atrioid. ForanyA C E with

|A| = 3, let By, B2 be maximal independent subsets of
A. ThenF\(A, B1) = F\(A, Bg).

Proof. For convenience letl = {1,2,3}. For anyi €
{1,2},letj = {1,2} —{i} and letX € F\(A, B;). Itis
sufficient to prove thakl € F\(4, B,), (i.e.B;UX €
F).

Choosew(1),w(2),w(3), each greater than 2, such
thatw[B;] + € = w[B;] > {w]Y]: Y C AY € F}.
Assighw(¢) = 1 forall £ € X andw(¢) = —1 for all
¢ € E— (AU X). Then the 3-step greedy algorithm
choosesS! = B;. Sincew[X %] > w[B; U X] we must
haveB,UX = X¢ € F. m

In light of the above theorem, henceforth(if, F)
is a trioid, then we shall denotg\ (A, B) by F\A).
Theorem 5 Let (E, F) be a trioid. LetX,Y € F
where| X | > |Y].

(1) If |Y| = 3k or 3k + 2 for some integel, then
there existd € X — Y such thaty U {¢} € F

(2) If |Y| = 3k + 1 for some integek and there does
not exist! € X — Y such thatY U {¢{} € F
then for any: € Y and any{j,p} C X - Y,

(Y —{i}) u{jp} € F.
Proof. Since(E, F) is a trioid, the3-step greedy algo-
rithm produces an optimal solution to the corresponding
instance of LCOP for any weight functian on E.
To prove the assertion of part (1), we consider the
following weight function.

1+e¢ forallzeY
w(i) =<1 forallie X - Y
-1 otherwise

wheree is an arbitrarily small positive number. Since
Y| = 3k or 3k + 2, the setS**! in the algorithm
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must contairt”. But w[X] > w[Y]. Hence the solution
X% € F output by the3-step greedy algorithm must
containY U {¢} for somel € X —Y. This proves part

(1).

Let us now prove part (2), whe@| = 3k + 1 for
some integett. Since|X| > |Y| and there does not
exist! € X —Y such thaty” U {¢} € F, it follows that
|X — Y| > 2. Consider the weight function,

1+ 3¢ foralleY — {i}
1+2¢ forl=1
wl)=<91+e¢ forle{jp}
1 forall £ € X — (Y U {j,p})
-1 otherwise

Since|Y| = 3k + 1, the setS* in the 3-step greedy
algorithm is precisely” — {i}. In the(k+1)*" iteration,
the algorithm considers the triplét, j, p}. If i € Sk+1

Assign the following weights to the elements Bf

VleR

fort=i,j

142 forl=p

1+e VleY —(RU{ij})
1 Ve X —(YU{p}
-1 otherwise

1+ 4e
1+ 3¢

The optimal objective function value of the corre-
sponding instance of LCOP is at leastX| > w([Y].
The 3-step greedy algorithm chooseé8” = R and
ST+l as eitherR U {i,j} or R U {i,j,p}. In view
of (1), S"t = S U {i,j}. Since|Y| = 3k + 1,
Sk =Y — {u,v} for someu,v € Y — R. The next
triplet scanned by the algorithm igu, v, 2} for some
z € X — (Y U{p}). Hence the algorithm must choose
Sk+1 such thaty” € S*+1, and therefore the solution

then as in the previous case, the algorithm must chooseX @ output by the algorithm satisfies U {¢} € X

somel € X —Y and henc&” U {¢} € F, a contra-
diction. If i ¢ S**1, then it follows from the defini-

for somef € X — Y, a contradiction.

tion of the 3-step greedy algorithm that it must choose L€t us now consider part (2) of the theorem. If this is

S = (Y — {i}) U {j,p} € F.
This proves the theorenm
Corollary 6 Let (E,F) be a trioid. For anyA =
{i,j,p} C Eif By = {i} and By = {j, p} are maximal
independent subsets df then 7\ A = 0.
Proof. Suppose there existg} € F\A then{i, (} €
F and {j,p,¢} € F. By theorem 5, therefore either
{i,4,£} € For{i,p, L} € F, contradicting maximality
of setsB; andB;. m
Theorem 7 Let (E, F') be a trioid. LetX,Y € F with
|X| > |Y|and suppos@l € X —Y suchthaty U{¢} €
F.LetR C Y be such thatR| = 3r for some integer
r. Then:
(1) Foranyi,j € Y — R,i # jandp € E-Y,
RU{i,j,p} € F.
(2) Foranyi € Y — Rand{j,p} CE-Y,j # p,
RU{i,j} € For RU{i,p} € For RU{j,p} € F.
B)IFRCXnNnY,thenforanyi € (XNY)—-R
and{j,p} C E-Y,j #p, RU{i,j} € For
RU{i,p} e F.
Proof. Since there does not exiétc X — Y such that
Y U {¢} € F, by Theorem 5]Y| = 3k + 1 for some
integerk and| X — Y| > 2.

Suppose part (1) of the theorem is not true. Then there

exist

i, € Y—Randp € E-Y such thatRU{3, j,p} ¢ F.
1)

not true, then there exists
i€eY —R and{j,p} CE-Y,j#p, suchthat (2)
RU{i,j} ¢ F,RU{i,p} ¢ F, andRU {j,p} ¢ F.

Assign the following weights to the elements Bf

vl e R

fort =1

1+2¢ foré=j,p

1+e WYeY—(RU{i})
1 Vie X —(YU{jp}
-1 otherwise

1+ 4e
1+ 3¢

w(l) =

The algorithm now chooses” = R andS™*! as ei-
therRU{i} or RU{4,j} or RU{i,p} or RU{j,p} or
RU{i,j,p}. In view of (2), we haveS™"!1 = RU {i}
and hences**! = Y. Sincew[X] > w[Y], we must
haveX“ D Y U {¢} for somel € X — Y, a contradic-
tion.

Let us now consider part (3) of the theorem. If this is

not true, then there exist
RCXNnY;ie(XNY)—R 3)
and{j,p} CE-Y,j #p, suchthatRuU {i,j} ¢ F,
andRU {i,p} ¢ F.
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Assign the following weights to the elements bf

VieR

fort =1

14+2¢ forl=jp

1+e WeY—(RU{i})
1 Ve X —(YU{jp}H
-1 otherwise

2 + 6e
2+ be

The algorithm now chooses” = R andS"*! as ei-
therRU{i} or RU{i,j} or RU{é,p} or RU{4, j, p}.
In view of (3), we haveS"*! = R U {i} and hence
Skl = Y. Since w[X] > w[Y], we must have
X% DY U{¢} for somel € X — Y, a contradiction.

This proves the theorema

Corollary 8 Let[E, F] be atrioid. If3e € E such that
{e} ¢ F (i.e. e is a loop) then for anyX,Y € F such
that| X| > |Y], 3¢ € X —Y suchthatv U {¢} € F. In
particular, all the maximal elements f are of same
cardinality.

Proof. If possible, letX,Y € F be such thatX| >
|Y'| and there does not exigt € X — Y such that
Y Uu{¢} € F.If |Y| > 2, then from partl of Theorem
7 by choosing any distinat j € Y, p = e andR = 0,
we have a contradiction. [¥| = 1, i.e.Y = {i}, then
from part2 of Theorem 7 by choosing this p = e,
anyj € X andR = (), we have a contradiction. This
proves the resultm

Theorem 9 Let (E, F) be a trioid and letX,Y € F
with | X —Y| > 2. Thenforany € Y — X, 3H{z,y} C
X — Y such thatX U {e} — {z,y} € F.

Proof. For anye € Y — X assign the following weights
to elements off.

242 YWeXnY

2 for ¢ =
w(f) = +e€ e

1 WeX-Y

-1 otherwise

SinceY € F, (X NY)U {e} € F. Let [ XY | —
k. Then the algorithm choose$**! D (X NY) U
{e}, and therefor§ X N Y) U {e} € X©. Since the
optimal objective function value is at leas{X], X¢
must contain all but at most two elements, dayy}
of X —Y.HenceX U{e} —{z,y} € F. m

If X,Y € Faresuchthak —Y = {«}, then obviously
foranyeeY — X, X U{e} — {2} € F.

Corollary 10 Let (E, F) be an independence system

that satisfies Theorems 5 and 9. LEtY € F with

| X —Y|>3.Thenforanye € Y — X,32 € X - Y

such thatX U {e} — z € F.

Proof. By Theorem 9,3{z,y} C X —Y such that

X = X U{e} — {z,y} € F. If there existsj € {z,y}

such thatX U {j} = X U {e} — {z} € F where

{z} = {z,y} — {7}, then the result is proved. Else, us-

ing Theorem 5 withX, X andany: € X —-Y —{z,y}

we haveX — {z}U{z,y} = X U{e} — {2z} € F. This

proves the resultm

Theorem 11 Let (E, F) be a trioid andX,Y € F

with | X — Y| = 2. Then:

(1) If|X NY]|>1,then foranye € Y — X (i) there
existsz € X —Y such thatX U {e} — {z} € F
or (i) foranyj e X NY, X U{e} —{j} € F.

(2) If I X NY|] = 3k for some integec > 0, and
[X-Y|=|Y -X|=2,thenletX - Y = {4, 5}
andY — X = {e, f}. ThenX U {e} — {i} € F
orXu{e}—{jleForXuU{f}eF.

Proof. To prove part (1), let” = (X NY) U {e}. If

JjeX—-YsuchthaW U{j} = XU{e} - {2} € F

for {z} = (X —Y) — {j}, the result follows. Else by

Theorem 5 withY, X and anyj € X NY, we get

Y-{jtu(X -Y)=XU{e} -{j} € F.

To prove part (2) let us assign the following weights to
elements oft:

3 YWWeXNY

24¢ fori=e
wll)=¢1+e Ve {ij}
1 fore=f

-1 otherwise

The 3-step greedy algorithm choosg§*! = X U {e}
or X U{e} — {i} or X U{e} — {j} or X. In the first

three cases, the result is proved. In the last case, since

w[Y] > w[X], the the algorithm must choosg“ =
X U{f} € F. This proves the resultm
Theorem 12 Suppose an independence systémF)
satisfies theorems 5, 7, 9, 11. Then:

(1) ForanyA C E, (E — A, F/A) satisfies theorems
57,9, 11.

(2) ForanyB C A C E such that|{A] =3 and B is
a maximal subset ofl in F, (E — A, F\(4, B))
satisfies theorems 5, 7, 9, 11.

Proof. Proof of part (1) is straightforward and hence
omitted.
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We now prove part (2). Thus, suppo$&, F) sat-

result follows from Corollary 10. Suppos$& — Y| =

isfies Theorems 5, 7, 9, 11. It is easy to see that |V — X|=2.Let X - Y ={i,j}, Y — X = {e, f}

(E— A, F\(A, B)) satisfies Theorem 9 and part (1) of
Theorem 11.

To prove that E — A, F\(A4, B)) satisfies Theorem 5,
consider anyX,Y € F\(4, B) with | X| > |Y|. Then
X UB € FandY UB € F. The only non-trivial case
is when|Y U B| = 3k + 1 and|Y| = 3k or 3k — 1.
But in this case, using the fact th@E, F) satisfies
parts(1) and (3) of Theorem 7 witi U B , Y U B and
with R as a subset oB of cardinality3L‘—?J, we get
B U {z} € F for somez € A — B, contradicting the
fact thatB is a maximal subset ofl in F.

Now let us prove thatE — A, F\(A, B)) satisfies
Theorem 7. Thus, consider an¥,Y € F\(4, B)
with |X| > |Y]|, such that#/ € X — Y with
YU{l} € F\(A, B). LetR C Y be such thatR| = 3r
for some integer. Since(E — A, F\(A4, B)) satisfies
Theorem 5,Y| = 3k + 1, for some integefk. Also,
since(FE, F) satisfies Theorem 5 andf U B € F and
YUB € F, |Y UB| = 3K + 1. This implies that
|B| = 0 or 3. The result now follows by applying The-
orem 7 to(E, F) with XUB,YUB andR' = RUB.

To prove that(E — A, F\(A, B)) satisfies part (2) of
Theorem 11, consider any, Y € F with | XNY| = 3k

for some integek >0, X —Y = {i,j} andY — X =
{e,f}.LetY =Y UB - {f}andX = X U B. Then
X, Y e F.If YU{y} = XU{e} — {x} € F for some

y € {i,j} where{z} = {i,j} — {y}, then the result

is proved. Else, by Theorem 5| = 3k’ + 1, which
implies that|B| = 0 or 3 and thereforg X N Y| =

3(k + 1). The result now follows by applying part (2)
of Theorem 11 taX andY. m

Corollary 13 Let (E, F) be an independence system
such that all the maximal elements Bf are of same
cardinality. Then(E, F) is a trioid if and only if it is a
matroid.

Proof. The “if” part of the corollary follows from
Theorem 4 and the facts that (1) the greedy algorithm
(Algorithm 1) produces an optimal solution to LCOP
on a matroid and (2) any deletion/contraction of a ma-
troid is a matroid.

To prove the “only if” part, consider any pair of
maximal elementsX,Y € F and anye € Y — X.
It is sufficient to show thai € X — Y such that
XUfe}—{i}e F.If|X-Y|=]Y - X|=1this
is trivially true. If | X — Y| = |Y — X| > 3, then the

andY =Y — {f}.fYU{y} =X U{e} - {2} e F
for somey € {i,j} where{z} = {7, 5} — {y}. then the
result is proved. Else, it follows from Theorem 5 that
|Y| = 3k + 1 and thereforéX N Y| = 3k. From The-
orem11,X U{e} —{i} €e ForXu{e} —{j} € F
or X U{f} € F. In the first two cases, the result is
proved. In the last case, we have a contradiction to fact
that X is a maximal element of.
This proves the corollarym

We now prove our main result of this paper.
Theorem 14 Let [E, F] be an independence system.
Then[E, F] is a trioid if and only if it satisfies condi-
tions of theorems 5, 7, 9 and 11.
Proof. The ‘only if’ part of the theorem follows from
theorems 5, 7, 9 and 11. Let us now prove the ‘if’
part. If the result is not true, then choose a counter-
example with minimum value ofE| and choose a
weight functionw : E — R such that a correspond-
ing solution produced by tha-step greedy algorithm
is not optimal. Obviouslyw(i) > 0 for all i € E
for otherwise it follows from Theorem 12 that we
could delete elements df with non-positive weights
to obtain a counter-example with a smaller value of
|E|, contradicting the minimality of E|. Without loss
of generality we assume that all weights are distinct
and the valuess[A] = >, , w(i) are distinct for all
A C E. Hence the solutionX¢ produced by thes-
step greedy algorithm and the optimal soluti&ri are
unique with X¢ # X*. Obviously, X¢ and X* are
maximal elements ofF. Let E = {1,2,--- ,n} and
w(l) >w(2) > --- > wn).

The3-step greedy algorithm first considers the triplet
{1,2,3} andS* C {1,2,3}. Note thatS* # () for oth-
erwise,(F —{1,2,3}, F) is a smaller counter-example.
If {1,2,3} N (X*AXY) = ), where A is the sym-
metric difference operator, the!! € X¢ N X* and
by Theorem 12[F — {1,2,3}, F\({1,2,3},SY)] is a
smaller counter-example, contradicting the minimality
of |E|. Hence the sef1,2,3} contains the element
e € X*AXY with w(e) maximum. Ife € X¢ — X*
thenS*N(XY - X*) £ 0.If e € X* — X, then since
e ¢ X it follows that

{15273}_{6}:{][19}251 QXG—X*

and
w(f)+w(g) > w(e).
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Case (1) |X¢ < |X*|: In this case, by max-
imality of X and X* and by Theorem 5, it
follows that |X¢| = 3k* + 1 for some inte-
ger k* > 0. This implies that in some iteration

1 < k*+1, the3-step greedy algorithm scans the triplet

{3i—2,3i—1,3i} ¢ X©. Leti* be the first such itera-
tion and let{3:* — 2,3i* — 1,3i*} = {1, x2, z3} with
r1 ¢ X ThenS* 1 ¢ X%, and|S" | = 3(i* —1).

Case (1(a)){{z2, 23} N X | = 1: Without loss of gen-
erality, letzo, € X©. Then it follows from the definition
of X that the algorithm set§"" = S* ~' U {z,}. By
part (2) of Theorem 7, one of the following holds:

(i) ST U {xg, 23} € F,

(i) S" T U{zr, 2} €F

@iy S” U {xy, 23} € F

In the first two cases, we have a contradiction to the

choice of S*" by the 3-step greedy algorithm. In the
third case, choice 0" by the3-step greedy algorithm
implies thatw(xz2) > w(x1) + w(zsz). Since{z,z3}
are the first two elements df — X scanned by the
algorithm, we have the following:

Forallz,y € X* — X%, w(xy) > w(zy) + w(xz) >
w(z) +w(y). SinceS* N (XE — X*) £ (), there exists
g €S N(X%~ X*) and by Theorem 9 there exists
7,y € X*—X%suchthatX = X*U{g}—{x,y} € F.
But w(g) > w(z2) > w(z) + w(y) and hence
w[X] > w[X*], contradicting the definition ok *.

Case (1(b)):{z2, 23} C X% In this case, the&-step
greedy algorithm set§” = S ~!' U {xy,23}. But
by part (1) of Theorem 75% ~' U {z1, 2,23} € F,
contradicting the choice o§?" by the algorithm.

Case (1(c)):{xa,23} N X = (: In this case, by
definition of X¢, §* = §“ -1 But §* ! C X,
|S7 1 = 3(i*—1),| X% = 3k*+1and(i* —1) < k*.

Hence, using part (2) of Theorem 7 with some

i€ X% —8"1and{j,p} C {1, 2,3} We get that
S”~1u{a} € F for somea € {j,p}, contradicting
the choice ofS*" by the algorithm.

Case (2)|X“| > |X*|: By Theorem 5 and maximality
of X*andX ¢, we have X *| = 3k*+1 for some integer
k* > 0. If the largest element of X*A X% is in X©,
then foranyr € X*— X% w(e) > w(z). But, by Theo-
rem5, foranyr € X*— X% X = X*—{x}u{e} € F
and w[X] > w[X*], contradicting the definition of
X*. Hencee € X* — X% and therefore as shown

before,e = 1 and {2,3} = S! € X¢ — X* and
w(l) < w(2) +w3). If X* - X% = {1}, then
w[X*] < w[X %], a contradiction. Hence, there exists
y € X*— X%~ {1}. Butw(y) < w(3). By Theorem
5 X = X*—{y}u{3} € Fandw[X] > w[X*|
contradicting the definition oX *.

Case (3)|X%| = |X*|: Let e be the element of
XYAX* with maximum value ofw(e). Then, as
shown beforee € {1, 2, 3}.

Suppose: € X% — X*. Thenw(e) > w(x) for all
r € X* — X% Sincew[X*] > w[X¢], this implies
that | X* — X% > 2. If |X* — X¢| > 3, then by
Corollary 10, there exists € X* — X% such that
X = X*U{e} - {z} € F. Butw[X] > w[X*], con-
tradicting the definition ofX*. Thus | X* — X¢| =
|1XE - X*| = 2.

Let X¢ — X* = {e, f} and X* — X¢ = {x,y}.
Sincew[X*] > w[X ], w(z) + w(y) > w(e) + w(f)
and hencemin{w(z),w(y)} > w(f). If there ex-
ists 2 € X% N X* such thatw(z) < w(e), then by
Theorem 11, there exist6 € X* — X% such that
X =X*U{e}—{l} e ForX = X*U{e}—{z} € F.
But w[X] > w[X*] and w[X] > w[X*], a contra-
diction. HenceX% N X* C {1,2,3} — {e} and so
(X9 N X*)u{e} C S Sincew[X*] > w[XY],
w(f) < min{w(x),w(y)}. Hence,S* = (XN X*)U

{e}.

If X¢NX* =19, then{1,2,3} — {e} = {i,j} C
E— X% If X = {e,j} € F for somej € {z,y} then
sincew[X] > w[X*], we have a contradiction. Else,
by part (2) of Theorem 7 we have eithée,i} € F
or {e,j} € For (i,j) € F. From this and the fact
that w(i) + w(j) > w(z) + w(y) > w(e) we get a
contradiction to the choice df!.

If X9 N X* # (), then|S'| # 3k + 1. Hence,
by Theorem 5, there exists € {z,y} such that
X = S'U{z} € F. Butw[X] > w[X*] and we have
a contradiction.

Suppose: € X* — X%, Then, as shown before,=
1,{2,3} =S C X% — X* andw(2) +w(3) > w(1).

If | X*— X% > 3, then by Corollary 10, there exists
j € X% — X*suchthatY® U {1} —{j} € F. But this
implies that{1,2} € ff or {1,3} € F, contradicting
the choice ofS*. Hence| X* — X¢| = | X¢ - X*| =2
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with X¢ — X* = {2,3}. Let X* — X% = {1,y}.

If XN X* # (), then by Theorem 11, there exists
z € {2,3} such thatX“ U {1} — {2} € F or for any
jEX“NnX* X9U{1} - {j} € F. In either case,
we get a contradiction to the choice §t.

If X¢NX* =0, then by Theorem 11,2} € F or
{1,3} € For{y,2,3} € F. We thus have either a con-
tradiction to the choice af! or to the choice ofy “.

This proves the theorenm

4. Trioid polytope

For any discrete systelf/, F) its rank functionf :
2F — 7+ is defined as follows:

f(A) = max{w?[Y]: Y € F},

1 ifieA
0 otherwise

Let (E, F) be a trioid. Consider anyl, B C F. Let
X € F be a solution tomax{w?“B[Y] : Y € F}
obtained by using th8-step greedy algorithm with el-
ements ofF arranged in the following order: elements
of AN B, followed by elements ofA — B, then ele-
ments of B — A and finally elements of — (AU B).
The observations (1) to (5) below can be easily verified
using the definition of rank function, ttg2step greedy
algorithm and properties of a trioid.

wherew* =

(1) f(AUB) =[X|

() f(4) = |X N A

@) f(B) = |XNB|

(4) If |AnB| =0o0r2(mod3), then|X N AN B|
f(An B) and hence,

f(A)+ f(B) = [ X NA[+[X N B|
=|X|+|X NANB|
=f(AUB)+ f(ANB)

(5) If |An B 1(mod3), then|X N A N B
f(An B) — 1. Hence,

f(A)+ f(B) = [X NA[+[X N B
=|X|+|XNANB|
> f(AUB)+ f(ANnB) -1

We thus have the following theorem:

Theorem 15 Let (E, F) be a trioid with rank function
f:2F - Z*. Thenforanyd, B C E,
(1) f|[AnB| =0or2( mod3) thenf(A)+ f(B)
f(AUB)+ f(ANB)
(2) If JAn B| = 1( mod3) then f(A) + f(B)
f(AUB)+ f(ANnB) -1
A set function satisfying conditions (1) and (2) of
theorem 15 is called aalmost submodular function
Consider the polytope defined by

>

>

P={X€eR":> z; < f(S)VS €2”; z; >0Vj € E}
J€S
We now show that i E, F) is a trioid, then for any
w € R™, the optimal solution generated by tRestep

greedy algorithm is an optimal solution to the linear
program (LP-trioid) given below.

LP-trioid Maximize ij:cj
j=1
Subject to
X eP.

In other words, we show thdt represents the con-
vex hull of incidence vectors of elements &f when
(E,F) is a trioid. The dual of LP-trioid, (which we
denote by D-trioid), can be written as follows:

D-trioid ~ Minimize > f(S)ys
SCE
Subject to
> {ys:jeSCE>w(),
VjeE
ys >0 VSCE.

Consider the trioid £, F) with wy > wq > -+ >
wy, > 0. Each iteration of the 3-step greedy algorithm
will be of one of the following 3 types:

Type l:n > 3i,5° Si=1 U {3i — 2} and
Si=1 U {3i — 1,3i} € F. (This implies that
W3i—2 > W31 + W3;.)

Type 2: n > 3i,8" = S~ U {3i — 1,3i} and
Sl u {3i — 2} € F. (This implies that
wzi—2 < w31 + W3;.)

Type 3: All other cases

Letk* = [g]. Fori € {1,2,...,k*}, we recursively
define a class af; x a; matricesB* and a class of; x
a; matricesD’ as follows, where:; = min{3i,n} and
n;, m; are some integers. (For convenience, we assume
thatn = 3k*.)
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o If iteration 1 is of type 1 or 2, the! =

1
—_
—_

110
0

elseD' = [1 1 1]

i ; ; (1 0 O
o If iteration 1 is of type 1 theB! = |- ]
| D!
ot Lo 11
e Ifiteration 1 is of type 2 theB* = |
| D!
[1 0 0
o If iteration 1 is of type 3thedB' = |1 1 0
| D!

Fori=2,3,...,k%,

if iteration ¢ is of type 1 or 2 then

110
Di*l:

—_
[EE
o .

D' = |—

—
o
—

Do
101

else,

If iteration 7 is of type 1, then

100

Do
100

B =

Di

If iteration ¢ is of type 2, then

B _[omoou]

Otherwise

100
Di*l:

—
S

—
—
o

B = | Di71|:

[a—
o

—_
—_
—_

D=l
111

Note that each column aB’ represents a unique el-
ements ofE. Let L? be then; x n matrix where its
(k,j)th elementl; ; = B; if j < a;, and0 otherwise.
We now define @ x n matrix B as:

Ll
L2
B =

I
Each row: of B is the incidence vector of some subset
S; of E. Let b be ap-vector whoseith component is
f(S;). It is not difficult to verify that the incidence

vectorz* of X& € F (the output of the3-step greedy
algorithm) belongs td and satisfies

Bz =b.

It follows from LP duality [19] that to show that* is an
optimal solution to LP-trioid, it is sufficient to produce
a dualp-vectory* > 0 such thaty” B = w and has the
dual objective function valug_?_, f(S;)y; = wz*.

We assign values to componentsgf recursively.
Please note that for convenience we assumesthat
3k*. Letj; = 35, ny foralli € {1,2,...,k*}. Let
wF =w. Fori=k* k*—1,...,1

(1) If iteration is of type 1, we define

1 )
P (ws;)
fOfT:ji—mi,1+1,...ji

1 i

* P (w3;_1)

fOTT‘Zji—2mi_1+1,...,ji—mi_1
1 i i i

i1 (wh;_g — wh; — wy;_1)

fOfT:ji,1+1,...ji—2mi,1

<
S
Il

Lety = (y5,_,415---»¥;) andw' ™' = w' —

gT B*.
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(2) If iterationi is of type 2, we define is left as a topic for future research. Finally, it will be
interesting to explore natural examples of trioids, be-
yond matroids and subset system based examples that
are not matroids illustrated in the paper.

1 (w31—2+w3i—1_w31)

mg—1 2

forr=gi14+1,...5i1 +mi1
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