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Some Aspects of
the Evolution of the
Archean Crust

G. M. Young

Department of Geology
University of Western Ontaric
London, Ontario N6A 587

Summary

The geologic record of the Archean in
the Superior Province of Canda 1s
divisible into two mayor portions: an
oider, high grade basement (>3.5 Ga),
and younger (3.0 Gato 2.6 Ga) rocks
that are arranged in easterly-trending
zones (Ga, Gigayear, is used o mean
10% years). The younger rocks comprise
alternating velcanic (low grade green-
stone superbelts) and sedimentary
{paragneiss superbelts) terrains. The
contrasting fitholegic and metamorphic
nature of the superbelts is tentatively
explained interms of a mantle convec-
tion cell system. Closely analogous
Archean assemblages of southern
Africa developed about 0.5 Ga earlier,
attesting to the heterogeneous nature of
the Archean crust and its diachronous
evolution in different parts of the world.

Introduction

Inrecentyears there has been consider-
abie revival of iInterest in Precambrian
problems. This is due. in part, to the
discovery of plate tectonics and in-
creasing efforts to apply some of these
new ideas to old rocks. lt1simpossible, in
a short article 10 cover all aspects of
Archean geology (it is probably also
impossible in a long article!) and it will be
cbvious to the specialised reader that
many important facets of the Archean
have received scant attention. l{ is
hoped that omissions and errors will
stimuiate others to write complemen-
tary articles.

By many, though not all. definitions,
the Archean begins with the oldest
preserved rocks. In Canada the boun-
dary between Archean and Proterozoic
is generally placed at about 2 6 Ga
(Stockwell, 1973). There are problems in
defining the upper boundary, however.
Cloud {(1978) introduced theidea of a
highty diachronous wave of cratoniza-
tion, bringing an end to Archean-style
crustal conditions. Toaccommodate the
diachroneity, he introduced the concept
of the Zuluan Wedge (Fig. 1) tc explain
the early (3.5 Ga 1o 2.6 Ga) advent of
Proterozoic-style sedimentation in
southern Africa Many of the events that
appear. in our foreshortenad view, to
punctuate geologic history (e.g . oro-
geny. glaciation) may in fact be quite
diachronous. Cloud (1976) aptly des-
cribed this as “more illuminating than
troublesome’”. Part of the purpose ¢fthis
article is to suggest that there1s an
equally diachrenous evoluhion of
Archean-style ferrains.

The Oldest Archean Rocks
Many Precambrian regions contain
rocks that, because of geologicrelation-
ships or geachronology. or both, are
considered to be older than adjecent
greensicnes or paragneisses. Such
rocks have been intensively studied in
west Greeniand (Bridgwater ef al, 1973:
McGregor, 1973 Bridgwater etal, 1974;
Tarney, 1976) where they have been
shown to be about 3.7 Ga old (Moorbath
etal 1977) Similar gneisses in eastemn
Labrador were probably once contigu-
ous with those of west Greenland. They
have yelded almost equally old radio-
metric ages (Hurst et af, 1977). Myers
{1976) interpreted the rocks of the
Fiskenaesset region of western Green-
land as amphibolites (volcanics) that
were intruded by anorthosile sheets.
After intense deformation, they under-
went pervasive Intrusion by granitic
sheets. The original nature of many of
these gneissic rocks remains enigmatic.
Geologic relationships between such
high grade ancient gneiss complexes,
and greenstone belts such as those of
the Superior Province of Canada are
unknown, but current radiomelric data
suggest that the gneissic rocks are
significantly older. in some small areas,
such as the northwestern margin of the
Superior Province, geologic relation-
ships can be observed (Rousell, 1965,
Bell, 1971; Ermanovics and Davidson,

1976) between granulitic gneisses of the
Pikwitonei sub-province and
unconformably-averlying, greenstone-
bell rocks of the Sachigo belt.

Other examples of ancient gneiss
terramns 1N the Superior Province include
the Kapuskasing Belt (Thurston et ai,
1874}, and the rocks of the Minnesota
River Valley region (Goldich et al, 1970
Morey and Sims. 1976. Hurst ef al.,
1977). Some of these regions are
oulined in Figure 2.

Similar ancient gneisses are widely
represented inthe LL.S.S.R. {Salop. 1977}
where they are considered to be older
than 3.5 Ga The special lithologic,
metamorphic and structural attributes of
these rocks led Salop (1977) to infer a
unique phase in the evolutionary devei-
opment of the Earth’s crust. It wastothis
part of Precambrian history that the term
“permobile” was originally applied (Sal-
op, 1977.p 92) Salop (1977) stressed
the absence of nigid blocks or cratons
that might have controlled faid directions
to produce atectonic “grain’. To date
there 15 no evidence of greenstone belt
assemblages in Canada comparable In
age 10 ancient gneisses such as those of
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Comparison of some aspects of the Archean-
Proterozoic boundary in South Alrica (afler
Cloud, 1976) and in the Canadian Stueld
(aller Stockwell, 1973} The Zuluan Wedge
was proposed by Cloud (1976) to accommao-
date stable shelf-type depositsof the Kaapva-
al craton, between 3.0 Ga and 2.6 Ga ago.
The hgure dermonstrates the diachronous
development of end-Archean cratonization
and some of the problems in establishing the
Archean-Proterozoic boundary.
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eastern Labrador and the Minnesota
River Valley. Such assemblages are,
however, known from southern Africa.

Greenstone Superbelts:

Volcanic Rocks.

There is a voluminous literature con-
cerning the nature of volcanic rocks in
Archean greenstone belts. In addition to
intensive field and petrographic studies
most investigations have leaned heavily
on major element geochemistry (e.g.,
Wilson et al, 1965; Goodwin, 1968:
Glikson, 1976) Recent research is
becoming increasingly involved with
frace element studies (Condie, 1975;
Winchester and Floyd, 1976).

Published thicknesses for supracrus-
1al rocks in greenstone belts are upto 20
km. Geodwin and Ridler {1970) esti-
mated the Abitibi superbelt (Fig. 2) 1c be
underlain by about 60 per cent volcanic
rocks, 10 per cent sedimentary rocks
and 30 per cent granitic rocks. Some of
these volcanic rocks have undergone
only a very mild burial metamorphism
(Jolly, 1974).

The volcanic rocks are commonly
crganized into mafic-feisic cycles. The
lower parts of some greenstone belt
assemblages contain ultramafic rocks,
including some that are interpreted as
lavas. These have been reported from
South Africa (Viljoen and Viljoen, 1969).
Australia (Nesbitl. 1971), Canada (Pyke
etal, 1973) and elsewhere These
unusual lavas have been interpreted to
indicate a high degree of melting of the
mantle at shallow depths, perhaps
relzted to high heat-flow rates and steep
geothermal gradient (Green, 1975,
Brocks and Hart, 1974, Cawthorn and
Strong, 1974). The extensive lower,
mafic part of the typical Archean
voleanic sequence has been compared
geochemically to bolh modern island
arcs and ccean tholentes (White ef al,
1971). Many authors have interpreted
the low-K tholeiites of the Archean as
oceanic tholeiites, but, as was pointed
out by Brooks and Hart (1974) and
others, low-K tholentes could have been
generated in a variety of tectonic
settings related to a shallow depth of
mantle melting.

Higher in the typical Archean volcanic
pile the lavas are more dfferentiated and
there is a gradual transition to more
felsic volcanics (including pyroclastic
rocks). These suites are attributed by
most to the calc-alkaline series and

14

7] PARAGNEISS

ik -LP.N\

~
‘h \
RHODESIAN |

CRATON |
\ ( Vadl
A
4
LD
S 9’
/)
[ ] cranITE © S
b
GREENSTONE 8’
KAAPVAAL | S
CRATON j'

Figure 2

Skelch Maps al approximately the same
scale, lo show a simplified comparison of the
Archean geology of southeast Afnica rafter
Windley. 1977) and part of the Superior
Province of Canada (after Baragar and
McGlynn, 1976: Ermanovics and Davison,
1976: Gooawin, 1977). Note the alternating
Iinear zones (superbells) of greenslones
(mostly of low metamorphic grade) and
paragneiss (high melamorphic grade). In
both southern Alrica (Part A of the Figure) and
1 the Superior Province (Part B of the Figure)

rocks of the two types of superbelt appear 1o
be approximately contemporaneous Nole
the paralfehism between the tectonic “gram”
mn the greenslone belt terrains and contacts
with the paragneiss superbelts. Cross-
hatching represents rocks interpreted as
ancient gneiss terrains. P - Pikwitone: belt;
U - Uchi £ - English River: W - Wabrgoon,
Q - Quetico, Ab - Abilibi, B - Berens,

S - Sachigo; MRV - Minnesota River

Valley region.
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have many chemical attributes similarto
those of modern island arc volcanics
{Wilson e/ al., 1965 Goodwin, 1968;
Anhaeusser, 1873). There are, however,
some significant differences, notably the
general (though not complete) absence
of alkaline volcanic rocks from the
Archean Successions.

Gélinas et al. (1977) compared a
section of the Abitibi volcanics to those
of modern continental island arcs.

At a very early stage inthe under-
standing of Archean greenstone belts,
Lawson (1888) noted the possibility of at
least two ages of greenstones in North-
ern Minnesota’ those that preceded
intrusion of the “Laurentian” granites
and those that were formed later.
Subsequent age determinations have
falled 1o show signiticant age ditter-
ences among these rocks so that the
Laurentian granites are now considered
to be consanguineous with the lavas

Published radiometric age detcrmina-
tions suggestihatthe greenstones of the
southern part of the Supenor Province
were extruded between aboul 27 Ga
and 2.8 Ga (Krogh and Davis, 1972) but
these limits will probably be expanded
as more and better data become
avarlable.

Greenstone Superbelts:
Sedimentary Rocks

Sedimentary rocks can provide Impor-
tant clues concerning conditions at the
Earth's surface in Archean time. In the
following section they are treated under
a number of sub-headings

Turbidites and Associated Facies. The
most common and best-studied of
Archean sedimentary rocks are turbi-
dites and asscciated coarser grained
rocks that have a close temporal and
spatial relationship with the volcanic
rocks of the greenstone belts.

1he high percentage of sand-size
guartz graing in some Archean turbidites
{Donaldson and Jackson. 1965; Hen-
derson. 1975a. Walker and Pettijohn,
1971) was interpreted to mean that
some granitic rocks were exposed to
erosive processes in Archean time. In
other studies (e g.. Ojakangas, 1972) the
provenance of scme Archean sedimen-
tary accumulations was found to be
exclusively volcanic, Ayres {1969) pro-
posed that the sand-size quartz might
have been derived from porphyritic
lavas

The ongin and significance of
Archean conglomerates have been de-
bated for over 50 years. They contain
granitcid clasts which some people
regarded as fragments of an older
siahc basement

Another perplexing aspect of Archean
conglomerates s the lack of good
evidence for uncontormities If some of
the clasts are in fact older sialic
basement, then unconformities should
be present in the shield Some granitaid
clasts {and possibly also a local uncon-
formity) may be related {6 exposure and
erosion of synvolcanic intrusive rocks
{the "Laurentian problem’ of Lawson)
A summary of evidence from the Cana-
dian shield was recently published by
Baragar and McGlynn {1976).

Donaldson and Qjakangas (1977)
reported orthoquartzite clasts in an
Archean conglomerate of the North
Spirt Lake area

Conglomeratos associated with the
greenstone supcrbelts are of atleasttwo
types Some appear to be deeper water,
resedimentad conglomerates (Hender -
son, 19750, Ojakangas. 1972 Walker
and Pettjohn, 1971). But others are
associated with abundantly cross-
bedded. shallow water sandstones of
fluvial aspect (Hendersoen, 1975a,
Boulcher et ai. 19681 McGlynn and
Hendoerson (19703, Henderson (1975a).
Baragar and McGlynn (1976} and
Pettijiohn (19723 all invoked a mixed
source terrain, invohang older gialie
basemaent. pencoontemporancous vol-
canics and hypahyssal intrusions forthe
sedimentary rocks associated with the
greenstones of the Canadian shield

The linear distnibution of conglomer -
ates along the borders ot the greenstone
superbelts suggests intermittent tecton-
Ic activity, probably faulting. along or
close to the margins of the superheits

Greenstone Superbelts:

Iron Formations

Mostiron formations in Archean rocks
ocour in the greenstone superbeits
They are mostly of Aigoman type { Gross.
1965). The volcanic association of these
iron formations has been considered to
be a genelic one {(Goodwin, 19704, the
iron and silicon, and possibly cther
clements, being exhaled from avolcanic
source Alternatvely, Cloud (1973,
1976) proposed that some of the banded
ron tormations formed from iron dis-
solved in oceanic waters under condi-

tions less oxidizing than at present He
considered deposition of ron formation
to be associated with metabolic activity
of primiive micro-organisms, The iron
was considered to have acted as a sink
for oxygen produced by metabolic
pracesses If Cloud's speculation s
correct, then the presence of iron
formation in some ot the oldest recks on
Earth {Isua supracrustals of western
Greenland) would indicate the presence
of organisms at that tme

Dunbar and McCall (1971) recog-
nized an intimatc association betwean
turbidites and oxide-facies iron forma-
tion The ron-rich rocks cccupy the "e”
position in the Bouma sequence. sg that
the ron-oxide was interpreted as back-
ground sedimentation in the basin,
Deposition of relatively pure iron forma-
tion could only take place during penods
of clastic starvation. This idca was also
applied by Shegelski (1975) to Archean
turbidites inthe Savant Lake areanthe
northern part of the Wabigoon superbell
{Fig. 2) and by Beukes (1973) to the
Sheba and Belvue Road Formations of
the Fig Tree Group 1in South Africa

Many examples of sulphide and
carbonate ron tormations are closely
related to submarine volcame exhala-
tion of H .S and CO ., (White and Waring.
1963. Schidlowski, 1976) The sulphide
and carbonate facies iron formations
may have tormed. in part at least. by
combination of these volcame exhala
tive products with iron already prosentin
abundance in sea water. Part of theiron
may also have been derived from the
volcanic Activity

Chertis alsc a commaon constituent of
iron formations in Archean rocks This
may reflect the abundance of dissolved
sihca in the world oceans at that ime,
caused by the ubiquitous volcanic
contres and lack of sihica-sacreting
micro-organisms.

The major deposits of sulphide facies
appear to have a close spatial relation-
ship with volcanic centres. particularly
those with a strong felsic component
(Goodwin and Ridler, 1970) Thesefelsic
centres probably formed significant
topographic highs in Archcan depost-
tional basing so that the sulphde facies
iron formations might be considered as o
proximal facies. some oxide facigs iron
formations being the deposits of the
corresponding deeper water
distal facies.
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Widespread submarine volcanism
and lesser amounts of oxygen inthe
Archean atmosphere and hydrosphere
may both have contributed to the
abundance of iron in the oceans. Silica
may have been abundant because of a
dearth of silica-secreting organisms.
Sulphur and carbon dioxide could have
been derived largety from velcanic
exhalations.

Greenstone Superbelis:
Orthoquartzites and Carbonates
Dearth of these rock types is ascribedto
the general lack of stable shelf environ-
ments during the Archean. Some areas,
however, clearly had depositional condi-
tions that permitted accumulation of
quartzites and carbonates. For example,
the quartzite occurrences in the Prince
Albert Group in the northern part of the
Churchill province (Schau, 1977). Car-
bonates also form a minor part of many
Archean sedimentary assemblages. In
some cases they are iron-rich and
constitute a special facies of iron
formation {Goodwin and Ridler, 1970).
Other occurrences take the form of thin
stromatolitic units {(Henderson, 1975b).

The Paragneiss Superbelis

Stockwedil {1964, Fig. 1) subdivided the
western part of the Supericr province
into several subprovinces. These in-
cluded the English River and Quetico
belts which were distinguished mainly
on the basis of their easterly irends.
These belts were considered to consist
mainly of highly metamorphosed sedi-
mentary rocks and abundant granitic
intrusions. Wilson (1971) also subdi-
vided the western part of the Superior
province into a series of separate
regions and emphasized the importance
of fault boundaries. The elongate,
easterly trending alternating zones of
greenstone-dominated and paragneiss-
dominated terrain are referred to in this
paper as greenstone superbelts and
paragneiss superbelts {following Good-
win, 1977).

The paragneiss superbells in Canada
have received much less study than the
greenstone superbelts. Recent work in
the Quetico paragneiss superbelt by
Mackasey et al. (1974), Kehlenbeck
(1976) and Blackburn and Mackasey
(1977) has doecumented the presence of
metasedimentary rocks, migmatites and
granitcid rocks of both magmatic and
anatectic origin. The contacts in some

areas are aftecied by major faults (e.q.,
Quetico Fault). but, as emphasized by
Blackburn and Mackasey (1977), the
faulting appears to be a late. superim-
posed feature affecting a boundary that
elsewhere is a wide, diffuse zone
representing a facies change from
dominantly volcanic to dominantly sedi-
mentary rocks. Harris and Goedwin
(1976) proposed a basement-cover
relationship between ortho-and parag-
neiss in part of the English River belt.
Some of the crthogneisses have yielded
a U-Pbage of about 3.0 Ga (Krogh et a/,
1976). The relatively poorly studied
paragneiss superbelts of the southern
part of the Superior pravince are charac-
terized by a preponderance of highly
altered sedimentary rocks. In the margi-
nal zones of some paragneiss belts the
altered sedimentary rocks appear to
pass by transition into typical low grade
assembiages of the neighbouring
greenstone superbelts. There is some
evidence (Harris and Goodwin, 1976}
that the high grade terrains also include
older sialic basement material.

A Tectonic Model for the Upper
Archean (3.5 Gato 2.6 Ga)

Inthe past, many models have been
suggested to explain the greenstone
belts of Canada and elsewhere. but most
models have ignored, or downplayedthe
importance of, the high grade Archean
terrains (paragneiss superbelts of this
discussion). In recent years, interpreta-
tions of high grade terrains in the
Archean have included the following: 1}
They are older basement on which, or
adjacent to which, greenstone belts and
superbelts developed (Binns et ai,, 1976;
Rutland, 1976, Morey and Sims, 1976),
2) They are adeep infrastruciure. coeval
with the development of the greenstone
superbelts (Glikson, 1972, Goodwin,
1977). 3) They are high grade terrains
formed by metamoerphism ¢f sediments
deposited contemporaneously with ex-
trusion of lavas in adjacent greenstone
terrains (Mackasey et al,, 1974,
Blackburn and Mackasey, 1977:
Shackleton, 1976).

Controversies over the crigin of such
high grade terrains probably reflect
confusion of ane type with another and
the possibility that two or even three
types may occur within one region. If an
“ancient gneiss” basement of type 1is
involved in intensive reworking during a
later orogenic episode, it could be
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transformed, in a sense, into a type 2,
deep “coeval” infrastructure. If a type 3
terrain were made up of both an older
basement and a thick sedimentary
cover, and the two were tectonically
stacked and interleaved, accompanied
by metamorphism, anatexis and intru-
sion, then separation of basement and
cover would be difficult. Thus, there are
difficulties, not only in the interpretation
of field data, but in the concepts
themselves. Ideas concerning origins of
the rocks become blurred and there may
be overlap or merging of the concepts
themselves. Some of the models that
have been proposed are reviewed
briefly in the following section.

Goodwin and West (1274) explained
the Canadian greenstone belts by some
form of plate tectonics and included a
time sequence from an oceanic crustal
stage, threugh an island-arc stagetoa
final stage in which greywacke-type
sediments accumulated in foreland
basins (1o become the paragneiss
superbelts after metamorphism). None
of the proposed models adequately
explains the high grade metamorphism
of the paragneiss superbelts in relation
to adjacent greenstone-rich areas.

Figure 3 shows the main aspects of
the mode! presented here to explain the
close juxtapositicn of high and low grade
Archean terrains. 11 differs from the
models presented by Windley (1977) in
that subduction of crustal plates is not
invoked. It has been suggested (Richter,
1973, Baer, 1977) that subduction of this
kind was not possible in Archean times
because of steep thermal gradients and
high heat flow rates. The subduction
model of Windley would also impart a
stong asymmetry to the high grade
terrains but this has not been reperted in
the literature. The model represented in
Figure 3 also differs from that of Windley
in assuming an almost continuous, thin,
older sialic crust as proposed by
Hargraves (1976), Fyfe (1974) ard
Baragar and McGlynn (1976). This old
sialic crust is consideredto be a
complex "ancient gneiss” terrain similar
lo those of western Greenland and the
Aldan Shield of the Soviet Union. Vigorous
mantle convection is envisaged as
being responsible for development ¢f a
system of relatively smalt convection
cells (Elder, 1968; Cliftord, 1970; Fyfe,
1974). The greensione belts are consi-
dered to have formed above rising cells
or “hot lines” (Sun and Hanson, 1975)
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and the sedimentary basins above
converging, descending cells, The
maodel provides an explanation for the
development of the two contrasting
types of superbelt

1. Histoiry of a typical greenstone
superheft The greenstone superbelts
are considered to have formed above
thermal plumes or “hot ines™ which
caused distention. fracturing and possi-
bly local separat:on of the thin sialic
crust. Extrusion of ultramafic and mafic
lavas (mostly subagueously) was fol-
lowed. 1n many cases. by mafic-felsic
differentiated sequences that, in the

’3 corry

sedimentary
superbelt
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Abitibi superbelt, are best developed
near the marging (Goodwin and Rdler,
1970: Goodwin, 1977). These domin-
anily volcanic assemblages appear to
have achieved remarkablc thicknesses,
although tectonic stacking may have led
1o exaggeration in some cases (Gorman
et al. 1978). Accumulation of such great
thicknesses of relatively dense rocks
would have caused depression of the
already thinned sialic substrate (Har-
graves, 1876; Baragar and McGlynn,
1976). At the same time isostatic
considerations suggest that such vol-
canic accumulations would eventually
have risen above sea leval {Hargraves,

Figure 3

Schematized model to explain the close
uxtapositon of low grade f greenstone super-
beit) and high grade (paragnesss) terramns m
the Archean crust. The skelches are not o
scale. but horizomal dimensions of the
greenstone and paragneiss superbells at
stage 3 are meant lo be comparable (o widih
ol the conresponding leiians of part B of

Figure 3.

Stage 1. The "ancient gneiss complex” of the
texi 1s represented by the ornament consist-
myg of crosses A system of small scale
convechon cells in the mantte (100 km 1o 300
km across) s envisaged as setting up a state
of tension in areas of thermal upwelling, and
of compression in areas overlying descend-
ing currents These became the sites of
volcanic actvity and sechmen! accumuiation
respectively The sediments of the compres-
sive zone are considered to have beern
derived mamty from the uplilted marging of
the adjacent volcamc basn, bul in the thrd
dimension fransition from the dominantly
volcanic requme 1o the sedimentary one s
possible Some volcamc 10CKs are present in
the sedimernifary basins, parlicularly near

the margins

Stage 2 Fxtrusion of great Ivcknesses of
relalively dense volcanics (and associated
sediments) leads to subsidence of the
volcanic basin, With decay of the thermal
cells. the greenslone terrain sUbSIdes sill
farther givng rise 1o the younger gramtes by
meiting of the depressed crust. In the
sedimentary basin, considerable crustal
thickenng s acteved by sedwment foading
and the compressive effects of the sub
crustal convorhon system Asthe convection
systerm decays, the thickened pari of the
crust is affected by rising isolherms and
undergoes considerable thermal reworking

Stage 3WWithincept.on of & new (larger
scale?) convection sysierm. the greenstone
superbelt subsides to he pieserved al 4 low
metamorphic grade These rocks have
undergone litle erasion because of subsi-
dence related to both loading factors and
removal of the local heat source. Uplit of the
sedimentary basin, due tosostalic rebound,
was accomphshed in part by movements
along large scale faulls al, or close to the
margins of the superbeits Subseguent
erosion leads (o exposute. at surface. of high
grade metamorphic rocks, compiising both
paragneisses and older basement rOCKs.
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1976) to produce the clastic detrital
sedimentary rocks that are typical of the
upper parts of greenstone belt assemb-
lages. Depression of the sialic substrate,
of the volcanic pile itself, below the
appropriate isotherm (Fyfe, 1974. Ba-
ragar and McGlynn, 1976, Hargraves,
1976) would have produced crustal
melting and intrusion of the ubiquitous
post-greenstone granitic rocks. These
granites commonly separate the green-
stone assemblage from rocks sus-
pected to be older gneissic basement,

Preservaticn of the high level green-
stone assemblage at a relatively low
metamorphic grade is explained, in the
mecdel, by slow subsidence following
waning of the subcrustal heat source
(mantle convection cells). The green-
stone bells have not undergone intense
erosion and are not the deep roots of
ancient mountain systems.

The common vertical tectonic style
and "keel-like" form of many greenstone
belts may be due in part 1o settling of the
gdenser volcanic rocks into asialic
substrate (Ramberg, 1967, Gorman &t
al, 1978). Emplacement of late potassic
granites may alsoc have contributed
locally to the tectonic style. In some
areas early deformation of greenstone
belts has been interpreted as involving
horizontal tectonics (Ramsay, 1963;
Stowe. 1974). Such recumbent folding
and nappe-style tectonics may be high
level expressions of the proposed
sagging stage, as llustrated by Gorman
el al (1978) Preservation ¢t such “high
level” zones may be another reflection of
the general subsidence of greenstone
terrains as the heat source waned
Some deformation, usually at a late
stage. has been attributed to transcur -
rent faulting along boundaries between
high and low grade lerrains (Coward and
James, 1974; Coward et al. 1976).

2. History of a typical paragneiss super -
beit. Goodwin (1977) interpreted the
paragneiss superbelts of the southern
part of the Superior province as an
integral part of the crustal superstruc-
ture, but did not provide a detailed
mechanism t¢ explain ther origin. Katz
(1976) and Windley {1977) also recog-
nized these terraing as being contempo-
raneous with the greenstone belts and
theirr models were discussed above.
Recently Harris and Goodwin (1976)
and Krogh et al. {1976) described parts
of the English River gneiss belt in terms
ot an older { ~ 3.0 Ga) sialic basement

and a younger, highly metamorphosed,
sedimentary cover.

Contacts between the paragneiss
superbeits and greenstone superbells
are commaonly described as being
faulted (Wilson. 1971, Kehlenbeck,
1976). Others have reported anincrease
in the amount of greenstone remnants in
the paragneisses towards the outer
margins of the belt and have emphas-
ized the transitional nature of the
boundaries between paragnelss and
greenstone terrains (Pettijohn, 1972,
Blackburn and Mackasey, 1977). The
observed field relations (cf. Shackleton's
1976, description of similar relationships
insouthern Africa) support interpretation
of these high grade paragneiss super-
belts as comprising both an older
basement, and a thick sedimentary
cover of approximately the same age as
adjacent greenstones.

The general arrangement that applies
to Archean terrains ot Ganada. the
U.S.SR. southern Africa and western
Australia is one of local areas of
compiex high grade ancient gneiss
(basement) exposed adjacent {0 both
high grade younger paragneiss and
greenstone superbelts. The ancient
gneiss complexes are here interpreted
to underlie large portions of the parag-
neiss and greenstone superbelts.

The younger high grade terrains
(paragneiss superbelts) of many regions
comains some rocks that suggest stable
shelf conditions and granitoid source
terrain (e.g., the thick quarizites and
marbles of the Limpopo Belt). The shelf-
type sediments in some belts appear to
be best develcped near the margins.
The paragneiss superbelts are inter-
preted as having fermed by accumula-
tion of a thick sedimentary succession in
subsiding troughs formed above a zone
of convergent, descending convection
cells (Fig. 3) Subsidence, particularly
near the margns of such belts, must
have been slow encugh to permit
accumulation of shelf type sediments.

The provenance of the sedimentary
rocks in paragneiss belts is, in most
cases, impossible 1o determine. Conglo-
merates along the margins of the
greenstone superbells of the western
Superior Province (Pethjchn, 1972)
might reflect early or late taulling along
the contact zones between the two
different types of Archeanierrains.

The proposed convergent cell system
beneath the sedimentary basin, together
with the weight of accumulating sedi-
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ment, would have led to crustal thicken-
ing by folding and possibly tectonic
interleaving. It has recently been pro-
posed (Richter, 1973; Forsyth and
Uyeda, 1975) that mantle convection
does not provide the necessary force to
drive the huge plates that currently
constitute the Earth’s crust. Richter
(1973) suggested that convection cells
may cause the break-up of plates, but
because ot the small size of the cells
relative to the plates and because of a
lack of strong coupling between plate
and cell it was proposed that the cells did
not provide a viable plate-movingmech-
anism. With a crust that was at least
locally thinner than at present, with
higher heat flow and steeper thermal
gradient in the Archean {see Burke and
Kidd, 1978 for an opposing view) it is
suggested that tectonic movement of
crusial elements was much more
strongly linked to the convection pro-
cess than is currently thought to be the
case.

Following decay of ihe proposed
thermal system there would have been
significant uplift (isostatic rebound) of
the thickened crust. Deep erosion took
place to expose high grade metamor-
phic rocks comprising both parag-
neisses and their basement. Part of the
isostatic readjustment could have taken
place along major faulis situated at, or
close to, the boundaries of the parag-
neiss superbelts.

Comparison with Southern Africa

In southern Africa, two major Archean
cratons {(Anhaeusser, 1976) are separ-
ated by the dominantly high grade
paragneisses and associated rocks of
the Limpopo Belt. For comparative
purposes a simpiified version of the
stratigraphy of the Kaapvaal Craton. the
Limpopo Belt and the Rhodesian Craton
1s given in Figure 4. Tworemarkable
features of the Rhodesian Craton are the
very ancient greenstones of the Sebak-
wian Group (Wilscn ef al, 1978) and the
fact that there are greenstone assemb-
lages (including uitramafic lavas) rang-
ing from older than 3.5 Ga tc about 2.7
Ga. Both the "Sebakwian group” andthe
“Lower Bulawayan Group” are older
than any greenstone belts presently
known in Canada.

To the south, in the Kaapvaal Craton,
the Swazitand Supergroup of the Barber -
ton Mountainland consists of about 16
km of dominantly votcanic rocks (includ-
ing ultramafic varieties) overlain by
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Schernalic representation of early Procam-
bran stahgraphy of the Superior Province and
southern Africa. Time fines are drawn al
approximately 2.7 Ga. 30 Gaand 35 Ga
(Note Gy =Ga). Ornamentalion s as
foflows: black-ghessic basement. dashed
oraarmen! - greenstone bell assemblage:;
stripes-paragneiss, dots - cratonic sedimen-
tary tocks; v ornament - volcanmics in
cratonic cover rocks, tnangles - tiiles For
souwthern Afnica three columns are shown
representng the Kaavaal Craton {KC),
Limpopo Beit (LB} and the Rhodesian Craton
(RC) Abbreviations on coumn KC are as
foltows Gi T - Griquatown Tithte, Tr -
Transvaal Ve - Venterdorn Wi - Witwalers-
rand Do Re - Domimion Rect. Po - Pongola.,
Mo - Moodies, Fig Tr Fig Tree. On
Onverwachi. Those on column LB are Me
Messina Fro . Sa A1 - Sand River gneisses.
Letters on column RC are as lolows Sh -
Shamvaan UB - “Upper Bufawayan LB -
“Lower Bulawayan'™. Se  “Sebakwian™ For
the Supernior Province. abbreviations on co-
lumn GS (greensione superhelt) are as
foilows GT - Gowganda Tillte Hu  Huroni-
an Column P8 represents @ paragness
superbell Arrows fo lef! of coiumns mnferred
crusta! movements. doutite-headed arrows
represen! build-up of volcamcs, with con-
comitant basinal subsidence Open arrows
show major paleccurrent direchons mcraton-
1 cover rocks, Dot-dash hnes show major
age differences in comparable facies be-
tween southern Atnica and the Superior
Province The Limpopo Belt 1s represented
twice o faciitate this comparison.

about six km of sedimentary rocks This
thick greenstona assemblage 1s also
older than those of the Supenor Pro-
vince, but younger than the oldest
greenstones of the Rhodesian Craton.
Following an orogenic event at about 3.0
Ga ago, the thick cratonic seguence
comprising the Pongela, Dominion Reef
and Witwatersrand was deposited.
These were followed by the Venterdorp
Lavas and the Transvaal Supargroup
which includes the Griquatown tillite of
comparable age 1o those ot the Huroni-

anof Canada
The Limpopo Belt comprises mainly

highly retamorphosed fine grained
clashc sedimentary rocks, together with
some carbonates, Atleast some of these
rocks appear to have accumulatedin a
relatively stable shell-type environment
(James. 1975 Shackleton. 1976) High
grade of metamorphism 1s typical of the
L 'mpapo Belt, incontrast 1o the low
grade rocks of the adjacent greenstone
belts Rocks of the Limpopo Belt and
those of the greenstone belts have been
alfecled by the same late fold phases
(Coward and James. 1974; James,
1975) but a basement {older than 3.6
Ga) has recently been defined beneath
paragneisses of the Limpopo Belt
(Bartonetal. 1877)

As shown n Figure 4. the parag-
neisses of the Limpopo Belt probably
formed at the same time as volcanic and
sedimentary rocks of the adjacent
“cratons”, This major facies changeis

comparable in style to that shown by the
much younger rocks of the Canadian
Supenor Province In western Australia
{Rutland, 1976) it is possible that the
Wheat Belt zone of high grade rocks
{including a high proportion of shelt-type
scdimentary rocks). together with the
onie beits of the Castern Gold-
fields region, may provide ancther
example of penecontemporanecus de-
velopment of high grade paragneisses
and low grade volcano-sedimentary
terrains in the Archean.

The succession of events on the
Kaapvaal Craton s closely comparable
to that in the Superior Province, includ-
ing the development of a younger
cratonic sequence (rocks of the Zuluan
Wedge) comparable in facies to, but
much older than the corresponding
rocks (Huronian) at the southern margin
of the Superor Province The green-
stone belts ot the Kaapvaal Craton,
together with the high grade parag-
neisses of the Limpopo Belt, provide a
close analogue for the altornating
greenstone and paragnerss belts of the
much younger Superior Province. The
model suggested here for development
of these contiguous high and lcw grade
terrains 1S in keeping with an Archean
crust of highly varniable thickness. Crus-
tal hetercgencity is alsoindicated by the
clearly diachronous development of the
greenstone-paragneiss superbelis. in
addition to the diachronous develop-
ment of the mv!—-.rlymg cratoms gequen-
ces noted by Cloud (1976} Athrdtype
of Archean torrain, giving further support
to the concept of crustal heterogeneity,
s exemplified by the rocks of the
Rhodesian craton, where volcanic con-
ditions persisted intermittently from
about 36 Gato about 26 Ga

Conclusions

Current geologic and geochronological
results trom North America support the
concept of a two-fold subdrasian of the
Archean Into ancient gneiss CoMplexcs,
the exact ongin of which remains
nbscure, the younger supracrusial
assemblages (with associated intrusive
rocks) of two contrasting types The
younger rocks are preserved as adja-
cent greansions and paragneiss supoer-
helts of generally low and high metamaor -
phic grade respectively These rocks
are succeeded uncenformably by

the cratonic assembplages of the

early Proterozorc,
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A closely similar evolutionary pattern
is evidenced by the Archean crustal
rocks of southern Africa. In southern
Africa, however, some parts of the
Archean crust appear 1o have gone
through stages comparable to those of
the Canadian Shield about 0.5 Ga
earlier. Greenstone superbelts are con-
sidered to have formed above rising
mantle convection cells, whereas the
paragneiss superbelts are interpreted as
having formed above descending cells.
The contrasted metamorphic grades ot
the two types of superbells indicate
differences in vertical elevaticn and an
Archean crust of highly variable thick-
ness. The main characteristics of the
Archean crust were its heterogeneity
and its highly diachronous evolutionary
pattern. Even in the cldest greenstone
belts of southern Africa there is evi-
dence of a stili older sialic component,
but the nature and origin of the “oldest
rocks™ are still conjectural.
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