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GLACIAL ISOSTATIC ADJUSTMENT OF
THE LAURENTIAN GREAT LAKES BASIN:
USING THE EMPIRICAL RECORD

OF STRANDLINE DEFORMATION FOR
RECONSTRUCTION OF EARLY HOLOCENE
PALEO-LAKES AND DISCOVERY OF

A HYDROLOGICALLY CLOSED PHASE*

C.F. Michael LEWIS**, Steve M. BLASCO and Pierre L. GAREAU: first authors: Geological Survey of Canada (Atlantic), Natural
Resources Canada, Bedford Institute of Oceanography, Box 1006, Dartmouth, Nova Scotia B2Y 4A2, Canada and School of
Oceanography, University of Rhode Island, Narrangansett, Rhode Island 02882, United States; second author: Geological
Survey of Canada (Atlantic), Natural Resources Canada, Bedford Institute of Oceanography, Box 1006, Dartmouth, Nova Scotia
B2Y 4A2, Canada; third author: XY Geolnformatics Services, 28 Crichton Park Road, Dartmouth, Nova Scotia B3A 2N8, Canada.

ABSTRACT In the Great Lakes region, the vertical motion of crustal
rebound since the last glaciation has decelerated with time, and is
described by exponential decay constrained by observed warping of
strandlines of former lakes. A composite isostatic response surface rel-
ative to an area southwest of Lake Michigan beyond the limit of the last
glacial maximum was prepared for the complete Great Lakes water-
shed at 10.6 ka BP (12.6 cal ka BP). Uplift of sites computed using val-
ues from the response surface facilitated the transformation of a dig-
ital elevation model of the present Great Lakes basins to represent the
paleogeography of the watershed at selected times. Similarly, the orig-
inal elevations of radiocarbon-dated geomorphic and stratigraphic
indicators of former lake levels were reconstructed and plotted against
age to define lake level history. A comparison with the independently
computed basin outlet paleo-elevations reveals a phase of severely
reduced water levels and hydrologically-closed lakes below overflow
outlets between 7.9 and 7.0 ka BP (8.7 and 7.8 cal ka BP) in the
Huron-Michigan basin. Severe evaporative draw-down is postulated to
result from the early Holocene dry climate when inflows of meltwater
from the upstream Agassiz basin began to bypass the upper Great
Lakes basin.

RESUME Réajustement glacio-isostatique du bassin des Grands
Lacs : reconstitution des anciens lacs au début de I'Holocéne et mise
en évidence d’'une phase de fermeture hydrologique par des témoins
empiriques de la déformation des lignes de rivage. Dans la région
des Grands Lacs, le soulevement isostatique lié a la derniére glacia-
tion a ralenti selon une courbe de décroissance exponentielle établie
a partir du gauchissement observé dans les anciennes lignes de
rivage lacustres. Une surface de référence composite de la réponse
isostatique datant de 10,6 ka BP (12,6 cal ka BP) a été préparée pour
’ensemble du bassin-versant des Grands Lacs, par rapport a une
région au sud-ouest du lac Michigan située au-dela de la limite du
dernier maximum glaciaire. Le calcul du soulevement des sites en
fonction des altitudes de la surface de référence a facilité la conver-
sion d’un modele altimétrique de terrain du bassin actuel des Grands
Lacs en des cartes paléo-géographiques pour différents &ges choisis.
De plus, afin de définir I'évolution des niveaux lacustres, les altitudes
initiales des indicateurs géomorphologiques et stratigraphiques des
paléo-niveaux lacustres, datés au '*C, ont été reconstituées puis
reportées en fonction de I'dge. La comparaison de cette courbe a
celles des paléo-altitudes des exutoires lacustres, calculée indépen-
damment, révéle, entre 7,9 et 7 ka BP (8,7 et 7,8 cal ka BP), une
phase d’abaissement majeur des niveaux lacustres au-dessous de
ceux des exutoires et la fermeture hydrologique des lacs dans le bas-
sin des lacs Huron-Michigan. La forte évaporation nécessaire a
I'abaissement du niveau d’eau est attribuée a un climat sec peu aprés
le début de I'Holocéne, dans un contexte de détournement progres-
sif hors des Grands Lacs des eaux de fonte du lac Agassiz.
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INTRODUCTION

The Great Lakes of North America consist of five major
basins whose water surfaces comprise 32% of a total water-
shed area of 766 000 km? (The Great Lakes Environmental
Atlas, 1995) (Fig. 1). The watershed forms the headwaters of
the St. Lawrence River that drains to the Gulf of St. Lawrence
and Atlantic Ocean. At the last glacial maximum, the water-
shed was completely covered by the southern flank of the
Laurentide Ice Sheet about 18-21 ka BP (21.3-25.4 cal ka BP).
Deglaciation of the basins occurred as the ice margin retreated
generally in a northerly direction in a series of oscillations, first
exposing the Erie basin about 15.5 ka BP (18.8 cal ka BP),
and finally receding to the northern Superior basin about
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FIGURE 1. Shaded-relief map of the present-day Laurentian Great
Lakes with their drainage areas outlined in white from the National
Atlas of Canada (1985). The map file is of 30 arc-second resolution,
and is from the Canadian Hydrographic Service (1996) with bathym-
etry added for Georgian Bay and the area west of LaCloche Lowland
from United States Lake Survey (1965). Numbers refer to lake-level
indicator sites listed in Table Il. Lake outlets shown by black arrows.
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9.5 ka BP (10.7 cal ka BP) (Table I; Dyke et al., 2003; Dyke,
2004). During this retreat, a series of proglacial lakes formed
shorelines of different ages that are upwarped today towards
the north-northeast in the direction of thicker and longer-last-
ing ice (Fig. 2). This deformation is the cumulative isostatic
adjustment of Earth’s crust since formation of the shorelines as
a result of removal of the former ice sheet load. This differen-
tial rebound proceeded throughout the period of ice retreat and
postglacial time at decelerating rates of uplift. It is continuing
today, as evidenced by tilting of the Great Lakes basins meas-
ured in long-term records of lake level gauges between south-
ern and northern shores of the Great Lakes (CCGLBHHD,
1977; Tushingham, 1992; Mainville and Craymer, 2005).
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Carte du relief de la région des Grands Lacs et des limites de ses
sous-bassins de drainage (en blanc) établie a partir de I’Atlas natio-
nal du Canada (1985). La base de données posséde une résolution
de 30 secondes d’arc et provient du Service hydrographique du
Canada (1996), ou la bathymeétrie ajoutée de la baie Géorgienne et
du secteur a l'ouest des basses terres de LaCloche provient de la
Commission des Lacs des Etats-Unis (1965). Les chiffres renvoient
aux sites d’indicateurs du niveau des lacs présentés dans le tableau II.
Les fléches noires localisent I'exutoire des lacs.

Géographie physique et Quaternaire, 59(2-3), 2005
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TABLE |

Sources of isobase and deglacial information

Basin References

Agassiz (northwest of Superior basin)

Barlow and Ojibway basins
(northeast and north of the Great Lakes basins)

Erie basin

Huron-Georgian Bay basin

Clayton, 1983; Teller and Thorleifson, 1983; Teller, 1985; Thorleifson, 1996
Vincent and Hardy, 1979; Veillette, 1994; Dyke, 1996

Calkin, 1970; Barnett, 1979; Calkin and Feenstra, 1985
Goldthwait, 1910; Stanley, 1936, 1937, 1938a; Deane, 1950; Chapman, 1975; Karrow et al.,

1975; Karrow 1980; Chapman and Putnam, 1984; Eschman and Karrow, 1985; Kaszycki,
1985; Karrow, 1986, 1987; Lewis and Anderson, 1989; Lewis et al. 1994

Michigan basin

Goldthwait, 1907; Leverett and Taylor, 1915; Stanley, 1938b; Evenson, 1973; Futyma, 1981;

Hansel et al., 1985; Taylor, 1990; Kehew, 1993; Colman et al. 1994a

Ontario basin

Ottawa River valley
Simard et al., 2003

Superior basin

Coleman, 1937; Muller and Prest, 1985; Pair et al., 1988; Pair and Rodrigues, 1993
Harrison, 1972; Chapman, 1975; Vincent and Hardy, 1979; Barnett, 1988; Veillette, 1994;

Clayton, 1983; Drexler et al., 1983; Attig et al., 1985; Farrand and Drexler, 1985;

Thorleifson, 1996; Lowell et al., 1999

Wisconsin basin (west of the Michigan basin)

Clayton and Attig, 1989

The differential and continuing nature of rebound has raised
indicators of former lake levels to differing elevations, and this
makes their correlation difficult and uncertain, particularly for
those that are at scattered locations within the basin. This dif-
ficulty is especially evident for lake-level indicators that are
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now below the surface of the present Great Lakes. To facilitate
the reconstruction of original elevations of former lake-level
indicators, a reference isostatic response surface with an age
of 10.6 ka BP is constructed for the entire basin. This surface
is used in conjunction with an exponential function to describe
the vertical motion in the time domain of any location in the
entire watershed of the Great Lakes. This motion is con-
strained by, and consistent with, the observed empirical data
provided by well-known upwarped strandlines in the Great
Lakes basins. With this reference response surface and the
exponential expression for uplift, the original elevations of spe-
cific lake-level indicator sites and potential overflow outlets
are reconstructed and compared. The paleogeography of indi-
vidual basins and of the entire Great Lakes watershed may
likewise be reconstructed for any desired age. Applications of
the isostatic response surface and the exponential model of
uplift are illustrated for: (1) digital reconstruction of Great Lakes

F

FIGURE 2. Maps of isobases of selected reference paleoshorelines in
basins of the Great Lakes, showing the radiocarbon ages (ka BP) and
trends of isobases with their present lowest and highest elevations.
Sources of isobases given in Table I. C and D mark end points of a
section to which isobases of the Iroquois, Algonquin and Nipissing
lakes were projected for illustration in Figure 3. (A) Map of Laurentide
maximum ice margin and isobases of lakes Wisconsin, Washburn,
Minong, Algonquin, Glenwood Il, Whittlesey and Iroquois. (B) Map of
isobases for the Nipissing Great Lakes, and for an older phase of gla-
cial Lake Wisconsin.

Cartes des isobases des anciennes lignes de rivage de référence de
la région des Grands Lacs, ou les ages au *C (ka BP) et le souléve-
ment différentiel par rapport aux altitudes actuelles sont illustrées.
Les sources bibliographiques sont présentées au tableau I. Les points
C et D sont les limites du profil vertical projeté a la figure 3 des lacs
Iroquois, Algonquin et Nippising. (A) Carte de I'extension glaciaire
maximale de I'inlandsis laurentidien et des isobases des lacs
Wisconsin, Washburn, Minong, Algonquin, Glenwood I, Whittlesey
et Iroquois. (B) Carte des isobases de la phase Nipissing des Grands
Lacs et pour une phase plus ancienne du lac Wisconsin.

Géographie physique et Quaternaire, 59(2-3), 2005
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FIGURE 3. A plot of relative uplift vs. age for the Nipissing, Algonquin
and Iroquois strandlines showing a relatively good fit to the exponen-
tial uplift equation for relaxation times (t) between 3000 and 5000
years. The relative uplifts are the differences in projected strandline
elevations at C and D shown on Figure 2.

Graphique temporel du soulévement relatif des lignes de rivage des
lacs Nipissing, Algonquin et Iroquois montrant un trés bon ajuste-
ment a I’équation exponentielle de soulevement calculée pour des
temps de relaxation (t) de 3000 a 5000 ans. Les soulévements rela-
tifs correspondent aux différences entre les altitudes projetées entre
les points C et D de la figure 2.

paleogeography in a geographic information system (GIS)
environment, and (2) the assessment of former lake-level indi-
cators in relation to possible overflow outlets, leading to the
conclusion that the Michigan, Huron and Georgian Bay basins,
if not all the Great Lakes, were once hydrologically closed.

UPLIFT IN THE TIME DOMAIN
ISOBASES OF GLACIO-ISOTATIC REBOUND

In the continental interior, isobases of glacio-isostatic
rebound are usually defined by the elevations of a differen-
tially uplifted shoreline of a former lake (Goldthwait, 1907,
1910; Leverett and Taylor, 1915; Hough, 1958; Walcott, 1972;
Lewis and Anderson, 1989; Schaetzl et al., 2002). Sets of
isobases selected for this study for basins within the Great
Lakes watershed are illustrated in Figure 2A and 2B in which
the lowest and highest elevations, trends of isobases, the
name and uncalibrated radiocarbon age are shown for each
lake. Although the Algonquin and Nipissing highstands were
confluent in three of the basins about 10.6 ka BP
(12.6 cal ka BP) and 5.0 ka BP (5.7 cal ka BP), respectively,
most sets of isobases are confined to a single basin. These
former, once-level lake surfaces are all warped upward in a
north to northeasterly direction (Fig. 2A-B) as a result of dif-
ferential glacio-isostatic recovery of Earth’s crust following
deglaciation of the Laurentide Ice Sheet. The sources of
isobase and related deglacial information for basins within
and adjacent to the Great Lakes are listed in Table I.

UPLIFT AS A FUNCTION OF TIME

Whereas isobases portray the present configuration of a
rebounding surface, it is often desirable to describe the uplift

C.F.M.LEWIS, S. M. BLASCO and P. L. GAREAU
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FIGURE 4. Map of the Great Lakes basin showing locations of tran-
sects where isobases of two shorelines of known age (shown as
4C ka BP) provide a basis for computing the relaxation time of the
uplifting process. The mean value of these estimates, 3700 + 700
years, is used as the relaxation time throughout the basin.

Carte du bassin des Grands Lacs montrant 'emplacement des tran-
sects, ou les isobases de deux lignes de rivage d’dge connu (montrés
en C ka BP) ont servi comme base de calcul du temps de relaxation
du processus de soulévement isostatique. La valeur moyenne de ces
estimations, 3700 + 700 ans, est utilisée comme temps de relaxation
sur 'ensemble du bassin.

of a given location through time, or to construct surfaces at
intermediate times, especially when reference shorelines are
widely spaced in time. Following Andrews (1970) and others,
the exponential function is adopted to describe relative uplift
(Uy) with time where time is expressed as age t (cal years BP)
for a landscape previously loaded by an ice sheet. From Peltier
(1994, 1998) we use:

Ur=A* (exp (th) - 1) (Eq. 1)

where A and 7 (tau) are parameters of the equation. A is a
site-specific amplitude factor, and is evaluated as:

A=U/ (exp (t7) - 1) (Eq.2)

for a known relative uplift, age and relaxation time. Tau (t) is
the relaxation time or period in years for which decelerating
uplift is reduced by 1/exp (1/2.7183 or 36.8%) in successive
periods. It is evaluated by solving (Equation 1) at sites where
U, is known for at least two sets of isobases of different ages
as shown below. As a first-order approximation, t is assumed
to be time invariant and similar in value throughout the Great
Lakes region. Figure 3 shows the reasonably good fit of the
exponential uplift curve to Great Lakes relative rebound data
for the Nipissing, Algonquin and Iroquois shorelines between
sites C and D for trial values of relaxation time between 3000
and 5000 years (see Fig. 2 for location and isobase values).

Evaluation of parameters (t and A)
in the relative uplift equation (1)

Relaxation time (t) was determined on 20 specific short
transects (Fig. 4) where relative uplifts, Uy, U,, and their ages
t4, to, are known for two shorelines, for example the Algonquin

Géographie physique et Quaternaire, 59(2-3), 2005
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and Nipissing isobases whose domains largely overlap one
another. Then, on each transect:

Uy =A™ (exp (t471) - 1)andU, = A * (exp (to/7) - 1).
As the amplitude factor is identical on a specific short tran-

sect, these equations were rearranged in terms of A and sub-
tracted to yield a single equation which was solved for t:

Us * (exp (ty/t) - 1) - Uy * (exp (/1) - 1) = 0 (Eq.3)

From Figure 4, a mean value of 1, rounded to 3700 + 700
years, is used for computations of relative rebound in the Great
Lakes basin. Similar values of 3400 years and 3500 + 400
years, respectively, were obtained for the relaxation time of an
exponential fit to relative sea-level changes in rapidly-uplifting
James Bay south of Hudson Bay (Fig. 3A and 3C; Peltier, 1998),
and for relaxation of glacial rebound in the Lake Winnipeg area,
Manitoba (Lewis et al., 2000; Brooks et al., 2005).

The amplitude factor is then determined by evaluating
Equation 2 using the known decay time t:

A = Uy/(exp (t4/1) - 1)orA = Up/(exp (tz/7) - 1) (Eq.4)

Relative uplift (U,) or shoreline slope (S,) at other times

With T and A known, relative uplift (U,) or shoreline slope
(Sy) for any given age t, (cal years BP) in the same transect
can be computed:

U= A ™ (exp (t/t) - 1) (Eq. 5)

U, can be either larger or smaller than U, or U,, and is the
basis for removing the effects of rebound from a modern DEM
for construction of the watershed paleogeography at a given
time t,, as described in a later section. Average shoreline slope
(Sy) = relative uplift (Uy) / transect length (d) or:

S, = UJd = (A/d) * (exp (t/1) - 1) (Eq. 6)
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CONSTRUCTION OF A MULTI-BASIN
RESPONSE SURFACE OF ALGONQUIN-AGE
REBOUND ABOUT 10.6 KA BP
(12.6 CAL KA BP)

Profiles perpendicular to isobases were selected on which
an uplifted surface of Algonquin age could be constructed
throughout the Great Lakes watershed (see locations of profiles
on inset map of Fig. 5). Starting with area B on the Michigan-
eastern Superior profile, the slope of the Elderdon phase shore-
line of Lake Wisconsin (about 14 ka BP or 16.7 cal BP) was
adjusted to the selected reference age, 10.6 ka BP (about
12.6 cal ka BP) using Equation 5 (Fig. 5). Then the reference
profile was extended to the northeast using the Glenwood Il
shoreline. The uplift of the second isobase of the Glenwood I
shore relative to its lowest isobase was adjusted for uplift using
Equation 5. This procedure was repeated for each Glenwood I
isobase until a complete shore profile, adjusted to the refer-
ence age, could be plotted. The adjusted Glenwood Il profile
was then shifted vertically to connect with the uplifted end of the
Wisconsin profile. Next, the Algonquin profile, already at the
selected reference age, was shifted vertically to connect with
the end of the adjusted Glenwood Il profile. The Minong
isobases were then adjusted from an age of 9.5 ka BP
(10.7 cal ka BP) to 10.6 ka BP (12.6 cal ka BP), and the
adjusted shore profile was shifted vertically to connect with the
end of the Algonquin profile. The continuous curve rising from
zero to about 200 m at 800 km distance and beyond repre-
sents uplift on the Michigan-eastern Superior profile since
10.6 ka BP (12.6 cal ka BP). This rebound is relative to area B
just beyond the Laurentide ice limit in the southwestern corner
of the Great Lakes map area.

’ FIGURE 5. Michigan-east Superior
/ profile showing construction of the
gradients of shorelines represent-
/ ing uplift since the reference age
of 10.6 ka BP (12.6 cal ka BP) rel-
ative to area B beyond the limit of
the last glaciation. Dots are
observed shoreline isobases.
Dotted, dashed and solid lines are
/ shore gradients adjusted to an age
/ of 10.6 ka BP (12.6 cal ka BP).
/ Inset map shows locations of ref-
erence profiles for contouring the

reference response surface.

Profil du Michigan-est Supérieur qui
montre le soulevement des lignes
de rivage depuis I'age de référence
de 10,6 ka BP (12,6 cal ka BP) par
rapport a la région B située au-dela
de la limite de la derniére glaciation.
Les points sont les isobases des
lignes de rivages observées, les
lignes pointillées, les lignes tiretées
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The adjusted Algonquin-age uplift values were transferred
along connecting isobases to the other profiles (inset map on
Fig. 5). After populating these profiles with Algonquin-age uplift
values, contours were drawn throughout the region honouring
the profile data and isobase trends. These contours constitute
the reference response surface (Fig. 6) for the Great Lakes
basin, representing isostatic rebound of the region from
10 600 BP (12 600 cal BP) to the present relative to area B. For
a response surface at any other age, t,, the contour lines remain
the same, but each uplift contour value becomes Ut, using
Equation 5, i.e.

Uty = Acontour (€Xp (1/3700) - 1) (Eq.7)
where Aqonour IS the amplitude factor of the contour, such that:
Acontour = U106 ka / (€xp (12 600/3700) - 1) (Eq.8)

and Uqg 6 ka is the value of the contour from the reference
response surface.

PALEOGEOGRAPHIC RECONSTRUCTION

The use of an isostatic response surface in paleogeo-
graphic reconstructions is described by Leverington et al.
(2002) for Arctic Canada, and is similar to the use of relative-
sea-level isobase maps as employed for reconstruction of
Atlantic Canada paleogeography (Shaw et al., 2002). For pale-
ogeographic reconstruction of the Great Lakes basin at a spe-
cific age, values for contours of an isostatic response surface
at the specific age were first computed as outlined above
in Equations 7 and 8. The new reference uplift contours,
expressed as a vector data set of isobases, were transformed
to a gridded data set or surface using the Triangulated Irregular
Network (TIN) interpolation method. The interpolated values

88°W
Om °9

FIGURE 6. The reference isostatic response surface portraying glacial
rebound since 10.6 ka BP (12.6 cal ka BP) in the Great Lakes region
relative to an area southwest of Lake Michigan beyond the limit of the
last glaciation.

Surface de référence de la réponse isostatique montrant le reléve-
ment depuis 10,6 ka BP (12,6 cal ka BP) pour la région des Grands
Lacs par rapport a un secteur au sud-ouest du lac Michigan se situant
au-dela de la limite maximale de la derniere glaciation.

C.F.M.LEWIS, S. M. BLASCO and P. L. GAREAU

from this surface were subtracted from each corresponding
pixel value of the modern Great Lakes digital elevation model
(DEM) (Fig. 1) to generate a paleo-DEM for the desired age.
Paleo-lake shorelines were determined by contouring the
paleo-DEM within individual basins according to the elevation
of their outlet sill or constriction, which is known from geolog-
ical data. Paleo-DEM pixel values for areas within the shore-
line contours were subtracted from the shoreline elevations
to express paleo-lake water depths, which in turn were used
to calculate lake area and volume. When present in the map
area, an ice cover was superposed using information from the
glacial geological literature (Table 1) and from syntheses of
deglaciation such as Barnett (1992) and Dyke et al. (2003).
Twelve paleogeographic reconstructions, ranging from the
Kirkfield Algonquin phase at 11.4 ka BP (13.3 cal ka BP) to the
Nipissing Great Lakes at 5 ka BP (5.7 cal ka BP), were com-
piled using a GIS; images of two of these reconstructions are
shown in Figure 7.

APPLICATION TO PALEOHYDROLOGICAL MODELING

The 12 GIS paleogeographic reconstructions based on the
empirical model of isostatic adjustment were used to measure
land and water areas, and lake volumes for studies of the pale-
ohydrology and meltwater flow through the Great Lakes sys-
tem (Moore et al., 2000). Variations in the basin attributes in
the 11.4 to 5.0 ka BP (13.3 to 5.7 cal ka BP) period were sub-
stantial (Fig. 8). Maximum variation in individual basins under
overflow conditions ranges from +72% to -95% for lake area,
and from +200% to -97% for lake volume, compared to the
present Great Lakes.

RECONSTRUCTION OF FORMER LAKE LEVELS
AND DISCOVERY OF CLOSED LOWSTANDS,
8900-7800 CAL BP (7.9-7.0 KA BP)

Seventy-seven radiocarbon-dated, and two other, indicators
of former lake levels in the Georgian Bay, Huron and Michigan
basins (Table 1l and examples shown in Fig. 9) have been
restored to their original elevations using a site uplift equation:

Ei=E, - A~ (exp (th) - 1) (Eq.9)

Here, the elevation at time t cal BP is equated to the pres-
ent elevation (Ep) minus the uplift of the site since time t. This
equation, based on Equations 1 or 5, is used to compare the
relative altitudes of two or more lake-level indicators or out-
lets at various times during their isostatic adjustment.

Original elevations for the reported error limits of each
dated lake-level indicator were computed using Equation 9
and are shown in Table II. Most indicators are plotted in
Figure 10 for the Huron and Georgian Bay basins, and in
Figure 11 for the Michigan basin for the interval 11.7 to
6.2 ka BP (13.5 to 7.1 cal ka BP). On these figures, pairs of
symbols joined by tie lines indicate the age and reported error
range (X axis) in the date of each water surface indicator
(Table I1). The original altitude of an indicator is the Y-axis value
of the plotted symbol; the tilt of the tie line represents uplift
during the reported error range of its age. See Figure 1 for
locations of the numbered indicators. The lake level histories
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FIGURE 7. Paleogeographic maps
showing reconstructions of the bathym-
etry and topography of the Great Lakes
basin. (A) Main Lake Algonquin phase
about 10.55 + 0.1 ka BP (12.4-12.7 cal
ka BP). At a late stage of Main Lake
Algonquin, shown here, the lake had
expanded to a possible maximum area
in Superior (dashed line) and Huron
basins by calving of icebergs from gla-
cier margins in deep water. This lake
overflowed via Port Huron to the Erie
basin. Early Lake Erie, controlled by the
Lyell-dJohnson sill near the present
Niagara Falls, overflowed via Niagara
River to Early Lake Ontario which dis-
charged via the emerging St. Lawrence
River to Champlain Sea. (B) Mattawa
highstand phase about 8.7-8.8 ka BP
(9.6-9.9 cal ka BP), possibly a phase of
high discharge when lake level in the
upper Great Lakes basins was hydrauli-
cally dammed by constrictions down-
stream from North Bay at either the
Rutherglen Moraine or the Rankin
Constriction or both (Fig. 1). Discharge
continued via Ottawa River to
St. Lawrence River. There was no
drainage from the upper to lower Great
Lakes at this time; Lake Erie, Niagara
River and Lake Ontario drained a sepa-
rate watershed to the upper St. Lawrence
River. Legend as for Figure 7A.

Cartes paléo-géographiques de la
reconstitution de la bathymétrie et de la
topographie du bassin des Grands Lacs.
(A) Phase du lac Algonquin principal en
10,55 + 0,1 ka BP (12,4-12,7 cal ka BP).
Au cours du stade tardif de cette phase,
le lac Algonquin a atteint son extension
maximale dans les bassins du lac
Supérieur (tireté) et Huron par le vélage
des icebergs issus des marges gla-
ciaires en eau profonde. Ce lac se
déversait dans le bassin du lac Erié par
le Port Huron. Le lac Erié initial, dont le
niveau était contrélé par le seuil de Lyell-
Johnson situé pres des chutes actuelles
du Niagara, se déversait dans le lac
Onitario initial par la riviere Niagara, se
déversant a son tour (le lac Ontario)
dans le Saint-Laurent naissant par la
Mer de Champlain. (B) Phase de haut
niveau lacustre de Mattawa en
8,7-8,8 ka BP (9,6-9,9 cal ka BP), une
phase de fort débit probablement liée a
la fermeture hydraulique des Grands
Lacs par un étranglement topographique
situé en aval de North Bay provoqué par
la moraine de Rutherglen, I'étrangle-
ment de Rankin, ou les deux. Le déver-
sement dans le Saint-Laurent s’effec-
tuait par la riviere des Outaouais. Il n’y
avait pas de drainage entre 'amont et
l'aval des Grands Lacs a cette époque :
les lacs Erié et Ontario et la riviére
Niagara drainaient un bassin-versant
distinct vers le haut Saint-Laurent. La
légende est la méme qu’en A.
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Late Stanley (early)
Main Mattawa highstand
Mid-Stanley

Early Mattawa highstand
Early Stanley

Early Stanley + Marquette Ice (Superior)

Post Algonquin lakes

Main Lake
Algonquin

Drainage basin land area (km?)

FIGURE 8. Bar graphs showing variation in the land drainage areas,
lake surface areas, and lake volumes of selected Great Lakes over-
flowing phases measured from reconstructions of the paleo-Great
Lakes in a GIS computing environment. Triangles indicate adjacent
lakes that were and are confluent. Names at right refer to lake phases
in Huron and other upper Great Lakes basins.

were interpreted from the restored elevations of the radiocar-
bon-dated geologic indicators of former water levels in Huron
and Michigan basins. For the times when lakes in the Michigan
and Huron basins were confluent (relatively high levels), water
levels in the Michigan basin were transferred from the Huron
basin diagram.

The accuracy for estimating lake levels from empirical indi-
cators is generally considered here to be at best about +1 m
based on survey error and variations in elevations of strand-
line bluffs, beaches, bars and spits (Schaetzl et al., 2002).
The computed initial elevations for lake-level indicators are
considered accurate within about 2 m in areas of good isobase
control, and somewhat >2 m in areas where constraining
isobases have been extrapolated.

A second set of data (Table Ill) comprising the uplift history
of lowest-possible potential overflow outlets for the Huron and
Michigan basins, was also computed in the same manner and
plotted on the diagrams of Figures 10 and 11 as dotted bands
and dashed lines. These constraints include sills at North Bay
(dotted band), Dalles Rapids, Deane-Tovell Saddle, and the
head of Mackinac River (Lewis and Anderson, 1989). The North
Bay sill controlled the overflow level of the water in the com-
bined Georgian Bay, Huron and Michigan basins during the
Nipissing transgression (Karrow 1980; Monaghan et al., 1986;
Colman et al., 1994a, 1994b). The Dalles Rapids sill controlled

Lake area (km?)

Lake volume (km?)

Diagrammes de la variation des superficies de drainage, des sur-
faces et des volumes des Grands Lacs au cours des différentes
phases de déversement obtenues a partir des reconstitutions des
paléo-Grands Lacs par un systéme d’information géographique (SIG).
Les triangles indiquent s’il y a des lacs adjacents ayant ou encore
connectés. Les noms a la droite font référence aux phases lacustres
du bassin du lac Huron et des autres Grands Lacs.

overflow levels of the Georgian Bay basin during earlier phases
while the North Bay sill was isostatically depressed at lower
elevations. The Lucas and Fitzwilliam channel sills were
selected as representative of constraints on overflow water lev-
els in the northern Huron basin by the Deane-Tovell Saddle
between Bruce Peninsula and Manitoulin Island. The Michigan
basin overflow water levels were controlled by a sill at the head
of the now-submerged Mackinac River channel between
Michigan and Huron basins beneath northern Lake Michigan
and the Straits of Mackinac (Stanley, 1938b).

INTERPRETATION OF HURON AND GEORGIAN BAY
WATER-LEVEL HISTORY

13 500-11 000 cal BP

In this synthesis, the interpreted water-level history is
shown as a thick line in Figures 10A-B and 11, and begins
with the transgression of the Kirkfield Algonquin lake level to
the Main Algonquin level (sites 4, 2, 1c, 1b, 3) under influence
of the isostatically-rising Kirkfield outlet (Fig. 1). After
12 600 cal BP (10 600 BP), lake levels fell, indicated by the ini-
tiation of gyttja sedimentation in isolated basins (sites 12, 13,
10), through the Post-Algonquin phases and below, evidenced
by the onset of organic accumulation on Manitoulin Island (23)
and in Georgian Bay (7b). Land emergence by this fall of lake
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FIGURE 9. Types of evidence of former water
levels in the Huron, Michigan, and Erie
basins. Abandoned geomorphic shore fea-
tures: (A) Former lake surfaces are inferred
from erosional coastal features at the change
in gradient between the gently-sloping
shoreface and the steeply-sloping shorebluff,
illustrated here for the Algonquin shore near
Kirkfield, Ontario. (B) Storm beach ridges
above Lake Huron on Manitoulin Island (air
photo courtesy of Natural Resources
Canada). (C) and (D) Beach ridges 53 m
below Georgian Bay imaged by sidescan
sonar and multibeam sonar, respectively
(Blasco 2001). (E) Submerged beach and
shoreface 21-28 m below Lake Erie (from
Coakley and Lewis, 1985). Isolation basins,
tree stumps, and unconformities: (F) Air
photo (courtesy of Natural Resources
Canada) view of a small basin isolated during
the regression of a large lake, Manitoulin
Island. A radiocarbon date of the contact
zone between gray clastic large lake sedi-
ment and dark-coloured organic small-lake-
sediment (photo courtesy of T.W. Anderson)
provides the age at which the Great Lake
surface passed below the sill elevation of the
small isolated basin (Lewis, 1971). (G) In situ
tree stump on lakefloor at entrance to
Georgian Bay. (H) Subsurface reflections in a
seismic profile indicate offshore unconformi-
ties and sequence boundaries caused by
episodes of reduced lake level (Moore et al.,
1994).

Indicateurs des anciens niveaux lacustres
dans les bassins des lacs Huron, Michigan
et Erié. Formes littorales abandonnées : (A)
les surfaces des anciens lacs sont estimées
a partir de formes d’érosion cétiére qui sont
situées a la rupture de pente entre la face
de la céte en pente douce et le talus littoral
en pente abrupte, comme le montre cet
exemple du rivage du lac Algonquin pres de
Kirkfield, Ontario. (B) Crétes de plage de
tempéte en bordure du lac Huron sur I'lle
Manitoulin (courtoisie de Ressources
Naturelles Canada). (C) et (D) Crétes de
plage a 53 m de profondeur dans la baie
Géorgienne identifiées respectivement a
l'aide du sonar latéral et d’un sonar multi-
faisceaux (Blasco, 2001). (E) Plage et avant-
céte submergeées entre 21 et 28 m sous la
surface du lac Erié (d’aprés Coakley et
Lewis, 1985). Bassins isolés, souches
d’arbres et discontinuités : (F) Photo
aérienne d’un petit bassin isolé durant la
régression d’un grand lac, Ile Manitoulin
(Source : Ressources Naturelles Canada).
Une datation au radiocarbone de la zone de
contact entre les sédiments clastiques gris
du grand lac et les sédiments organiques
foncés du petit lac (photo fournie par T.W.
Anderson) fournit I'age auquel le plan d’eau
du grand lac est passé sous le niveau du
seuil du petit bassin isolé (Lewis, 1971).
(G) Souche d’arbre in situ au fond du lac a
I'entrée de la baie Géorgienne. (H) Profil
sismique montrant les discontinuités et les
limites causées par des épisodes de bas
niveau lacustre (Moore et al., 1994).
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Indicators of former lake levels in the Michigan, Huron and Georgian Bay basins, and Georgian Bay-North Bay lowland

Site no.; lake, bog Lat.Nand Laboratory Material dated, elevation (masl) Present  Original Cal.age References
surface elevation' Long.W  no.and date and stratigraphy elevation? lake years
and ref. elevation®* BP®
uplift (m)3
1b Kincardine Bog 44° 09.0° GSC-1366 Plant roots 195 from plant 195 151.3 12400 Karrow etal., 1975
81°39.0) 10600+ 150 detritus over clay 46.2 146.2 12 800
1c Kincardine Bog 44° 09.0° GSC-1374  Plant detritus 194 under clay 194 143.1 12950 Karrow et al., 1975
81°39.0) 11200+ 170 of Algonquin transgression 46.2 139.1 13 220
2 N Penetangore  44° 10.0° GSC-1842  Picea or Larix wood under 191 137.6 13060 Anderson, 1979
River 81°38.0’ 11300+ 140 Algonquin sediment 47.0 133.7 13 310
3 Eighteen Mile 44°01.3 Pooled age Picea wood on Algonquin-level 189 149.9 12390 Karrow et al., 1975;
River 81°43.6° 10550+ 110/ river terraces 41.4 145.8 12750 Karrow, 1986
IGSC-1126 10 500 + 150;GSC-11127 10 600 + 150
4 Orillia 44° 34.6’ n.r.’ Collagen of grizzly skull in gravel 251 126.5 13310 Peterson, 1965; Tovell
79°26.3 11700+ 250 below Algonquin level 102.1 108.8 13790 and Deane, 1966
5 Cooks town bog 44° 13.3’ GSC-1111  Emergent plant remains 229 over 229 173.3 11 430 Karrow et al., 1975;T.
79°37.3 10200+ 150 gyttja; after Main Lake Algonquin 77.4 160.6 12160 Anderson, pers. comm., 2005
6 Wales Site, 44°12.2° WAT-493  Wood 225 in peat in gravel 225 178.0 11 830 Fitzgerald, 1985
Everett 80°57.0’ 10280+ 100 58.4 170.6 12 350
7a Hope Bay 44° 55.0° 1-7857 Top of peat under massive 147.3 108.2 9600 Lewis and Anderson, 1989
175.8 81°07.1 8785+ 145 grey clay 92.0 104.1 9940
7b Hope Bay 44° 55.0° 1-7858 Base of peat over laminated clay  147.0 86.0 11 140 Lewis and Anderson, 1989
175.8 81°07.1 9930 + 250 92.0 69.9 11970
8 Green bush 45° 56.1° WAT-579  Swamp 3 m above Main Lake 311 213.8 11230 Warner et al., 1984
Swamp ~311 81° 59.7’ 9930 £ 90 Algonquin. Basal gyttja 307.5 142.9 203.4 11 590
9b Sheguiandah  45° 53.7 Beta-92067 Plant macro-remains 215.2 from  216.4 171.9 8580 Anderson, 2002
Bog 216 81°55.4 7860 £ 50 peat 141.4 169.9 8730
9c Sheguiandah  45° 53.7 Beta-92069 Plant macro-remains 214.7 215.9 136.3 10570 Anderson, 2002
Bog 216 81°55.4 9410 £ 60 in basal peat 141.4 133.0 10710
9d Sheguiandah  45° 53.7 TO-2346  Base of fibrous peat 214.3 214.3 135.3 10 540 Julig and Mahaney 2002
Bog 216 81°55.4 9440 + 80 141.4 129.7 10 780
10 Lake Sixteen  45° 36.0° WIS-2000 Basal gyttja 211.9 216 133.3 12650 Futyma and Miller, 1986; R.
216 84°19.0) 10690+ 100 over clayey silt 81.5 128.9 12 840 Futyma, pers. comm., 1988
12 Upper Twin 46° 32.5’ HEL-400 Basal gyttja 291.4 over till 302 173.7 12230 Saarnisto, 1974
Lake 302 84°35.0' 10650+ 265 142.3 148.1 12 880
13 Prince Lake 46° 33.5’ GSC-1715 Basal gyttja 280.8 over clay 290 159.5 12230 Saarnisto, 1974
290 84°33.0’ 10800 + 360 144.7 123.1 13110
23 Tehkummah 45° 36.0° GSC-1108 Basal gyttja 184.2 over silty clay 191.7 107.9 11 380 Lewis, 1969; Lowdon et al.,
Lake 191.7 81°59.9° 10150+ 190 118.2 89.3 12090 1971
24 Thibeault Hill ~ 46° 21.0° GSC-638 Basal gyttja ca. 302 over 312.4 161.4 10810 Lewis, 1969; Lowdon and
Lake 312.4 79° 28.0° 9820 £ 200 silty clay 250.2 122.4 11620 Blake, 1968
25 Kilrush Lake 46° 05.0° GSC-1246 Basal gyttja 330.5 over silty clay 347 211.6 10 790 Harrison, 1972; Lowdon
347 79° 28.0° 9860 + 270 225.7 166.1 11810 and Blake, 1975
26 Morel Lake 194 46° 16.3’ GSC-1275 Basal gyttja 180.2 over silty clay 194 20.1 11270 Harrison, 1972; Lowdon
78°48.0' 10100 £ 240 252.9 -24.0 12070 and Blake, 1975
28a Mackinac 45° 49.1° M-2337 Tree root (Tsuga) in growth 138.5 108.7 8720 Crane and Giriffin, 1972
Straits 175.8 84° 43.8’ 8150+ 300 position 138.5 90.8 101.7 9440
28b Mackinac 45° 49.1° M-1996 Tree stump in growth 139.2 86.3 10690 Crane and Giriffin, 1970
Straits 175.8 84°43.8’ 9780+ 330 position 139.2 90.8 67.5 11 760
Géographie physique et Quaternaire, 59(2-3), 2005
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Indicators of former lake levels in the Michigan, Huron and Georgian Bay basins, and Georgian Bay-North Bay lowland

Site no.; lake, bog Lat.Nand Laboratory Material dated, Present  Original Cal.age References
surface elevation' Long.W  no.and date elevation (m asl) and elevation? lake years
stratigraphy andref. elevation* BP®
uplift (m)3
29b Bruce Mines  46° 17.8’ GSC-1359 Plant detritus bed 174.9 177.4 129.3 8950 Lewis and Anderson, 1989
Bog 177.4 83° 44.6’ 8160 + 220 enclosed in clay 137.0 122.1 9420
29c Bruce Mines  46° 17.8’ GSC-1360 Lowest plant detritus bed 174.1 177.4 97.3 10700 Lewis and Anderson, 1989
Bog 177.4 83°44.6° 9560+ 1603 enclosed in clay 137.0 86.3 11150
30a West Lake 44° 30.3' GSC-1966 Gyttja bed 125.3 enclosed in 125.3 110.8 9150 Lewis and Anderson, 1989
Huron 175.8 83° 08.0° 8460 + 180 silty clay 39.0 108.6 9630
30b West Lake 44° 30.3’ GSC-1943 Top woody peat bed 124.5 124.5 108.7 9450 Lewis and Anderson, 1989
Huron 175.8 83° 08.0° 8830 £410 enclosed in silty clay 39.0 103.2 10 470
30cd West Lake 44° 30.3’ Pooled age Top and base woody peat bed 124.3 103.8 10330 Lewis and Anderson, 1989
Huron 175.8 83°08.00 9370+ 140" 124.35 enclosed in silty clay 39.0 101.1 10 760
'GSC-1935 9370 + 180; 'GSC-1982 9370 + 220
30e West Lake 44° 30.3' GSC-1965 Base woody peat bed 124.2 124.2 104.5 10210 Lewis and Anderson, 1989
Huron 175.8 83° 08.0° 9170 £ 140 enclosed in silty clay 39.0 102.7 10 520
30f West Lake 44° 30.3’ GSC-1983 Base woody peat bed 124.5 124.5 101.1 10800 Lewis and Anderson, 1989
Huron 175.8 83° 08.0° 9680 £ 110 enclosed in silty clay 98.1 11220
31a Flummerfelt  45°22.0° GSC-1847  Populus driftwood 122.7 in clay 122.7 915 8190 Sly and Sandilands, 1988
Basin 175.8 81°31.7 7740 £ 360 111.7 82.8 9010
31b Flummerfelt  45° 22.0° GSC-1830 Salix driftwood 122.4 in clay 122.4 56.2 10750 Sly and Sandilands, 1988
Basin 175.8 81°31.7 9770 + 220 111.7 38.3 11 590
32a Middle Island 45° 16.5 BGS-71 White cedar driftwood 143.8 143.8 56.0 11980 Sly and Lewis, 1972;
Channel 175.8 81°38.2” 10305+78 104.4 46.1 12360 This study
32b Middle Island 45° 16.377 BGS-2166R Poplar driftwood 140.7 140.7 96.1 9610 This study
Channel 175.8 81°38.13 8745+75 104.6 92.4 9880
32c Middle Island  45° 16.38° BGS-2240 White cedar driftwood 135.0 135.0 85.9 9940 This study
Channel 175.8 81°38.14° 9039 £ 80 104.6 80.8 10 280
32d Middle Island  45° 16.38° BGS-2241 White cedar driftwood 135.0 135.0 90.6 9590 This study
Channel 175 81°38.14 8742+75 86.7 9880
33 Wood Lake 218 46° 12.9’ GSC-606 Basal gyttja 205 over clay 218 114.9 10570 Lewis, 1969; Lowdon et al.,
81°44.1 9620 + 250 183.1 92.4 11260 1967
34a Smoky 45° 38.1° 1-4037 Top of lowest gyttja189 below 192.7 169.9 6970 Lewis, 1969
Hollow Lake 192.7 82° 04.3 6270 £ 190 silty clay 119.0 167.0 7350
34b Smoky 45° 38.1 1-4036 Base of lowest gyttja 187.7 192.7 132.8 10180 Lewis, 1969
Hollow Lake 192.7 82° 04.3 9130 £ 140 over silty clay 119.0 126.6 10 520
38 South Lake 43° 53.3 GSC-3656 Plant detritus 107.3 under 107.3 89.3 10 440 Lewis and Anderson, 1989
Huron 175.8 82°14.7 9350+ 90 clayey silt 33.2 88.0 10 690
39 South Lake 43° 53.7 GSC-3577 Peat 103.2 and shells in silty 103.2 88.3 9810 Woodend, 1983; Lewis and
Huron 175.8 82°17.2° 8890 + 100 clay under silty clay 32.9 86.5 10190 Anderson, 1989
40 Flummerfelt 45° 21’ GSC-1397 Subaerial peat under laminated 144.4 83.4 10500 Sly and Lewis, 1972; Sly
Patch 175.8 81° 32.9° 9440 + 160 clay 144.4 110.5 76.4 10880 and Sandilands, 1988
41 Tanner Lake 46° 26.9’ Beta-19151 Basal gyttja 236.4 over 250.5 112.8 10490 Lewis and Anderson, 1989
250.5 80° 01.0° 9420+ 120 laminated clay 250.2 100.0 10 800
42ab South Bay  45° 34.9’ Pooled age Seeds 163.3 in plant detritus 163.3 121.7 8990 Rea etal, 1994a
175.8 81° 59.5° 8130 + 65™ bed in silty clay and clay 116.9 118.9 9210
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Indicators of former lake levels in the Michigan, Huron and Georgian Bay basins, and Georgian Bay-North Bay lowland

Site no.; lake, bog Lat.Nand Laboratory Material dated, Present  Original Cal.age References
surface elevation' Long.W  no.and date elevation (m asl) and elevation? lake years
stratigraphy andref. elevation®* BP®
uplift (m)3
MAA-8773 8075 + 90 ; "AA-8772 8185 + 90
42¢ South 45° 34.9’ GSC-1979 Upper plant detritus 160.3 160.3 116.7 9150 Lewis and Anderson, 1989
Bay 175.8 81° 59.5’ 8310+ 130 beneath silty clay 117.0 112.7 9450
42d South Bay 45° 34.9° AA-8774  Shell 162.7 enclosed in silt 162.7 108.4 9900 Rea etal, 1994a
175.8 81° 59.5° 8910+ 956 and clay 116.9 103.5 10 200
42e South Bay 45° 34.9’ GSC-1971  Lower plant detritus with shells 159.5 101.0 10 160 Lewis and Anderson, 1989
175.8 81° 59.5° 9260 +£ 290 under silty clay 116.9 83.3 11 080
42f South Bay 45° 34.9’ AA-8775  Shell 162.6 enclosed in silt 162.6 86.0 11100 Rea etal., 1994a
175.8 81° 59.5’ 9790 + 956 and clay 116.9 80.8 11 330
43 Blind River 46° 12.8’ GSC-514  Lagoonal basal gyttja 214 218 155.8 9550 Lowdon et al., 1967
Bog 218 82°56.3' 8760+ 2503 behind barrier beach 221 148.3 147.9 9960
44 Wolseley Bay  46° 06.4 GSC-1178 Basal gyttja 191.6 over clay 206.4 136.6 8770 Lewis and Anderson, 1989
lake 206.4 80° 20.5’ 8110+ 170 209.7 125.2 9280
45 Monet Lake 46° 09.8’ GSC-1389 Basal gyttja 190.2 over silt 201.5 124.3 9020 Lewis and Anderson, 1989
201.5 80° 21.0° 8250 + 180 215.1 114.2 9440
46 Dreany Lake 46°17.4° GSC-815  Basal gyttja 204 over clay 213.5 125.8 9000 Lewis, 1969; Lowdon et al.,
2135 79°21.8’ 8200 + 160 246.0 114.5 9410 1971
47 North Bay 46° 17.4° GSC-821  Basal gyttja 207 211.8 120.9 9110 Lewis, 1969; Lowdon et al.,
Lake 211.8 79°20.1 8320+ 170 over varved clay 246.6 110.2 9490 1971
48 Trout Mills 46° 19.8 GSC-1263 Wood 212 under clay between 212 132.6 8630 Harrison, 1972; Lowdon
delta 79°24.2 8050 + 190 cross-bedded sand units 248.6 117.7 9210 and Blake, 1975
49 Amable du 46° 171 GSC-1097 Wood 242 in sand 242 136.6 9550 Harrison, 1972; Lowdon
Fond River 78° 57 8750 £ 140 over varved clay 243.3 124.6 9930 and Blake, 1975
50 Pure Lake 46° 8.7’ Beta-19153 Basal gyttja 206 over masssive 216.4 1291 9550 Lewis and Anderson, 1989
216.4 80° 32.7 8750+ 140 clay 208.3 118.8 9930
51a Lake 43° 10’ M-1571 Shell 71.3 in sand above 71.3 68.2 7680 Crane and Giriffin, 1965
Michigan 175.8 86° 50’ 7400 +500° eroded clay 12.8 67.1 8750
51b Lake 44° 00.0° M-1972 Shell 68.8 in sand above 68.8 64.6 8130 Crane and Giriffin, 1970
Michigan 175.8 87°14.00 7570+ 250° eroded clay under silty clay 16.0 63.9 8620
51c Lake 43° 08.4° M-1736 Shell 79.8 in sand above eroded 79.8 76.4 8000 Crane and Giriffin, 1968
Michigan 175.8 86°48.77 7580 +350° clay under silty clay 12.8 75.5 8790
52 Thompson 45° 23 M-1012 Tree stump 171.3 in growth 171.3 152.0 7800 Crane and Giriffin, 1961
Harbour 175.8 83° 36’ 7250 £ 300 position on lakebed 77.6 148.4 8370
53b Rains Lake 46° 06.1 GSC-1368 Top plant detritus 183.4 under 183.4 154.3 7740 Lewis and Anderson, 1989
192.7 83° 54.1 7090 + 150 sandy silt 119.3 151.5 8040
54 Beaver Island  45° 42.1 M-1888 Tree stump (Pinus resinosa) 166.1 149.5 7440 Crane and Griffin, 1968
175.8 85°25.2° 6788 £ 250 166.1 in growth position 74.6 147.2 7870
63 Mississagi 45° 58.2° AA-8770  Driftwood 103 in silty clay 103 46.0 9930 Rea etal., 1994a
Strait 175.8 83°11.2° 8985 + 100 121.8 40.6 10 240
64 West Lake 44° 54.9 AA-8871 Driftwood 110 in silty clay 110 80.8 10270 Rea etal., 1994a
Huron 175.8 83°00.3 9235 + 100 56.5 78.7 10510
65 Colpoy’s Bay  44°45.9’ n.r.’ In situ Thuja tree stump 166 166 141.5 8400 Larson and Kelly, 1994
175.8 81° 07’ 7660 + 50 82.2 140.8 8500
66 Bad Neighbour 45°20.49' Pooled ageP White cedar tree stump 132.6 132.6 741 10500 Blasco etal., 1997;
175.8 81°48.000 9320+30 in growth position 105.9 72.9 10570 This study
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TABLE Il (continued)

Indicators of former lake levels in the Michigan, Huron and Georgian Bay basins, and Georgian Bay-North Bay lowland

Site no.; lake, bog Lat.Nand Laboratory Material dated, Present  Original Cal.age References
surface elevation' Long.W no.and date elevation (m asl) and elevation? lake years
stratigraphy andref. elevation®* BP®
uplift (m)3

PBeta-98369 9360 + 805; PBeta-103563 9300 + 50; PBeta-104923 9320 + 50

67 Lucas Island 45°23.39° Beta-87732 White cedar tree stump 157.5 157.5 112.4 9480 Blasco et al., 1997;
Channel 175.8 81°45.23 856070 in growth position 109.7 111.2 9570 This study
68ab Lucas Island 45°23.36" Pooled age® White cedar tree stump 159.1 159.1 119.1 9090 Blasco et al., 1997;
Channel 175.8 81°4529° 8200+40 in growth position 109.3 1171 9250 This study

9Beta-81977 8200 + 60; ‘Beta-81978 8200 + 60

69 Lucas Island 45°23.36° Beta-81979 White cedar tree stump 158.4 158.4 125.0 8480 Blasco et al., 1997;
Channel 175.8 81°45.29° 7770+60 in growth position 109.3 123.8 8600 This study

70 Cassels Cove 45° 19.04° Beta-87733 Tamarack stump 172.8 172.8 142.9 8230 Blasco et al., 1997;
175.8 81°43.50° 749080 in growth position 105.6 141.5 8380 This study

71 Cassels Cove 45°19.04' Beta-87734 Cedar tree stump 172.8 172.8 1451 7980 Blasco et al., 1997;
175.8 81°43.50° 7230+90 in growth position 105.6 143.6 8150 This study

72 Wye Marsh 44° 43.4 n.r.’ Pine wood 174 at base 174 140.1 8660 Chittenden, 1990
176 79° 51.5 7940 £ 110 of marsh sediment 105.2 137.1 8950

74a Olson Forest  41° 49’ ISGS-2036 Oak tree stump 151 151 147.8 8970 Chrzastowski et al., 1991
175.8 87° 18 8120+ 100 in growth position 9.1 147.5 9270

74b Olson Forest  41° 49’ Beta-34357 Oak tree stump 151 151 147.5 9290 Chrzastowski et al., 1991
175.8 87°18 8380 = 100 in growth position 9.1 147.2 9500

75a Little Eagle 45° 08.54° Beta-103564 White cedar stump 166.7 166.7 134.0 8790 This study

Harbour 175.8 81°35.09° 8020+ 60 in growth position 97.7 131.8 9010

75b Little Eagle 45° 09’ BGS-2167  White pine driftwood 166.7 166.7 131.9 8990 This study

Harbour 175.8 81° 35’ 8126 + 90 98.1 129.0 9250

75c Little Eagle 45° 09’ BGS-2168 Small white cedar in situ stump 166.8 134.8 8700 This study

Harbour 175.8 81° 35’ 7972+ 100 166.8 98.1 131.9 8990

76 Southwest Lake 42° 30.0° ISGS-187  Forest bed 176.2, branches 176.2 174.0 8060 Fraser et al., 1990
Michigan shore 87° 50.0° 7370 £90 and roots 8.1 173.9 8310

77 Stanley 45° 48.3 PSVe Sand in silty clay over eroded 125.8 97.3 8410 Lewis et al., in press
unconformity 175.8 84° 16.8’ 7900+ 300 clay 125.8 95.5 90.6 9110

FB Flower pot 45° 16’ Estimated Sand beach ridges 125.3 over 125.3 941 8410 Blasco, 2001

Beach 175.8 81° 37 7900 + 300 plant detritus 104.3 86.9 9110

1. Surface elevation (m asl) of sampled lake or bog.

. Present elevation (m asl) of feature representing former level of a Great Lake.

. Uplift (m) since 10.6 ka BP (12.6 cal ka BP) from reference isostatic surface (Fig. 6).

. Elevations (m asl) computed using equation (9) for the age limits of the calibrated age range of the lake-level indicator as listed in column 7.

(S0 -GV I V]

. Ages at limits of the calibrated range (1c) of the lake-level indicator date and its uncertainty reported in column 3. Calibration by the Calib 5.0.1 program
(Stuiver and Reimer, 1993) using the INTCAL98 calibration dataset (Stuiver et al., 1998).

. Shell age uncorrected for reservoir effect.

o

7. n.r.= not reported.
8. PSV = Age by comparing paleomagnetic secular variation with a *“C-dated standard for northeastern U.S.A. (King and Peck, 2001).
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TABLE Il
Present and early Holocene elevations' of North Bay, Georgian Bay, Huron and Michigan sills (m above present sea level)
North Georgian Huron basin sills
Age years Bay Bay sill LaCloche Lowland Deane-Tovell Saddle Michigan basin sill

BP cal BP Dalles Whitefish Little Current Yeo-Fitzwilliam Lucas Echo Head Mackinac River
0 0 2042 178° 180° 1713 138* 1444 145* 1314
6000 6840 158.2 144.5 148.7 143.4 117.9 123.7 125.5 115.2
7000 7840 141.4 132.1 137.2 133.2 110.4 116.3 118.4 109.4
8000 8890 118.0 115.0 121.2 119.2 100.0 106.0 108.4 101.4
9000 10 190 78.2 85.8 93.9 95.2 82.3 88.5 915 87.7
10 000 11 470 22.7 45.2 55.0 61.7 57.6 64.1 67.9 68.6
11 000 12 920 -68.4 -21.6 -6.4 6.8 171 241 29.1 37.2

1. Computed using Equation 9.

2. Sill elevation; full discharge water level is 9 m. higher. Estimated from Lewis (1969).

3. Drom Lewis and Anderson (1989).
4. This study

levels through the Post-Algonquin phases is recorded further
by additional, but somewhat delayed, organic sediment accu-
mulation in small basins south of Georgian Bay (5, 6), near
North Bay (24, 25) and on Manitoulin Island (8).

11 000-10 000 cal BP

Relative lake levels continued to fall toward the level of drift-
wood deposited in Georgian Bay (31b). During the lowstand,
trees grew in the Straits of Mackinac (28b), and organic sed-
iments accumulated at relatively low-elevation at northern and
southern Huron basin sites (29c¢, 30f). A subsequent abrupt
lake-level rise and inundation is recorded by a shift to more
aquatic species in Georgian Bay peat at site 7 (Lewis and
Anderson, 1989). The lake level rise at about 10 800 cal BP
(9500 BP) was possibly in response to the onset of outburst
floods from upstream glacial Lake Agassiz through its eastern
outlets to Superior basin (Clayton, 1983; Teller and Thorleifson,
1983; Farrand and Drexler, 1985; Lewis and Anderson, 1989;
Breckenridge et al., 2004; Breckenridge and Johnson, 2005).
The rise of lake level during high-discharge events may be
related to constrictions in the Mattawa River valley at the
Rutherglen Moraine (Harrison, 1972; Chapman, 1975) and in
Ottawa River valley at the Rankin Constriction (Lewis and
Anderson, 1989) (Fig. 1). The maximum of the lake-level rise
possibly exceeded the altitude of the Sheguiandah site on
Manitoulin Island (9¢, 9d) where swamp organic sediment
began accumulating just after the lake-level rise. Some sites
with thick clay beneath gyttja (41, 33) suggest the waters of
this inundation carried abundant fine-grained sediment in sus-
pension. This pulse of higher water (Lake Mattawa) was appar-
ently short-lived, and its decline may account for the emer-
gence of small basins and onsets of gyttja sedimentation or
peat accumulation at several sites (9c, 9d, 29c, 30b, 30c, 30d,
30f, 33, 34b, 38, 40, 41).The lake level drop was low enough
to expose the eastern Huron basin lakebed for tree growth at
site 66. Within a century or so, rising water level allowed for
deposition of driftwood (64 then 32c), and terminated peat

accumulation at slightly higher sites in southern Huron (39)
and Georgian Bay (7a) basins.

10 000-9000 cal BP

The rising lake level that terminated peat accumulation (7a)
continued to rise to a second high-level Lake Mattawa phase
(about 9800 cal BP, 8700 BP) that inundated Pure Lake (50),
and possibly culminated at a high enough level to induce sed-
iment aggradation in Amable du Fond River (49) and to con-
struct a barrier lagoon north of Lake Huron (43) (Fig. 10B).
Thick clay deposits beneath gyttja in Pure Lake suggest that
this water-level rise was also accompanied by a high influx of
fine-grained suspended sediment. An extended period of mod-
erately low water level following the Mattawa highstand is indi-
cated by tree growth on the saddle between Huron and
Georgian Bay basins (67, 68a, 68b), and by peaty marsh sed-
iments in southwestern Huron basin (30a) and South Bay,
Manitoulin Island (42a, 42b, 42c). Oddly, an erosional event
and sequence boundary in the deep water sediments of Huron
basin is not recorded at this time of low water level (Fig. 10;
Moore et al., 1994; Rea et al., 1994a).

At about 9050 cal BP (8100 BP) water levels again rose,
transforming sedimentation in South Bay from plant detritus to
clastic silty clay (42a, 42b), and possibly overflowing the North
Bay outlet where delta construction occurred at nearby Trout
Mills (48). Water levels then rose abruptly to the last Mattawa
highstand, likely as a result of overflow from large volumes of
subglacial meltwater discharged during the Nakina ice
advance over the Great Lakes-Hudson Bay divide, and
recorded throughout the Superior basin as a set of 36-40 thick
varves dated 9035 + 170 cal BP or about 7950-8250 BP
(Breckenridge et al., 2004). Although the maximum lake rise
in Huron and Michigan basins is not known, it apparently fell
short of the Sheguiandah archeological site on Manitoulin
Island as it is not recorded in the peat sequence there
between dated samples 9b, 9¢ and 9d (Anderson, 2002). Land
emergence following this short-lived high Mattawa phase lake
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FIGURE 10A. Plot of original elevations of numbered
water-level indicators (Table Il) in Huron and Georgian Bay
basins relative to area B (Fig. 5), inferred lake surface, and
potential overflow outlet elevations (Table Ill) vs. age in cal-
ibrated and radiocarbon years BP. Downward-pointing tri-
angles indicate data implying a lake level below the plotted
site, as for in situ tree stumps. Upward-pointing triangles
are for data implying a lake level above the plotted site, as
for shallow water mollusks or driftwood. Right-pointing tri-
angles indicate data implying isolation of a small basin by
a falling large lake level. Left-pointing triangles indicate data
implying a transgression by a large lake. See Figure 10B for
a plot of all data in the 10 000-7500 cal BP interval. The
inferred lake level for Huron basin is shown by the thick
continuous line (dotted for Georgian Bay basin where dif-
ferent). The elevation history of potential overflow outlets
(Table lll) is portrayed by a dotted band (North Bay—NB) or
by dashed curves (Huron basin sills—H, Georgian Bay
basin sill-G, and Michigan basin—M). The Algonquin lake
phases are Kirkfield Algonquin (K), Main Algonquin (M),
and Post-Algonquin (P). MS and ES are middle and early
Stanley lowstands in Huron basin, respectively. In Georgian
Bay basin, the equivalent lowstands are named Hough.
The horizontal lines above the X-axis, named by colours,
indicate age and duration of lowstand sequence bound-
aries inferred from seismic reflection and core data from
Moore et al. (1994) and Rea et al. (1994a).

Diagramme de laltitude initiale des indicateurs des anciens
niveaux lacustres (tabl. Il) pour les bassins du lac Huron et
de la baie Géorgienne relativement a la région B (Fig. 5),
ou les points donnent l'altitude des exutoires (tabl. Ill), I'age
en années étalonnées et conventionnelles. Les triangles
pointant vers le bas font référence a un niveau lacustre
inférieur au site reporté, comme dans le cas des souches
d'arbres in situ. Les triangles pointant vers le haut font réfé-
rence a un niveau lacustre supérieur au site reporté,
comme dans le cas des mollusques en eau peu profonde
ou de bois flottant. Les triangles pointant vers la droite font
référence a l'isolement d’un petit bassin suite a baisse du
niveau d’un grand lac. Les triangles pointant vers la gauche
font référence a la transgression d’'un grand lac. Voir la
figure 10B pour le diagramme des données comprises
dans l'intervalle 10 000-7500 cal BP. Le niveau lacustre
reconstitué du lac Huron est représenté par un trait gras
continu (en discontinu pour la baie Géorgienne lorsqu’il
différe). Lhistorique de l'altitude des exutoires potentiels
(tabl. Ill) est représenté par une bande en pointillé (North
Bay—-NB) ou par les courbes en tireté (seuils du bassin du
lac Huron—H, seuil de la baie Géorgienne—G et bassin du
lac Michigan—M). Les phases du Lac Algonquin sont les
suivantes : Kirkfield Algonquin (K), Algonquin principal (M)
et Post-Algonquin (P). MS et ES identifient respectivement
les niveaux moyen et ancien de Stanley du lac Huron.
Dans le bassin de la baie Géorgienne, les niveaux équi-
valents sont nommés Hough. Les lignes horizontales au-
dessus de l'abscisse, nommées par une couleur, indiquent
I'age et la durée des limites déduites a partir de données
de réflexion sismique et de forage issues des travaux de
Moore et al. (1994) et de Rea et al. (1994a).

FIGURE 10B. Expanded plot of original elevations of water-
level indicators for the 10 000-7500 cal BP period in Huron
and Georgian Bay basins relative to area B (Fig. 5), inferred
lake surface, and potential overflow outlets vs. age in cali-
brated and radiocarbon years BP. Symbols as described in
Figure 10A.

Diagramme de Ialtitude initiale des indicateurs des anciens
niveaux lacustres pour la période 10 000-7 500 cal BP
pour les bassins du lac Huron et de la baie Géorgienne
relativement a la région B (Fig. 5), ou les points donnent
l'altitude des exutoires, '4ge en années étalonnées et con-
ventionnelles. Les symboles sont les mémes qu’en A.



202

is documented by onsets of organic sedimentation at Wye
Marsh, southern Georgian Bay (72), gyttja deposition in small
basins northeast of Georgian Bay (44, 45, 46, 47), and tree
growth at low elevations now under water in Huron basin (75a,
75c) and possibly in the Straits of Mackinac (28a).

9000-7000 cal BP

Lake-level decline from the last high Mattawa phase con-
tinued down to levels defined by the Stanley unconformity (77)
in Huron basin (Lewis et al., in press) and the Flowerpot beach
(FB) in Georgian Bay basin (Fig. 10). This lowstand phase,
which continued for several centuries, formed the Light Blue
reflector and sequence boundary in deep water sediments
(Moore et al., 1994; Rea et al., 1994a), and allowed tree
growth on the Deane-Tovell saddle between Huron and
Georgian Bay basins (65, 69, 70). Lake-level rise from this
low phase by 7.5 ka BP (8.3 cal ka BP) is suggested by the
chronology of the Light Blue reflector in northern Huron and
Georgian Bay basins (Moore et al., 1994).

The final increase in lake levels from the low phases of late
Lake Stanley and late Lake Hough in Huron and Georgian Bay
basins, respectively, probably occurred about 8000 cal BP, late
enough to allow tree growth in eastern (71) and western (52)
Huron basin, but early enough to transgress the Rains Lake
site (53b) in northwestern Huron basin. At this elevation, the
water surface had risen to the level of the Nipissing beach at
North Bay, indicating that the lake in Michigan-Huron-Georgian

Uncalibrated radiocarbon age (years BP)
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Bay basins was overflowing the North Bay outlet at full dis-
charge. As this outlet uplifted faster than other parts of the lake
basin, relative lake levels rose throughout most of the upper
Great Lakes basins as the well-known Nipissing transgression,
manifested in the present data by transgression of the Rains
Lake (53b) and Smoky Hollow Lake (34a) sites (Fig. 10A).

INTERPRETATION OF WATER-LEVEL HISTORY
OF THE MICHIGAN BASIN

Because of their connection via the Indian River lowland and
Straits of Mackinac (Fig. 1), high water levels were always at
common elevations in the Huron and Michigan basins, as at
present, following retreat of ice from their northern regions
(Eschman and Karrow, 1985; Hansel et al., 1985). Consequently,
the history of lake-level variation above the Michigan basin sill
defined in the Huron basin is applicable to the Michigan basin as
shown in Figure 11. Only evidence of lowstands and other
unique indicators of Michigan basin lake elevations are shown
and discussed here.

Submerged in situ tree stumps in southern Lake Michigan
(the Olson Forest of Chrzastowski et al., 1991) have been tra-
ditionally interpreted as having been drowned in the Nipissing
transgression (Chrzastowski and Thompson, 1992, 1994;
Colman et al., 1994b). However, in this analysis, the Olson tree
stumps (sites 74a, 74b at 8.2-8.4 ka BP, 9.2-9.4 cal ka BP, in
Figs. 1 and 11) appear tens of metres above the North Bay

FIGURE 11. Michigan basin plot of
original elevations of water-level
indicators relative to area B

(Fig. 5), inferred lake surface, and
potential overflow outlets vs. age in
M K calibrated years BP and radiocar-
bon age in ka BP. Water-level indi-
cators for the Huron basin above
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data specific to the Michigan basin.
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tively. Otherwise symbols and lines
as for Figure 10A.
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outlet, and could not be affected by the Nipissing transgres-
sion. A rise of water level to the final highstand of Lake Mattawa
follows the Olson Forest after 8.2 ka BP (Fig. 11). This flooding
event seems to have been the cause of forest drowning.

As in the Huron and Georgian Bay basins, an extreme
decline in lake level following the last Mattawa highstand is
suggested in the Michigan basin by the occurrence of shallow-
water sediments and molluscan fauna in the deepwater envi-
ronment of central Lake Michigan (51a, 51b, 51c) (Lewis et al.,
in press). A final recovery of lake level to an overflowing con-
dition at the North Bay outlet probably occurred about
8.1-7.8 cal ka BP, allowing for tree growth in northern Michigan
basin (54). From this time forward, relative lake level rose under
control of the North Bay outlet as the Nipissing transgression.

CLOSED LOWSTAND CONDITIONS

During the period 8.95-8.3 cal ka BP (8.05-7.4 ka BP) lake
levels (late Stanley in Huron basin, late Hough in Georgian
Bay basin, and late Chippewa in Michigan basin) were below
the sill of the North Bay outlet, the lowest possible overflow
outlet at the time (Figs. 10B-11). Thus the late Stanley, late
Chippewa, and late Hough phases were hydrologically closed
lakes at their lowest level, and as such may have resulted from
the impact of a severe dry climate in which evaporative water
losses exceeded water inflows by precipitation and runoff. The
inference of dry climate is supported by the presence of the-
camoebians that indicate a more saline lake environment, and

FIGURE 12. Paleogeographic lowstand map of Huron, Erie and
Ontario basins at about 7.8 ka BP (8.6 cal ka BP) showing the
reduced area of inferred closed (terminal) lakes whose shorelines are
well offshore from the present lake shores. E = Erie basin,
GB = Georgian Bay basin, H = Huron basin, and O = Ontario basin.

Carte paléogeographique du bas niveau lacustre a environ 7,8 ka BP
(8,6 cal ka BP) pour les bassins des lacs Huron, Erié et Ontario. La
carte montre la superficie réduite des lacs fermés dont les anciens
rivages étaient bien au large des rivages actuels. E = bassin du lac
Erié, GB = bassin de la baie Géorgienne, H = bassin du lac Huron et
O = bassin du lac Ontario.
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by climate transfer function analysis of pollen assemblages
which suggests less precipitation and warmer temperatures at
7.7 ka BP than today in the Georgian Bay area (Blasco, 2001).
Other lowstands around 9.3 and 9.8 ka BP (10.5 and
11.2 cal ka BP) may have also been closed briefly.

Possible shorelines for the dry climate-induced closed low-
stands at 7.8 ka BP (8.6 cal ka BP) are illustrated in a paleo-
geographic reconstruction of the Huron, Erie and Ontario
basins on Figure 12. The northern Huron lowstand shore is
tied to the Stanley unconformity beneath northwestern Lake
Huron (Hough 1962; Lewis et al., in press). The Georgian Bay
lowstand shore is tied to the low-level Flowerpot beach in the
entrance to Georgian Bay (Blasco, 2001). Water bodies in
these basins and those beneath southern Lake Huron were
isolated closed lowstands, well offshore from the present lake
boundaries. The Erie lowstand shore is tied to a submerged
beach in eastern Lake Erie (Fig. 9E; Coakley and Lewis, 1985;
Lewis et al., 2004) at a lake level that would have extended
into the central Lake Erie area before that sub-basin became
mostly infilled with sediment (Sly and Lewis, 1972). The
Ontario basin is assumed to have been impacted by the same
dry climate that affected the other basins. Under these condi-
tions, its lowstand shoreline was inferred at a level that made
its basin area-to-lake area ratio equal to that of the Huron
basin (Bengsston and Malm, 1997).

DISCUSSION
GEOPHYSICAL MODELS OF ISOSTATIC ADJUSTMENT

With knowledge or estimates of the elastic and viscous
properties of Earth’s lithosphere and mantle, respectively, geo-
physical models compute the crustal isostatic response fol-
lowing a known or inferred history of ice sheet loading and
pattern of deglaciation. Clark et al. (1994) used this approach
to evaluate isostatic movements during deglaciation of the
Great Lakes basin. They successfully illustrated the increasing
amplitude of postglacial isostatic rebound towards the north
and northeast in the direction of past thicker ice and ice retreat
in accordance with the evidence of deformed paleo-lake
shorelines. They applied an innovative approach to constrain
and calibrate their model by using geological knowledge of
large-lake drainage transfers from northern to southern outlets
as basins were differentially tilted during the Algonquin and
Nipissing phases. Lake-level history was derived by tracking
the upward movement of overflow sills through time. Lake-
level indicators were not tracked separately from the sills with
the result that possible episodes of hydrologic closure could
not be detected.

Gravitationally self-consistent models of glacio-isostatic
adjustment on a global scale have been progressively devel-
oped and improved over the past few decades (Peltier, 1998).
These models are constrained and calibrated to relative sea-
level histories at ocean-continent boundaries. Model estimates
of isostatic adjustment are produced for continental interiors,
and one of these, the ICE-3G model (Tushingham and Peltier,
1991), has been compared favourably with short-term evi-
dence of tilting of the Great Lakes basins derived from trend
analysis of lake-level gauge records (Tushingham, 1992).
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However, over the longer term, the geophysical model results
are not in complete agreement with past events in the water-
shed. The relative performances of two geophysical models
and the empirical model were assessed by comparing the ele-
vations of the northern and southern outlets from the upper
Great Lakes basins during the Algonquin and Nipissing
drainage transfers which are known to occur at about
10.5 ka BP and 5 ka BP, respectively, from independent geo-
logical evidence (Karrow et al., 1975; Karrow, 1980; Monaghan
et al., 1986). Outflows were transferred from the Kirkfield out-
let to the Port Huron and possibly Chicago outlets during the
Algonquin transfer (Fig. 7A), and from the North Bay to the
same southern outlets during the Nipissing transfer. Estimates
of the elevations of the overflow sills and timing for these

Algonquin elevations at two-outlet phase
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FIGURE 13. Deviations of sill altitudes when they should have been
of equal elevation during drainage transfers from northern to southern
outlets of the Algonquin and Nipissing lake phases for the Clark et al.
(1994) and ICE-4G geophysical models and the empirical model used
in this paper. Sill elevations, reduced relative to Port Huron at the
southern end of the Huron basin, show that the empirical uplift model
used in this study best describes (lowest deviations) the relative ele-
vations of outlets during drainage transfers.

Ecarts entre les altitudes des seuils lorsqu’elles devraient étre égales
aux autres durant les transferts du drainage des exutoires septen-
trionaux aux exutoires méridionaux des phases lacustres Algonquin
et Nipissing pour les modéles géophysiques de Clark et al. (1994) et
de ICE-4G et le modéle empirique utilisé dans cette étude. Les alti-
tudes des seuils, ajustées a celles du Port Huron a I'extrémité sud du
bassin du lac Huron, montrent que le modele empirique de souleve-
ment glacio-isostatique utilisé dans cette étude rend mieux compte
(écarts plus faibles) des altitudes relatives des seuils durant les trans-
ferts de drainage.
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drainage transfers when northern outlets rose isostatically
above southern outlets were provided for the ICE-4G glacio-
isostatic model (Peltier, 1995, 1996) courtesy of W.R. Peltier.
Differences between Port Huron and the other outlets which
should have been near zero at the times of the drainage trans-
fers are shown in Figure 13. The empirical model performs
best with northern and southern sills being within two metres
of each other during transfers. The Clark et al. (1994) model is
similar, although the best agreement for the Algonquin trans-
fer was obtained at 10 ka BP, rather than the expected
10.5 ka BP, and the Nipissing-age transfer at Chicago differed
by 3 m. Variances in sill elevations during transfers for the
ICE-4G model are larger, and ranged from 3.5 to 10 m.

Near and beyond the maximum margins of the ice sheets,
the geophysical models predict crustal uplift as a forebulge of
modest relief compared with the amplitude of depression
beneath the centre of the ice load. This has been demon-
strated in ice-marginal Atlantic and Arctic coastal regions
(Barnhardt et al., 1995; Dyke, 1998). The forebulge effect has
not been recognized from empirical evidence in the continen-
tal region adjoining or south of the Great Lakes basin.
However, ice marginal areas in this region could have under-
gone uplift and subsidence associated with the growth, migra-
tion and decay of a glacio-isostatic forebulge (Colman et al.,
1994a), and some evidence for subsidence exists, for exam-
ple, anomalies in modern tilting of the Erie and southern
Michigan basins (Mainville and Craymer, 2005).

Benefits of geophysical models are their ability to compute
both vertical and horizontal earth movements associated with
the isostatic process, and to relate these estimates to an
absolute datum such as present sea level. Confidence in pre-
dictions of past crustal movements in the Great Lakes region
by geophysical models, especially deformation over several
millennia, will be increased markedly when these models are
calibrated and constrained by the empirical observations of
glacio-isostatic adjustments within the same region.

PREVIOUS RECOGNITION OF LOW LAKE LEVELS
IN HURON BASIN

An extreme lowering of lake level in the Huron and Michigan
basins after the Algonquin phases was predicted by Stanley
(1936) when the ice sheet margin receded from the isostati-
cally-depressed lowland drainage route past North Bay,
Ontario, to the Mattawa and Ottawa river valleys. Sediment
unconformities, discovered by Hough (1955, 1962), confirmed
lake-level lowstands in each of the Michigan and Huron basins;
these lowstands were named Chippewa and Stanley, respec-
tively. Hough (1962) inferred a delay in isostatic adjustment so
that, in his model, the North Bay sill remained at its depressed
Algonquin level, and Lake Stanley could be interpreted as an
open overflowing water body (Lewis et al., in press).

Although a regional advance (Marquette readvance) of the
Laurentide Ice Sheet about 500 km wide reached the south-
ern coast of the Superior basin at 10 ka BP (11.5 cal ka BP)
(Lowell et al., 1999), and ice retreat was slowed during the
Younger Dryas in eastern Ontario and western Québec
(Simard et al., 2003), there is no evidence of ice advance or
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of delayed isostatic recovery in the Georgian Bay-North Bay
outlet region, about 300-500 km east of the Superior basin
(Dyke et al., 2003). As a result, it is highly unlikely that rebound
was delayed significantly and, at the time of late Lake Stanley
(Fig. 10), the recovered outlet was above water level, as was
also interpreted by Lewis et al. (in press). Closed lake condi-
tions for late Lake Stanley are also consistent with the pre-
liminary paleoecological findings based on thecamoebian
analysis of somewhat higher salinity in late Lake Hough, the
equivalent closed water body in the Georgian Bay basin, as
reported by Blasco (2001).

WORKING HYPOTHESIS FOR CLIMATE CHANGE AND
THE HYDROLOGICALLY CLOSED LOWSTANDS

Major shifts in Great Lakes water levels have long been
understood in terms of overflowing lakes. Lake elevations
change as a result of shifting ice dams during glacial retreat or
advance, outlet erosion, or by differential glacio-isostatic
adjustment of the outlets (Eschman and Karrow, 1985; Hansel
et al., 1985; Larsen, 1987; Barnett, 1992; Larson and Schaetzl,
2001). These mechanisms apply to the Algonquin highstand
and the transgression to the Nipissing Great Lakes. The inter-
vening Mattawa high phases (Lewis and Anderson, 1989) are
also considered to be overflowing lakes, but with variable lev-
els controlled by resistance at hydraulic constrictions down-
stream of North Bay to variable high-discharge flows from
upstream Lake Agassiz or subglacial drainage.

The discovery of low lake levels below the lowest possible
overflow outlet in their basins implies a controlling factor of
excess evaporation (water loss) over precipitation and runoff
(water supply) during a period of dry climate. These lowstands,
the late Chippewa, late Stanley, and late Hough lakes in the
Michigan, northern Huron, and Georgian Bay basins, respec-
tively, are thought to reflect a phase of climatically-driven
hydrologic closure that has not been recognized previously.
The earlier pre-9.5 ka BP (pre-10.9 cal ka BP) lowstands, mid-
dle and early lakes Chippewa, Stanley and Hough, are inferred
to be close in level to, or slightly below, their basin outlets, and
thus were possibly also subject to enhanced evaporative
losses of water. During these early, low lake phases, sustain-
ing upstream inflows were not available, as Lake Agassiz dis-
charge was diverted away from the Great Lakes by advances
of ice in the Superior and Nipigon basins (Thorleifson and
Kristjansson, 1993; Lewis et al., 1994). Dry air from the glacial
atmospheric circulation over the nearby Laurentide Ice Sheet
(Bryson and Wendlund, 1967; David, 1988; Anderson and
Lewis, 2002; Wolfe et al., 2004) probably exerted continuous
evaporative stress on nearby water surfaces, causing draw-
down of these lakes during phases of reduced inflow.

By the time of the latest and longest-duration lowstands
(late Chippewa, Stanley and Hough) the effects of glacial
atmospheric circulation would have diminished greatly owing
to the small size of the remaining Laurentide Ice Sheet, and to
its more distant location relative to the Great Lakes basin. At
this time (8 ka BP, 8.9 cal ka BP), meltwater drainage from
the merged glacial lakes Agassiz-Ojibway began bypassing
the upper Great Lakes basins directly into the Ottawa Valley
(Veillette, 1994; Teller et al., 2002; Teller and Leverington,
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2004). Thus, the Great Lakes watershed suddenly lost a sig-
nificant source of water supply and was susceptible to the
early Holocene dry climate (Edwards et al., 1996).

Atmospheric water supply today can be thought of as a
function of the relative time spent over the Great Lakes basin
by three major air masses over North America. These masses
are the Arctic air from the north (dry and cold), the Pacific air
from the west (dry and warm), and the Maritime Tropical air
bringing moist, warm air north from the Gulf of Mexico (Bryson
and Hare, 1974; Bradbury and Dean, 1993). Once glacial lake
drainage began bypassing the Great Lakes, and as the
Laurentide Ice Sheet downwasted over Hudson Bay, south-
ward incursions of dry Arctic air, previously blocked by the
high Laurentide Ice Sheet, were likely becoming increasingly
frequent (Yu and Wright, 2001), and this dry air may have ini-
tiated or intensified draw down of lake levels to the late
Chippewa, Stanley, and Hough lowstands. The closed low-
stands may have been maintained by enhanced evaporation
into increasingly strong flows of dry, warm Pacific air from the
west. These flows are indicated by abundant evidence of veg-
etation shifts to drought-resistant plant taxa west of the
Michigan basin (Baker et al., 1992; Wright et al., 2004). By
7 ka BP (7.8 cal ka BP), increasing incursions of the Maritime
Tropical air mass were delivering sufficient precipitation, indi-
cated by the appearance of mesic forest species in pollen dia-
grams of the Great Lakes region (Webb Ill et al., 1998) to con-
vert the Michigan, Huron and Georgian Bay water bodies to
open, overflowing lakes, as at present. These changes are
consistent with paleovegetation maps which show a rapid
northward migration through the Great Lakes region of the
mixed-boreal forest biome boundary between 8.0 and
7.0 ka BP (8.9 and 7.8 cal ka BP) (Dyke et al., 2004).

The foregoing hypothesized climatic history is consistent
with changes inferred for small Elk Lake in Minnesota, based
on a comprehensive study of proxy climatic and limnological
indicators (Bradbury and Dean, 1993). Similarly, this climatic
history is supported by a coeval depletion in the '®O compo-
sition of precipitated carbonate in Deep Lake, Minnesota,
attributed by Yu and Wright (2001) to the blocking of southern
air masses by more frequent presence of dry Arctic air.

The phase of reduced and closed lakes at the onset of the
present hydrologic regime offers a unique opportunity to eval-
uate the sensitivity of the Great Lakes system to high-amplitude
climatic change. Understanding the sensitivity of the lakes to
high-amplitude and long-duration change would be a distinct
benefit in the light of the need to project and adapt to future
changes under global warming which may drive the lakes
below instrumentally-observed variability (Mortsch et al., 2000).

ISOTOPIC COMPOSITION OF LAKE WATER

As the evaporation process favours concentration of water
molecules containing the heavier 80 isotope, previous find-
ings of high concentrations of the lighter ®O isotope, similar to
that of glacial meltwater, in fossil valves of Huron basin ben-
thic ostracodes at about 7600 ka BP (Rea et al., 1994a,
1994b; Dettman et al., 1995) appear to contradict the coeval
presence of evaporatively-driven lowstands as postulated in
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this paper and in Lewis et al. (in press). Although surface lake
water isotopic composition undoubtedly became concentrated
in 80 during seasonal periods of rapid evaporation, it appar-
ently did not greatly influence bottom water composition, sim-
ilar to the isotopic stratification found for glacial Lake Agassiz
(Buhay, 1998; Birks et al., in press). Alternatively, adjustments
in the chronology of isotopic events in the Huron and Michigan
basins suggest that the low '®0 inflow occurred prior to the
lowstands (Breckenridge and Johnson, 2005; Breckenridge, in
press), and may have remained as bottom water during the
evaporative phase. Additional research is needed to resolve
the origin of bottom water in the Huron and Michigan basins.

SUMMARY

Postglacial isostatic adjustment in the Great Lakes region
is described here in the time domain using an exponential
decay expression constrained by the observed cumulative dif-
ferential deformation of dominant paleo-lake strandlines in
individual or groups of basins. Vertical earth movement
throughout and following the last deglaciation into the middle
Holocene is characterized as progressive, differential uplift
relative to an area southwest of southern Lake Michigan,
beyond the limit of the last glacial maximum. Rates and ampli-
tudes of uplift increase towards the north-northeast in the
direction of deglacial retreat and thicker ice. A mean relax-
ation time for the uplifting process of 3700 + 700 years was
obtained by averaging solutions for the decay time parameter
at 20 transects throughout the basin where isobases (gradi-
ents) of two strandlines of different age were known. This
relaxation time was used in the exponential expression to
adjust the isobase gradients of dominant strandlines in the
Great Lakes basins to 10.6 ka BP (12.6 cal ka BP), the
approximate age of the well-known Algonquin phase.

Collectively, the Algonquin and adjusted isobases constitute
a reference response surface for isostatic adjustment through-
out the Great Lakes region. Interpolated values from this sur-
face and the mean relaxation time were used in the expo-
nential uplift expression to determine an ‘amplitude’ factor for
uplift at any desired location. With these values and the expo-
nential expression, uplift since any desired age could be com-
puted. The original elevation of a site at any desired age could
also be determined by subtracting the computed uplift from
the present elevation of the site. This approach was used to
transform values of pixels in a DEM for the present Great
Lakes region to new DEMs at previous ages. A total of 12
paleogeographic reconstructions for the topography and
bathymetry of the Great Lakes basins were prepared for ages
between 11.4 and 5.0 ka BP (13.3 and 5.7 cal ka BP). These
reconstructions showed that water surface areas ranged from
+72% 10 -95%, and lake volumes from +200% to -97%, rela-
tive to the present lakes. Improvements in the estimation of
glacio-isostatic effects can be expected from geophysical mod-
els when these are calibrated to the available observations of
differential rebound in the Great Lakes basin.

The same empirical approach was applied to reconstruct
the original elevations of dated indicators of former lake levels
in the Michigan, Huron and Georgian Bay basins for the inter-
val between 11.7 and 6.2 ka BP (13.5 and 7.1 cal ka BP).
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Original elevations for 79 dated indicators, comprising fossils
from beach lagoon sediments, basal organic sediment from
isolation basins, shallow-water fossils in unconformable zones
within deepwater sediment, and submerged tree stumps in
growth position, and others, were reconstructed to form the
basis for interpreting lake-level history in these basins. In par-
allel fashion, the history of potential overflow sills was also
reconstructed. Comparison of sill elevations with lake levels
revealed a period (about 8.05 to 7.4 ka BP, or 8.95 to
8.3 cal ka BP) in which water surfaces were up to several tens
of metres below lowest possible overflow outlets. The low lake
levels are postulated to reflect the increased impact of early
Holocene dry climate when upstream Agassiz overflow and/or
subglacial floods were diverted around the Great Lakes basin,
and water supply to the upper Great Lakes was reduced. Lake
evaporation and draw down were likely enhanced by frequent
incursions of dry cold Arctic air and, later, warm dry Pacific
air, possibly related to atmospheric reorganization associated
with the demise of the Laurentide Ice Sheet. This period of
closed lakes, early in the present hydrological regime of the
Great Lakes, offers an opportunity to probe and understand
the sensitivity of the Great Lakes system to high-amplitude,
long-duration climate change. Such information could improve
confidence in projections of, and adaptations to, future levels
of the Great Lakes under global warming.
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