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RÉSUMÉ

La performance est essentielle pour les applications in-
teractives multimédia. Cependant, la plupart de ces applica-
tions sont séquentielles ou sont exécutées sur des systèmes
d’exploitation qui fournissent une latence qui ne convient
pas pour la performance temps réel. Dans cet article, nous
présentons une solution à ce problème, dans le cas parti-
culier de l’interprétation des partitions multimédia interac-
tives. Il s’agit d’une nouvelle implémentation parallèle des
partitions interactives sur du matériel reconfigurable. Nous
tirons parti du parallélisme et de la fiabilité des Field Pro-
grammable Gate Arrays (FPGAs) pour exécuter en temps
réel une représentation matérielle des partitions. Le résultat
des simulations montre que notre approche permet au sys-
tème de réagir instantanément aux interactions de l’utilisateur.
De plus, les contraintes temps réel de la partition sont satis-
faites.

ABSTRACT

Real-time performance is essential for interactive multi-
media applications. However, most of these applications are
sequential or they are executed on architectures and operat-
ing systems that do not provide a low-latency real-time per-
formance. In this paper, we present a solution to this prob-
lem, specifically in the interpretation of interactive multime-
dia scores. For that, we present a novel parallel implementa-
tion of interactive scores on a reconfigurable hardware. We
take advantage of the parallelism and reliability provided by
Field Programmable Gate Arrays (FPGAS) to perform in
real-time the hardware representation of scores. The results
of the simulations show that our approach allows the system
to react instantaneously to user interactions. Moreover, the
real-time constraints of the score are satisfied.

1. INTRODUCTION

The performance of standard computers is not sufficient for
some multimedia applications that perform compute-intensive,
data-intensive and real-time tasks. The idea of perform-
ing these applications on supercomputers is often unfeasi-

ble since they are extremely expensive. However, the use of
Field Programmable Gate Arrays (FPGAs) is a reasonable
price alternative to achieve the performance level needed for
multimedia applications.

Interactive Scores (IS) [1, 9] is a formalism for compos-
ing and interpreting interactive multimedia scenarios. Sce-
narios are composed of two kind of temporal objects (TOs):
textures and structures. Textures represent the execution of
multimedia processes. Structures allow to design modular
scenarios and impose a hierarchical organisation on them.
The temporal organisation of TOs is defined by asserting
temporal relations (TRs) those objects should obey. In IS,
the performer can influence the execution of the scenario by
triggering interactive points (IPs). They are used to modify
the start/stop times of the TOs during execution. An im-
portant requirement of this model is that the temporal con-
straints defined by the composer must be preserved during
the execution of the score. Nowadays, IS has a wide range
of applications such as video games, live performance and
virtual museum installations [2].

Currently, the software I-SCORE [16] implements the model
described above. It consists of two stages: composition and
execution. During composition stage, the composer places
boxes representing TOs on a horizontal time-line and de-
fines TRs (constraints) between them. At execution stage,
the written score is first translated into a Hierarchical Time
Stream Petri Net (HTSPN) [20] that is then interpreted by
an abstract machine. The execution model is implemented
using threads which make the implementation very nonde-
terministic and unreliable [14]. Moreover, I-SCORE is not
designed for real-time operating systems or parallel com-
puter architectures. Thus, the low-latency and real-time per-
formance of interactive scores is not guaranteed.

In this paper, we present a novel parallel and flexible im-
plementation of the execution model of IS on a reconfig-
urable hardware. The use of FPGAs aims to overcome the
current performance problems of I-SCORE by taking advan-
tage of the low-latency, parallelism and high-reliability of
these devices. Moreover, FPGAs are synchronous hardware
with a jitter less than one cycle of clock and they also are not
affected by the rather complex behaviour of the operating



system services, interrupt handling, etc. Due to the physical
parallelism, the processes do not influence each other.

In our approach, a scenario is viewed as a synchronous
system [8] in which TRs and TOs are deterministic pro-
cesses that are executing in parallel. The start and stop dates
of the processes depend on the events emitted by the other
processes [4]. The most basic module of our implementa-
tion is a process that models a TR. Thanks to its determinis-
tic behaviour, it can be represented as a Finite State Machine
(FSM). As we shall see, any score written in I-SCORE can
be represented as a finite set of these processes running in
parallel. Our approach is generic and device-independent
since we use SystemVerilog (a high-level hardware descrip-
tion language) [21] to implement it. Therefore, a score is
compiled into our generic model in SystemVerilog that can
be synthesised on different FPGAs. The results of the simu-
lations show that our approach allows to satisfy all real-time
constraints imposed by the composer and also that it pro-
vides a low-rate data synchronisation that allows to satisfac-
tory react to the stimulus sent by the environment.

The rest of the paper is organised as follows. In Section 2
we briefly introduce FPGAs. Next, in Section 3 we present
the IS model and its current implementation in I-SCORE. In
Section 4 we present the hardware implementation of IS and
some simulations in order to better understand our approach.
We conclude in Section 5 by pointing out to related work and
discussing on some ideas for future work.

2. OVERVIEW OF FIELD PROGRAMMABLE
GATE ARRAYS (FPGAs)

A Field Programmable Gate Array (FPGA) is a digital inte-
grated circuit (IC) that can be reprogrammed, many times,
to desired functionality requirements after manufacturing.
This feature distinguishes them from the Application Spe-
cific Integrated Circuits (ASICS) which are manufactured
for specific tasks. FPGAs provide huge power, area, and
performance benefits over software. They can simultane-
ously compute millions of operations in resources distributed
on the device (i.e., spatial computing). Then, such systems
can be hundred of time faster than microprocessors-based
systems. FPGAs have already been used with success in
many different industrial applications (e.g., aerospace, auto-
motive, medical, video and audio processing applications) [11,
17–19].

The general architecture of an FPGA is defined as a ma-
trix of configurable logic blocks (CLBS). Moreover, this
matrix is surrounded by a ring of configurable input/output
blocks (IOBS). All of these resources are linked to each
other by an interconnection network which is highly flexi-
ble and reprogrammable (see Figure 1). Additionally, some
FPGAs provide dedicated blocks such as DSP accelerators
and embedded hard processors cores (e.g., ARM CORTEX-
A9).

Configurable Logic Blocks (CLBs)

Programmable Interconnection
Network

Configurable Input/Output Blocks (IOBs)

Figure 1. Generic architecture of an FPGA.

A CLB is the basic logic unit of an FPGA and its num-
ber varies from device to device. It consists of two, four
or more logic cells containing processing elements for per-
forming simple combinational and sequential logic. In gen-
eral, a logic cell is composed of a 4-input Look-Up Table
(LUT) and a D-Type Flip Flop (see Figure 2).
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Figure 2. A logic cell.

FPGAs have risen over the last years and at the same
time their costs. As a result, they have become economically
viable for use in several applications. Moreover, they offer
the following benefits [10]:

• Reconfigurability: FPGAs can be reconfigured at any
time.

• High-level design: The hardware is defined by us-
ing high-level hardware description languages (e.g.,
VHDL and SystemVerilog). Moreover, the designed
systems can be simulated and verified before their ex-
ecution on the FPGA.

• Physical Parallelism: FPGAs allow to design com-
pletely parallel systems without computation loading.

• High-speed: Parallelism and fast clock rates of FPGAs
allow systems to achieve very high speed that some-
times outperforms processor-based systems.



• Reliability: FPGAs provide true hardware reliability
because there is no operating system or driver layer
that can affect system update.

• IP protection and re-use: It is difficult to reverse en-
gineering a synthesised system. Moreover, a tested
hardware design can be re-used multiple times by in-
stantiating.

The creation of an FPGA-based system consists on build-
ing a bitstream file to load into the device. The designers
start with an application written in a hardware description
language (HDL), such as SystemVerilog or VHDL. This
abstract design is optimised to fit into the FPGA’s avail-
able logic. Next, the optimised design is mapped into logic
blocks and routing determines the interconnected resources.
Finally, the bitstream file is generated in order to properly
configure the logic blocks and routing resources of the FPGA.
Once the bitstream file is loaded into the FPGA, it operates
as a custom digital system.

3. OVERVIEW OF INTERACTIVE SCORES

Interactive Scores (IS) [1, 9] is a formalism for composing
and interpreting interactive multimedia scores (e.g., living
arts) in which the performer has the possibility to influence
the execution of the score. Roughly, the composer partially
defines the hierarchical and the temporal organisation of the
score by means of temporal relations (TRs) between tem-
poral objects (e.g., multimedia processes). In addition, the
composer allows the performer to modify, during execution,
the starting and ending dates of the temporal objects (TOs)
by adding interaction points (IPs). In that sense, the per-
former enjoys a certain freedom in triggering dynamically
IPs during performance while the system assures the consis-
tency of the temporal relations of the score. Thus, a perfor-
mance constitutes an instance of a set of possible scenarios
that share the same temporal properties.

As mentioned above, composers define the temporal or-
ganisation of their scores by adding temporal relations be-
tween temporal objects. TOs are classified into two types:
textures and structures. Textures represent the execution
in time of a given multimedia process (e.g., changing the
brightness of a light) while structures (i.e., the hierarchical
organisation of the score) represent only the execution of
a group of TOs with their own temporal organisation. In
this regard, a score is represented as a structure that con-
tains the temporal organisation of the TOs placed by the
composer. It is important to note that multimedia processes
are executed by external applications such as MAX/MSP 1

or PURE DATA 2 . Each TO has associated a set of control
points that represent particular moments of its execution, for

1 http://cycling74.com
2 http://puredata.info

example, the start and the end. The possibilities of interac-
tion are expressed by means of IPs that turn a control point
into a dynamic one. Dynamic control points must be explic-
itly triggered by the performer during the execution while
the other control points (the static control points) are trig-
gered by the system.

With respect to TRs, there are two qualitative relations
that are defined between control points: precedence and pos-
teriority. These relations are taken from point algebra and
they are symmetrical. Moreover, TRs are enhanced with
quantitative constraints by giving a range of possible du-
rations in [0,∞]. Thus, the composer must define a min-
imum duration (∆min) and a maximum duration (∆max)
for each TR. Depending on the above values, TRs can be
classified as: (1) rigid, if ∆min = ∆max > 0; (2) synchro-
nisation, if ∆min = ∆max = 0; (3) flexible or supple, if
∆min = 0 and ∆max = ∞; and (4) semi-flexible or semi-
rigid, if ∆max 6= ∞ and ∆min 6= ∆max.

Currently, the model described above is implemented in
the software called I-SCORE 3 . This software consists of
two different stages: composition and performance. Dur-
ing composition stage, composers place TOs, represented
as boxes, on a horizontal time-line. Then, they add IPs and
connect TRs between the TOs in order to define temporal
properties on their scores.

For example, Figure 3 shows a score composed in I-SCORE
with seven boxes: A, B, E, F and G are textures whereas
C and D are structures. The solid/dashed arrows represent
semi-flexible relations. Note that boxes A, B and C have
IPs which are represented as flags. Additionally, the start
date of each TO (except C and E) is defined by an implicit
temporal relation from the starting of its parent.

Figure 3. Example of an interactive score. A, B, E, F , G
are textures whereas C and D are structures.

Since during composition stage the computation time is

3 http://i-score.org



not critic, the score is viewed as a Constraint Satisfaction
Problem (CSP) in order to maintain its temporal organisa-
tion. Thus, when the composer changes the characteristics
of a TO (i.e., the start date and duration), a general con-
straint solver, in this case GECODE 4 , propagates the new
constraints, which leads the TOs to automatically move or
stretch in order to keep the temporal properties imposed by
the composer.

On the other side, during execution the performer can dy-
namically trigger the IPs while the static control points are
triggered by the system. As mentioned above, multimedia
processes are executed by external applications, therefore I-
SCORE uses multimedia protocols like OSC 5 in order to
send the messages defined by the composer when textures
start and end. Additionally, IPs are also triggered by specific
messages that are sent asynchronously during performance
by the performer. It is important to note that the system will
refuse an IP triggered outside of the range of time defined
by the composer. Moreover, the system will automatically
trigger the IP when the maximum time has elapsed and the
performer has not triggered it. In this way, the system main-
tains the temporal properties imposed by the composer. The
following example illustrates the interpretation of an inter-
active score. Moreover, it will be used in Section 4 in order
to better understand and validate our approach.

Example 1. Assume the interactive score in Figure 3 with
the following temporal organisation:

• Texture A has a duration of 3 ms and it starts at 5 ms.
The performer can anticipate the starting of this box
until 3 ms before of its start time.

• Texture B has a duration of 6 ms and it starts at 8
ms. The performer can stop this box after 3 ms of its
starting.

• Texture F has a duration of 4 ms and it starts after 4
ms of starting the structure D.

• Texture G has a duration of 10 ms and it starts after 1
ms of starting the structure D.

• Texture E has a duration of 6 ms and its starting is
synchronised with the starting of structure D.

• Structure D has a duration of 14 ms and it starts after
2 ms of starting structure C. It contains the textures
F and G.

• Structure C has a duration of 20 ms, but the performer
can stop it after 4 ms of its starting. It starts after
20 ms and 10 ms of stopping the texture A and B,
respectively. The performer can anticipate its starting
after 7 ms and 5 ms of stopping the textures A and B,

4 http://www.gecode.org
5 http://opensoundcontrol.org/introduction-osc

respectively. This structure contains the structure D
and texture E.

• The score finishes when the structure C has finished.

In order to execute the written scores, an abstract ma-
chine, called ECO machine, is used [16]. This machine is
responsible of (1) triggering the static control points; (2)
controlling, in real-time, the triggering of the dynamic con-
trol points; and (3) maintaining the temporal organisation
of the score. The operation of the machine is described in
terms of state transitions that are synchronised with a global
clock. Each state is composed of three components: Envi-
ronment, Controls and Outputs. Roughly, the Environment
component contains all temporal and data information, rep-
resented as a Petri Net, needed to produce the outputs; the
Controls component handles the messages that trigger the
dynamic control points; and the Outputs component repre-
sents the part of the machine that receives messages from the
Petri net and sends the data produced by processes through
the output flow.

Since this machine is generic, it will be strictly the same
for each score except its Environment component which de-
pends on the score. Therefore, each time an interactive score
is written or modified, it must be translated into a Hierarchi-
cal Time Stream Petri Net (HTSPN) [20] in order to rep-
resent and execute the partially ordered set of events (i.e.,
the start and end of TOs). The method to transform a score
into a HTSPN is the following [16]: each control point is
turned into a transition. If a temporal constraint imposes the
simultaneity of different control points, their transitions are
merged. If a precedence relation is specified between two
control points, a sequence arc/place/arc is added between
the transitions that represent them. The range of time that
represents the duration of a TR is defined over each arc and
it represents the possible durations of the relation. Further-
more, the firing of a transition that represents a dynamic
control point is conditioned by receiving an external con-
trol message. It is important to note that each ingoing arc of
this kind of transition has minimum and maximum duration
values that correspond with the time range decided by the
compositor. The minimum value corresponds to the mini-
mum time at which we can cross the transition whereas the
maximum value corresponds to the time at which the transi-
tion will be crossed if the message has not been sent before.

In closing, an important characteristic of the IS model
is that it mixes two temporal paradigms used in the current
multimedia tools [9]: time-line and time-flow. The time-line
paradigm is represented by the composition stage because
the composer places multimedia processes with their start
and end dates, as well as temporal relations between them.
On the other hand, the time-flow paradigm is represented
by the execution stage at which the processes are executed
while the temporal relations are preserved.



Figure 4. Obtaining a clock of 2.5 MHz from a clock of 50 MHz.

4. A TRUE PARALLEL IMPLEMENTATION OF
INTERACTIVE SCORES

In this section, we present the hardware implementation of
interactive scores. Before that, let us introduce a mechanism
to generate the global clock of the score. Our main objective
is to execute the score on an FPGA which provides a stable
clock on the order of nanoseconds (ns). Then, it is appro-
priated to generate our own clock for the score in order to
facilitate the handling of time. The following equation al-
lows to know the number of clock cycles needed to obtain
an intended clock.

#cycles =
period_clock_score
period_clock_FPGA

(1)

The following example shows how to generate a clock
signal.

Example 2. Assume that we need to generate a clock of
2.5 MHz (i.e., a period of 400 ns) from a clock of 50 MHz
(i.e., a period of 10 ns). Applying (1), we obtain that a clock
cycle of 2.5 MHz is equivalent to 20 cycles of 50 MHz. We
illustrate this result in Figure 4.

Figure 5 shows the block diagram of our clock generator.
It takes a clock signal as an input and generates a new clock
signal by dividing the original signal by a specific number
of cycles. This module will be useful for implementing TRs
and TOs.

FPGA_Clock

Cycles

Reset

Score_Clock
Global
clock
score

Figure 5. Block diagram of the clock generator.

4.1. Temporal Relations

In our approach, a TR imposes both a precedence and a tem-
poral relation between two points that are placed on a time-
line. In that sense, a TO is modelled as two points denoting

its starting and its stopping, and a TR between them to de-
note its duration. Moreover, a relation between two TOs is
represented as a TR between two points of different TOs. In
the following, we will show how to represent in hardware a
complete score using this simple model based on TRs.

Intuitively, a TR is a synchronous process that starts im-
mediately it receives a specific event. Once this occurs, it
waits for the elapsing of its duration, and then it emits an
event to notify that it has finished. An IP is represented as
an external event that is asynchronously sent by the environ-
ment (i.e., the performer or other processes). TRs can be
stopped if they receive an event denoting an IP. We recall
that IPs stop the execution of a TR if they arrive within the
temporal interval specified by the composer. Let us show a
simple example on how the TRs and IPs allow to represent
a complex behaviour on a score. Consider two TRs and an
IP defining the start date of a TO. Both TRs have a mini-
mum duration of 5 ms and a maximum duration of 10 ms.
However, the first one starts at 3 ms while the second at 5
ms. Therefore, the time interval at which the IP can be trig-
gered is [10,13] ms. As we can see in Figure 6, within this
time interval the temporal constraint defined by both TRs
is satisfied. Moreover, the TO will start at 13 ms if the IP
is not triggered before. To simplify notation, we shall write
the duration of a TR as [min,max] where min denotes its
minimum duration and max denotes its maximum duration.

temporal relation 1

temporal relation 2

equivalent temporal relation

min max

min max

min max

interaction point
enabled

time (ms)1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 6. Interpretation of TRs and IPs.

The deterministic behaviour of TRs allows to represent
them as a Finite State Machine (FSM). A Mealy FSM ade-
quately express the behaviour of synchronous systems since



(1) the outputs depend on both the current state and the in-
puts; and (2) the outputs react instantaneously to the inputs.
Figure 7 shows the block diagram of a TR. In our approach,
we use two timers to handle the minimum and the maxi-
mum duration of the TR. Additionally, we use a FSM to
control the states of the TR. The clock of both timers is the
same as the score whereas the clock of the FPGA is used
for the FSM. This is very important because the FSM must
be much faster than the smallest time unit of the score.

In the following, we describe each state of the FSM and
its interaction with the environment and the timers. Since
we shall use TRs to represent TOs, each state moves to the
state STOP and emits an event to stop other TOs when a kill
event (that will be sent by its parent) is received. Moreover,
the FSM emits a kill signal when the TR stops (i.e., there
is a transition to the state STOP from the state WAIT MIN
or WAIT END) in order to kill its possible children. For
instance, when a TR representing a structure is stopped by
an IP.

• IDLE: It is the initial state. It disables the timers by
setting their reset and enable inputs to 0. Its purpose
is to wait for the start of the TR. Thus, it goes to the
state NEW when it receives the start event.

• NEW: It initialises the first timer with the minimum
duration of the TR and the second with its maximum
duration. After that, it moves to the state WAIT MIN.

• WAIT MIN: It enables both timers in order to start
the countdown to 0. In this state, the FSM has the
following alternatives: (1) the minimum duration has
elapsed (i.e., timeout of the first timer), then it moves
to the state WAIT END; (2) the maximum duration
has elapsed (i.e., timeout of the second timer), then
it emits the stop and kill events and goes to the state
STOP; or (3) a new temporal relation has started (i.e.,
it receives a start signal), then it passes to the state
ADD. Let us explain a little the meaning of each al-
ternative.

The alternative (1) implies that the minimum duration
has elapsed and now it is necessary to wait for either
the maximum duration or the triggering of an IP (state
WAIT END). The alternative (2) says that the mini-
mum and maximum duration are the same, thus the
TR must stop (state STOP). Lastly, the alternative (3)
expresses the situation presented in Figure 6 in which
the composer uses several TRs to define a temporal
constraint. Therefore, it is necessary to compute the
new duration of the TR (state ADD), since the start
time and the duration of the new TR can be different.

• ADD: It resets the timers to the following values. The
first timer, representing the minimum duration, is re-
set to the maximum value between the remaining time

of the timer and the minimum duration of the TR that
has just started. The second timer, representing the
maximum duration, is reset to the minimum value be-
tween the remaining time of the timer and the max-
imum duration of the new TR. Once this occurs, it
moves to the state WAIT MIN.

Let us show a simple example to better understand our
idea. Assume the scenario illustrated in Figure 6 in
which a TR with a duration of [5,10] ms has started at
3 ms. At 5 ms, the first timer has a value of 3 and the
second timer has a value of 8. Now, we consider that a
new TR with duration [5,10] ms starts at 5 ms. Then,
the first timer is reset to 5 and the second timer is reset
to 8. Hence, the minimum duration of the resulting
TR will elapse at 10 ms and it will stop at 13 ms.
The resulting TR then satisfies the temporal constraint
defined by the composer.

• WAIT END: This state waits for either the elapsing of
the maximum duration or the triggering of an external
event. When this occurs, it emits the stop event and
goes to the state STOP.

• STOP: It is the final state. It disables the timers.

Let us now present an example illustrating the execution
of our hardware implementation.

Example 3. Consider the score in Figure 3. Textures A and
B stop at 8 ms and at 14 ms, respectively. Moreover, the TR
between the texture A and the structure C has a duration of
[7,20] ms, and the TR between the texture B and the struc-
ture C has a duration of [5,10] ms. As we saw before, the
time interval at which the structure C can start is [19,24] ms.
We show the simulation of the above scenario in Figure 8.
Observe that at 8 ms the texture A stops then, the timers are
reset to the values 7 (timer 1) and 20 (timer 2). After 6 ms
(i.e., at 14 ms), the texture B stops and the timers are reset
to 5 (timer 1) and 10 (timer 2) by applying the operations
described above. After 5 ms (i.e., at 19 ms), the minimum
duration elapses and the FSM begins to wait for either the
elapsing of the maximum duration or the triggering of an
IP. At 14 ms, the TR stops because the maximum duration
elapses and the IP was not triggered.

IPs are represented as asynchronous events that are trig-
gered during execution by the user or other processes (e.g.,
an OSC server). We then synchronise these events and the
outputs of the FSM with the clock of the score. In this way,
we maintain synchronous our system. The following exam-
ple illustrates the triggering of IPs in our implementation.

Example 4. Consider the scenario described in Example 3.
Here, the time interval at which the structure C can start is
[19,24] ms. Therefore, if the IP is triggered within this inter-
val, the structure C must start at the same time of its arrival.
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Figure 7. Block diagram of the hardware implementation of a TR.

Otherwise, it will start at 24 ms. Observe in Figure 9 that
the triggering of the IP outside the interval [19,24] ms does
not anticipate the starting of the structure C (i.e., the stop
relation signal). This is because the IP is triggered when the
FSM is waiting for the elapsing of the minimum duration
(state WAIT MIN). However, if the IP is triggered at 21 ms
(i.e., within the interval) then, it causes the structure C to
stop immediately.

4.2. Temporal Objects

Now, we are ready to show how to represent TOs using
our implementation of TR. As we explained in Section 3,
a texture is like a TR except that the texture has an attached
multimedia process. Thus, we only need to send the events
emitted by the process to external applications (e.g., PURE
DATA) using a specific protocol (e.g., OSC). In [22], the au-
thors show how to translate FAUST programs into VHDL
code in order to execute them on FPGAs. We can incorpo-

rate this work into our approach in order to synchronise and
execute DSP processes in parallel with textures. By doing
that, we will take advantage of the benefits of FPGAs.

Intuitively, a structure is a TR that contains children whose
start is relative to the start of the parent. In the case of a
structure whose duration is defined by an IP, it will stop
when either its maximum duration elapses or the IP is trig-
gered (i.e., the normal behaviour of a TR). Moreover, the
structure stops its children using the kill event when it is
stopped. On the other case (i.e., the structure has no an IP
specified by the compositor), we assume that the maximum
duration of the structure is infinite and that an “artificial” IP
is triggered when all its children have stopped and its mini-
mum duration has elapsed. In both cases, the structure will
stop and also its children when its parent is stopped. That is,
when the TR receives the kill event from its parent, it must
stop and emit the kill event in order to stop its children. Let
us show how to represent a structure with a TR in the fol-
lowing example.



Figure 8. Timing diagram of the simulation of Example 3.

Figure 9. Timing diagram of the simulation of Example 4.

Example 5. Consider the scenario described in Example 1
and assume that structure C starts at 21 ms by triggering the
IP. By satisfying the temporal constraints imposed by the
composer we know that: (1) structure D starts at 23 ms and
stops at 37 ms; (2) texture E starts at 23 ms and stops at 29
ms; (3) texture G starts at 24 ms and stops at 34 ms; (4) tex-
ture F starts at 27 ms and stops at 31 ms; and (5) structure C
can stop within the time interval of [25,41] ms. Thus, if we
trigger its IP at 31 ms then, structure C and its children that
have not stopped yet (i.e., D, F , G) must stop immediately.
We can observe in Figure 10 that our implementation satis-
fies the temporal constraints of the score (described above)
and the execution semantics of IS. Moreover, TRs and TOs
react instantaneously to events (i.e., IPs, starting and stop-
ping of TOs) due to the implementation of the FSM (Mealy
FSM) and the advantages of hardware parallelism.

5. CONCLUDING REMARKS

In this paper we introduced a novel parallel implementa-
tion on reconfigurable hardware of interactive multimedia

scores. We showed that our approach exploits the physical
parallelism in FPGAs providing a low-latency and real-time
performance of scores. Moreover, our implementation can
react instantaneously to events representing IPs, starting or
stopping of TOs and TRs. The current implementation of
I-SCORE does not provide this level of performance since
it is executed on an operating system that does not guaran-
tee a real-time performance and it does not take advantage
of parallel computer architectures. We also showed that our
approach correctly follows the execution semantics of IS.
Moreover, it is powerful enough to express any score writ-
ten in I-SCORE.

Related work. In [22], the authors compile DSP pro-
grams written in FAUST (a functional programming lan-
guage for real-time signal processing and synthesis) into
VHDL code in order to create a fast audio processor in
a single FPGA. In [5], the authors propose a system for
computer music performance whose central component is
an FPGA. The implemented system provides a low-latency,
high-reliability, compact, and a multi-channel audio I/O per-
formance. Moreover, it satisfies the low latency/jitter needed



Figure 10. Timing diagram of the simulation of Example 5. Observe that TOs react instantaneously to events.

for satisfactory reactive performance systems, thus it pro-
vides a high-reliability synchronisation of acquired gestural
data and sound I/O.

Future work. In IS, textures represent multimedia pro-
cesses that are executed in time by external applications,
such as MAX/MSP or PURE DATA. Generally, the com-
poser specifies a set of values that are sent by the system and
handled by external processes. Following the system pro-
posed in [5], we plan to implement a Fast Ethernet module
in order to provide a reliable, compact, multi-channel and
low-rate communication between our FPGA system and ex-
ternal applications running on standard operating systems.

The current HTSPN model of I-SCORE provides a for-
mal definition of the execution semantics of IS which al-
lows to reason about the concurrent behaviour of the writ-
ten scores. In this paper, we showed that interactive scores
can be represented as a set of FSMs equipped with timers
running in parallel. Our idea can be encoded into Timed
Automata (TA) [3]. This formalism has been successfully
applied in industrial case studies (e.g., [7, 15]). Then, we
plan to use TA in order to specify, simulate and verify prop-
erties of written scores. Unlike HTSPN, there are different
multi-platform tools for the composition, simulation and au-
tomatic verification (model checking) of systems modelled
in TA (e.g., UPPAAL [6]). Moreover, based on the work
presented in [12] and [13], we plan to synthesise the verified
scores into hardware and execute them on FPGAS.

6. ACKNOWLEDGMENTS

We thank the anonymous reviewers for their detailed com-
ments that helped us to improve this paper. This work has
been supported by the ANR project OSSIA (ANR-12-CORD-
0024) and SCRIME 6 .

7. REFERENCES

[1] A. Allombert. Aspects Temporels d’un Système de
Partitions Musicales Interactives pour la Composition
et l’Exécution. Ph.D. thesis, Université de Bordeaux,
2009.

[2] A. Allombert, R. Marczak, M. Desainte-Catherine,
P. Baltazar, and L. Garnier. Virage : Designing An
Interactive Intermedia Sequencer From Users Require-
ments And Theoretical Background. In Proceedings of
the International Computer Music Conference, 2010.

[3] R. Alur and D. L. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183–235, Apr.
1994.

[4] J. Arias, M. Desainte-Catherine, C. Rueda, and S. Sal-
vati. Executing Hierarchical Interactive Scores in Re-
activeML. In Actes des Journées d’Informatique Mu-
sicale, pages 25–34, 2014.

6 Studio de Création et de Recherche en Informatique et Musique Élec-
troacoustique (http://scrime.labri.fr)



[5] R. Aviziensis, A. Freed, T. Suzuki, and D. Wessel.
Scalable Connectivity Processor for Computer Music
Performance Systems. In Proceedings of the Interna-
tional Computer Music Conference, 2000.

[6] G. Behrmann, A. David, and K. G. Larsen. A Tutorial
on Uppaal 4.0. Technical report, 2006.

[7] J. Bengtsson, W. O. D. Griffioen, K. J. Kristoffersen,
K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi. Ver-
ification of an audio protocol with bus collision using
uppaal. In Proceedings of the 8th International Confer-
ence on Computer Aided Verification, CAV ’96, pages
244–256, London, UK, UK, 1996. Springer-Verlag.

[8] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs,
P. Le Guernic, and R. de Simone. The synchronous
languages 12 years later. Proceedings of the IEEE,
91(1):64–83, Jan 2003.

[9] M. Desainte-Catherine, A. Allombert, and G. Assayag.
Towards a hybrid temporal paradigm for musical com-
position and performance: The case of musical in-
terpretation. Computer Music Journal, 37(2):61–72,
2013.

[10] R. Dubey. Introduction to Embedded System Design
Using Field Programmable Gate Arrays. Springer
London, London, 2009.

[11] S. Hauck and A. DeHon. Reconfigurable Computing:
The Theory and Practice of FPGA-Based Computa-
tion. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 2007.

[12] Y. Jiang, H. Zhang, Z. Li, Y. Deng, X. Song, M. Gu,
and J. Sun. Design and Optimization of Multi-clocked
Embedded Systems using Formal Techniques. IEEE
Transactions on Industrial Electronics, pages 1–1,
2014.

[13] Y. Jiang, H. Zhang, H. Zhang, H. Liu, X. Song,
M. Gu, and J. Sun. Design of Mixed Syn-
chronous/Asynchronous Systems with Multiple
Clocks. IEEE Transactions on Parallel and Dis-
tributed Systems, pages 1–1, 2014.

[14] E. A. Lee. The problem with threads. Computer,
39(5):33–42, May 2006.

[15] M. Lindahl, P. Pettersson, and W. Yi. Formal de-
sign and analysis of a gear controller. In Proceed-
ings of the 4th International Conference on Tools and
Algorithms for Construction and Analysis of Systems,
TACAS ’98, pages 281–297, London, UK, UK, 1998.
Springer-Verlag.

[16] R. Marczak, M. Desainte-Catherine, and A. Allombert.
Real-time temporal control of musical processes. In
Proceedings of the Third International Conference on
Advances in Multimedia, MMEDIA 2011, pages 12–
17, 2011.

[17] C. Maxfield. The Design Warrior’s Guide to FPGAs.
Newnes, 2004.

[18] E. Monmasson, L. Idkhajine, M. N. Cirstea, I. Bahri,
A. Tisan, and M. W. Naouar. FPGAs in Industrial Con-
trol Applications. IEEE Transactions on Industrial In-
formatics, 7(2):224–243, May 2011.

[19] J. Rodriguez-Andina, M. Moure, and M. Valdes. Fea-
tures, Design Tools, and Application Domains of FP-
GAs. IEEE Transactions on Industrial Electronics,
54(4):1810–1823, Aug. 2007.

[20] P. Sénac, P. de Saqui-Sannes, and R. Willrich. Hierar-
chical time stream petri net: A model for hypermedia
systems. In G. D. Michelis and M. Diaz, editors, Appli-
cation and Theory of Petri Nets, volume 935 of Lecture
Notes in Computer Science, pages 451–470. Springer,
1995.

[21] S. Sutherland, S. Davidmann, and P. Flake. SystemVer-
ilog for Design: A Guide to Using SystemVerilog for
Hardware Design and Modeling. Springer US, second
edition, 2006.

[22] R. Trausmuth, C. Dusek, and Y. Orlarey. Using FAUST
for FPGA Programming. In Proceedings of the 9th In-
ternational Conference on Digital Audio Effects, pages
18–20, 2006.


