Determination of a Region of Cry1Aa Inserted into Bombyx mori BBMV
Kazuya Tomimoto1, Tohru Hayakawa2, and Hidetaka Hori1*

1Graduate School of Science and Technology, Niigata University, Niigata Japan, 950-2181. 2Graduate School of Natural Science and Technology, Okayama University, Japan, 700-8530.

Keywords: Bacillus thuringiensis; Cry toxin; Cry1Aa; Bombyx mori; BBMV; umbrella model; pore formation; membrane insertion; pronase.

Cry1Aa penetrates into the brush border membrane (BBM) of insect midgut, and causes cell lysis by pore formation. We detected various digests of Cry1Aa inserted into BBMV using various part-specific antisera of Cry1Aa and advocated the plausible insertion region of oligomeric and monomeric Cry1Aa. In oligomeric Cry1Aa, a 15 kDa fragment presumed to be dimeric α-4,5 helices was detected. On the other hand, the digests of monomeric Cry1Aa was quite different from that of oligomer. α-2-7 helices as well as domain III were inserted into BBM whereas α-1-5 sheets were on the membrane surface.

Cry1Aa is an insecticidal protein that specifically kills lepidopteran insects by forming pores on BBM of insect midgut. The umbrella model has been recognized as an insertion and pore forming model of Cry1A (1). Several Cry1A toxin molecules gather as oligomerized form on BBM; α-4,5 helices may be subsequently inserted into the membrane to form a pore (2). However, this hypothesis has several disadvantages. One of the most important question is that not only tetrameric Cry1Ab but also monomeric Cry1Ab has pore forming activity and the umbrella model can not explain the latter (3). Furthermore, in the umbrella model, the bulky uninserted region might cause steric hindrance and thereby membrane insertion with assembled molecules might be inhibited. Then, pore forming monomeric Cry1Aa model may differ from that of oligomeric Cry1Aa.

We performed pronase digestion of Bombyx mori BBMV bound Cry1Aa to identify the region. Membrane inserted region may not be digested by pronase, whereas the uninserted region must be vigorously done. Antisera specific to various Cry1Aa region, such as anti α-2,3, anti α-4,5, anti α-6,7, anti β-1-5, anti β-6-11 and anti domain III antisera were prepared to detect fragments of Cry1Aa remaining even after the digestion. All antisera recognized each specific site of Cry1Aa individually, and did not show non-specific binding to B. mori BBMV proteins (data not shown).

Digestion was done at 37°C for 24 hours on various pronase concentrations. Many digests were detected even in 1 mg/ml treatment (Fig. 1 all panels, lane 1). It is clear that ultra-high proteinase resistant peptides reside in BBMV bound Cry1Aa. Dominant fragments of 30-35 kDa were detected by anti α-4,5 and anti α-6,7 antisera (Fig. 1 B and C, lane 2-5), but not by anti α-2,3 antiserum (Fig. 1 A). These fragments recognized by those two antisera seemed to be identical to each other based on the SDS-PAGE pattern. Along with these peptides of higher molecular size, a 7.5 kDa fragment was detected by anti α-2,3 antiserum and was not digested further in even 2 mg/ml treatment (Fig. 1 A, lane 6). The molecular weight of the fragment closely accorded with that of α-2,3 helices. This result indicates that intact α-2,3 helices are removed from BBMV bound Cry1Aa, thereafter it is still in the lipid bilayer as stable form. On the other hand, a 30 kDa fragments were detected with anti β-6-11 and anti domain III antisera and these patterns in SDS-PAGE

* Corresponding author. Mailing address : Laboratory of Molecular Life Sciences, School of Science and Technology, Niigata University, 8050 Ikarasi 2-no-cho, Niigata, Japan, 950-2181. Tel : 81 25 262 7637. Fax : 81 25 262 7637. Email: hide-hri@gs.niigata-u.ac.jp
between α-1 and α-2, α-3 and α-4, and β-1 and β-5 were digested. These digested portions may expose themselves to the membrane surface. In addition, a 30 kDa fragment including β-6 and domain III region was also was conserved in BBMV. Domains II and III have been speculated to be on the membrane surface with binding to receptor. But our results do not clearly support the above speculation; rather they suggest that these regions are also buried in the membrane by interaction with lipids. Based on our results, we proposed a “Buried dragon model”. The main characteristic of this model feature is whole parts of Cry1Aa are inserted or buried into the membrane. Moreover, not only the membrane inserted region but also buried regions must be important for pore forming in some way. Alternatively, pore forming region of tetrameric Cry1Aa should be α-4,5 helices (Fig. 2 B). In a pronase digestion assay, a detected fragment was actually dimeric α-4,5 helices although it may be too small to form pore. Cry1A toxin has been known to normally oligomerize to tetramer. Therefore, it is reasonable to analogize that pore forming unit must be dimer of dimeric α-4,5 helices or tetramer of the helices. However, as indicated above, Cry1Aa tetramer must cause steric hindrance as it is, and thus bulky extra portions should be removed during oligomerization. Our observation that only α-4,5 helices dimer was detected matched to our hypothesis.

References

