Atlantic Geology

Journal of the Atlantic Geoscience Society Revue de la Société Géoscientifique de l'Atlantique

Detrital zircon signatures in Precambrian and Paleozoic sedimentary units in southern New Brunswick – more pieces of the puzzle

Sandra M. Barr, Deanne van Rooyen, Brent V. Miller, Chris E. White and Susan C. Johnson

Volume 55, 2019

URI: https://id.erudit.org/iderudit/1064942ar DOI: https://doi.org/10.4138/atlgeol.2019.010

See table of contents

Publisher(s)

Atlantic Geoscience Society

ISSN

0843-5561 (print) 1718-7885 (digital)

Explore this journal

Cite this article

Barr, S., van Rooyen, D., Miller, B., White, C. & Johnson, S. (2019). Detrital zircon signatures in Precambrian and Paleozoic sedimentary units in southern New Brunswick – more pieces of the puzzle. *Atlantic Geology*, *55*, 275–322. https://doi.org/10.4138/atlgeol.2019.010

Article abstract

Southern New Brunswick consists of a complex collage of fault-bounded belts of Late Neoproterozoic igneous and metamorphic rocks, Early Paleozoic sedimentary, metamorphic and igneous units, and overlying Carboniferous sedimentary rocks. The area also contains the boundary between the Avalonian and Ganderian terranes as interpreted in the northern Appalachian orogen. New detrital zircon ages reported here provide improved understanding of depositional ages and provenance of diverse Neoproterozoic to Carboniferous rocks in this complex area. Detrital zircon data from samples with Neoproterozoic maximum depositional ages indicate a dominantly Gondwanan provenance with a strong influence from the Amazonian craton. However, quartzite from The Thoroughfare Formation on Grand Manan Island contains dominanly 2 Ga zircon grains, consistent with derivation from the West African Craton. The age spectrum is similar to that from the Hutchins Island Quartzite in the Isleboro block in Penobscot Bay, Maine, strengthening the previously proposed correlation between the two areas. Cambrian samples also show prominent peri-Gondwanan provenance with strong influence from Ediacaran to Early Cambrian arc magmatism. The maximum depositional ages of these samples are consistent with previous interpretations of Cambrian ages based on fossil correlations and field data. A Carboniferous sample from Avalonia shows a significant contribution from Devonian magmatism as the youngest detrital component, although its depositional age based on field relationships is Carboniferous. The results exemplify the need to integrate multiple datasets in making interpretations from detrital zircon data.

All Rights Reserved © Atlantic Geology, 2019

This document is protected by copyright law. Use of the services of Érudit (including reproduction) is subject to its terms and conditions, which can be viewed online.

https://apropos.erudit.org/en/users/policy-on-use/

This article is disseminated and preserved by Érudit.

Érudit is a non-profit inter-university consortium of the Université de Montréal, Université Laval, and the Université du Québec à Montréal. Its mission is to promote and disseminate research.

Detrital zircon signatures in Precambrian and Paleozoic sedimentary units in Ganderia and Avalonia of southern New Brunswick, Canada – more pieces of the puzzle

Sandra M. Barr¹, Deanne van Rooyen², Brent V. Miller³, Chris E. White⁴, and Susan C. Johnson⁵

- 1. Department of Earth and Environmental Science, Acadia University; Wolfville, Nova Scotia B4P 2R6, Canada 2. Department of Mathematics, Physics, and Geology, Cape Breton University, Sydney, Nova Scotia, B1P 6L2, Canada
 - 3. Department of Geology and Geophysics, Texas A & M University, College Station, Texas 77843-3115, USA
 - 4. Geological Survey, Nova Scotia Department of Energy and Mines, Halifax, Nova Scotia B3J 2T9, Canada
 - 5. Geological Survey Branch, New Brunswick Department of Energy and Resource Development,

Sussex, New Brunswick E4E 7H7, Canada Corresponding author <sandra.barr@acadiau.ca>

Date received: 31 March 2019 ¶ Date accepted: 15 July 2019

ABSTRACT

Southern New Brunswick consists of a collage of fault-bounded belts of Late Neoproterozoic igneous and metamorphic rocks, early Paleozoic sedimentary, metamorphic and igneous units, and overlying Carboniferous and locally Triassic sedimentary rocks. The area also contains the boundary between Avalonia and Ganderia as interpreted in the northern Appalachian orogen. New detrital zircon ages reported here provide improved understanding of depositional ages and provenance of diverse Neoproterozoic to Carboniferous rocks in this complex area. Detrital zircon data from samples with Neoproterozoic maximum depositional ages indicate a dominantly Gondwanan provenance with strong influence from the Amazonian craton. However, quartzite from The Thoroughfare Formation on Grand Manan Island contains dominanly 2 Ga zircon grains, consistent with derivation from the West African craton. The age spectrum is similar to that of the Hutchins Island Quartzite in the Isleboro block in Penobscot Bay, Maine, strengthening the possibility of correlation between the two areas. Cambrian samples also show prominent peri-Gondwanan provenance with strong influence from Ediacaran to early Cambrian arc magmatism. The maximum depositional ages of these samples are consistent with previous interpretations of Cambrian ages based on fossil correlations and field data. A Carboniferous sample from Avalonia shows a significant contribution from Devonian magmatism as the youngest detrital component, although its depositional age based on field relationships is Carboniferous. The results exemplify the need to integrate multiple datasets in making interpretations from detrital zircon data.

RÉSUMÉ

Le sud du Nouveau-Brunswick est constitué d'un collage de ceintures délimitées par des failles de roches ignées et métamorphiques du Néoprotérozoïque tardif, d'unités sédimentaires, métamorphiques et ignées du Paléozoïque précoce, ainsi que de roches sédimentaires sus-jacentes du Carbonifère et, par endroits, du Trias. Le secteur comprend également la frontière établie entre Avalonia et Ganderia selon son interprétation à l'intérieur de la partie septentrionale de l'orogène des Appalaches. De nouvelles datations de zircon détritique rapportées ici permettent une meilleure compréhension des âges sédimentaires et de la provenance des diverses roches néoprotérozoïques à carbonifères dans ce secteur complexe. Les données relatives au zircon détritique obtenues des échantillons faisant état d'âges sédimentaires remontant au maximum au Néoprotérozoïque signalent une provenance en prédominance gondwanienne avec une forte influence du craton amazonien. Le quartzite de la Formation The Thoroughfare sur l'île Grand Manan renferme toutefois prédominament des grains de zircon de 2 Ga, ce qui correspond à une dérivation du craton de l'Afrique occidentale. Le spectre de l'âge est similaire à celui du quartzite de l'île Hutchins à l'intérieur du bloc Isleboro dans la baie Penobscot, au Maine, ce qui renforce la possibilité d'une corrélation entre les deux secteurs. Les échantillons du Cambrien font eux aussi état d'une provenance périgondwanienne prononcée, marquée d'une forte influence d'un magmatisme d'arc de l'Édiacarien au Cambrien précoce. Les âges sédimentaires maximaux de ces échantillons correspondent aux interprétations antérieures des datations du Cambrien basées sur des corrélations de fossiles et des données d'échantillonnage sur le terrain. Un échantillon du Carbonifère provenant d'Avalonia révèle une contribution prononcée du magmatisme

dévonien à titre d'élément détritique le plus récent, mais son âge sédimentaire le situe au Carbonifère d'après les relations établies sur le terrain. Les résultats illustrent la nécessité d'une intégration de plusieurs ensembles de données pour effectuer des interprétations à partir de données provenant de zircon détritique.

[Traduit par la redaction]

INTRODUCTION AND GEOLOGICAL SETTING

Southern New Brunswick consists of a complex assemblage of three fault-bounded belts of mainly Neoproterozoic rocks with minor Paleozoic rocks termed (from southeast to northwest) Caledonia, Brookville, and New River, as well as five belts of mainly lower Paleozoic rocks termed Kingston, Mascarene, Annidale, St. Croix, and Fredericton (Fig. 1a). The area spans the boundary between Avalonia and Ganderia as defined by Hibbard et al. (2006), who placed the northern edge of Avalonia at the Caledonia-Clover Hill Fault that forms the boundary between the Caledonia and Brookville belts (Fig. 1b). In this interpretation most of New Brunswick, including Grand Manan Island, is considered part of Ganderia, as is adjacent New England (e.g., Fyffe et al. 2011; van Staal et al. 2011), whereas Avalonia extends offshore into the Bay of Fundy from the Caledonia belt of southern New Brunswick, underlies the Gulf of Maine, and re-emerges onshore in the Boston area of southeastern New England (Thompson et al. 2010).

The definition of Ganderia and Avalonia in the northern Appalachian orogen is based on multiple lines of evidence including differences in stratigraphy, magmatic and metamorphic histories, isotopic characteristics, and (increasingly) detrital zircon signatures which can provide information regarding source areas for present components of Ganderia and Avalonia during their pre-Appalachian evolution. The distribution of ages of detrital zircon grains in sedimentary units is a means of comparing units of similar age located in different areas, as well as an indicator of provenance. In addition, the youngest detrital zircon grains give an indication of maximum depositional age, significant in units where other age constraints are minimal or lacking. All three of these applications have relevance in southern New Brunswick, and this technique has been applied previously to rock units in that area as well as in adjacent parts of New England and Nova Scotia (Barr et al. 2003a, 2012; Fyffe et al. 2009; Satkoski et al. 2010; Dokken et al. 2018; Ludman et al. 2018). The significance of differences in detrital zircon populations between Ganderia and Avalonia is an ongoing debate, and the database of detrital zircon U-Pb data for both pre- and post-Appalachian strata is growing. The results reported in this paper add to that database, which may ultimately help to resolve questions about the initial relationships among the fault-bounded geological belts of southern New Brunswick (Fig. 1a).

As in other Appalachian detrital zircon studies the interpretations in the present study have to deal with difficulties in interpreting Meso- to Neoproterozoic zircons that could have multiple sources, for example the commonly encountered 1.4 – 1.0 Ga zircon grains which can be derived from

any number of long-lived magmatic systems in arcs and continental settings associated with the Grenville orogen in either the West African or Amazonian craton. This difficulty is magnified in syn- and post-collisional strata because of potential contributions from the Laurentian craton with its very large area of Grenville-age magmatic activity. In addition, in Paleozoic samples the Proterozoic signatures are obscured by extensive contributions from syn-accretional and collisional magmatic systems active through the Ordovician to Devonian history of the Appalachian orogen.

New LA-ICP-MS detrital zircon age spectra are reported here for six sedimentary and metasedimentary rock units in southern New Brunswick. This study includes samples NB12-314 and NB12-315 of Cambrian age in the New River belt (Figs. 2, 3), one sample GM10-01 of uncertain Precambrian age and two samples NB16-356 and NB16-358 of Neoproterozoic to early Cambrian age from Grand Manan Island (Fig. 4), and sample BL15-01 from the Carboniferous Balls Lake Formation near the city of Saint John (Fig. 5). The new data are compared to previously published data, and in combination, shed light on stratigraphic and terrane relations in the area.

METHODS

Detrital zircon U-Th-Pb laser-ablation, inductively coupled plasma mass spectrometry (LA-ICPMS) analyses were conducted at the Texas A & M University R. Ken Williams Radiogenic Isotope Geosciences Laboratory (samples GM10-01, NB12-314, and NB12-315) and the University of New Brunswick (samples BL15-01, NB16-356, and NB16-358).

At Texas A & M University, zircon grains were concentrated from rock samples using standard crushing and density separation (jaw and disc crusher, Wilfley table, heavy liquids) methods. Zircon grains were separated from other dense minerals by hand-picking in a petrie dish under a binocular microscope, but no further separation was performed on the bulk zircon aliquot recovered from heavy liquids. The bulk zircon aliquot was piled and quartered repeatedly in the petrie dish to obtain a sub-sample of about 1000 grains. This zircon sub-sample was mounted on double-sided tape and encased in a 2.5 cm diameter epoxy disc, along with fragments of NIST 610, NIST 612, one primary reference material (zircon 91500; Wiedenbeck et al. 1995) and two secondary reference materials (zircons R33 and FC-1; Black et al. 2004 and Paces and Miller 1993, respectively). The disk was abraded with 2000 grit sandpaper to expose the interior of zircon grains and polished to 0.25 µm on a diamondsuspension lap wheel. LA-ICPMS analyses were conducted

Figure 1. (a) Simplified geological map of part of southwestern New Brunswick after Barr *et al.* (2014c). Boxes indicate the locations of the four areas shown in Figures 2–5 from which detrital zircon ages are presented. Arrow indicates the location of the detrital zircon sample from the Almond Road Group in the New River terrane reported by Johnson *et al.* (2018). Fault abbreviations: CCFZ, Cobequid-Chedabucto fault zone; CCHF, Caledonia-Clover Hill Fault. (b) Divisions of the northern Appalachian orogen after Hibbard *et al.* (2006) showing the location of the study area (black rectangle).

on a ThermoScientific iCAP RQ quadrupole mass spectrometer running in standard high-sensitivity (STDS) mode connected to an esi/NWR 193 nm 4 ns pulsed excimer laser

system equipped with a two-volume sample cell (Tv2). Instrument settings and run parameters are given in Table A1 and analytical data in Table A2. Data are reduced using Iolite

Figure 2. Geological map of the Long Reach area in the New River belt showing the location of dated quartz arenite sample NB12-314. Map is modified from Figure 5 in Barr *et al.* (2014c).

v. 3.5 (Paton *et al.* 2011) under the U–Pb Geochron4 data reduction scheme (Paton *et al.* 2010). Analysis of the primary reference material, each treated separately as an unknown, indicates an internal analytical reproducibility of U–Pb ages to better than 0.7%. The average accuracy of secondary

reference materials (Table A2) is better than 2.25% (FC-1) and better than 1.5% (R33).

For the dating done at the University of New Brunswick (UNB), rock samples were sent to Overburden Drilling Management in Ottawa, Ontario, for electro-pulse disaggregation

Figure 3. Geological map of the Beaver Harbour area showing the location of dated quartz arenite sample NB12-315. Map is modified from Barr *et al.* (2014a).

and zircon separation. Zircon grains were then hand-picked at Cape Breton University and taken to UNB where they were mounted in epoxy-covered thin sections polished to expose the centres of the zircon grains and imaged using cold cathodoluminescence to identify internal zoning and inclusions. These images were used to select ablation points (30 µm diameter), avoiding any visible inclusions, cracks, or other imperfections. U and Pb isotopic compositions were measured using the Resonetics S-155-LR 193 nm Excimer laser ablation system connected to an Agilent 7700x quadrupole inductively coupled plasma – mass spectrometer,

following the procedure outlined by McFarlane and Luo (2012) and Archibald *et al.* (2013). Data reduction was done in-house using Iolite software (Paton *et al.* 2011) to process the laser output into data files, and further reduced for U–Pb geochronology using VizualAge (Petrus and Kamber 2012). Data were sorted by % concordance (²⁰⁶Pb/²³⁸U versus ²⁰⁷Pb/²³⁵U), and by the % of radiogenic Pb in the grains as calculated using VizualAge (Table A3, A4).

In all cases we present probability distribution histograms based on 206 Pb/ 238 U dates for grains <1000 Ma and 207 Pb/ 206 Pb dates for >1000 Ma, and show all grains that are between 95

and 101% concordant. To determine the youngest age represented in each sample we use only clusters of more than 3 grains with ages that overlap within error and are 98–101% concordant. Using only near-concordant grains that overlap within error is a conservative approach which serves to reduce the possibility of misrepresenting the maximum depositional age as too young by using single grains that may have experienced Pb loss (Dickinson and Gehrels 2010).

For each dated sample, the geological setting is described, followed by the results and interpretation. A subsequent Discussion deals with the oveall implications of the new data.

SAMPLE NB12-314 - CHEYNE SETTLEMENT ROAD

Geological setting

Quartz arenite sample NB12-314 was collected from an outcrop on Cheyne Settlement Road in the Long Reach area of the New River belt (Fig. 2). Cheyne Settlement Road crosses an enclave of Cambrian rocks, one of several such occurrences in the Long Reach area (Fig. 2). The Cambrian rocks overlie Late Neoproterozoic to early Cambrian volcanic rocks of the Belleisle Bay Group and have been correlated with the Saint John Group (Fig. 2). Matthew (1891) discovered the acrotretid brachiopod Linnarsonnia misera in grey sandstone at Belyeas Landing (now the "Public Landing" shown on Figure 2) about 600 m east of the sampled quartz arenite and Yoon (1970) later discovered trilobites at the same location which he suggested are consistent with a late early Cambrian age, consistent with the work of Boyce and Johnson (2004) based on newly collected material. Small black phosphatic shells tentatively identified as L. misera (R. Miller, personal communication, 2001) were discovered also in a sequence of dark grey shale, siltstone and very fine-grained, micaceous sandstone on Cheyne Settlement Road about 1.2 km west of Public Landing. Johnson (2001) assigned all of the rocks within the enclave, including the quartz arenite unit sampled for dating in the present study, to the Hanford Brook Formation of the Saint John Group (Fig. 2).

The dated sample is grey medium-grained quartz arenite. It is dominated by subangular to subrounded quartz grains and less than 10% silt/clay matrix. Feldspar, spherulitic volcanic, and quartzite clasts occur rarely.

Results

Zircon grains separated from sample NB12-314 display a wide range of sizes, morphologies, and colors. Most grains have abraded corners and edges and are rounded. The largest (~150 um diameter) and most highly rounded grains are

also commonly the most deeply colored in shades of pink and purple or tan. Other large (100–150 μ m long), more elongate zircon grains show light tan color. Relatively rare, small (50–100 μ m long), colorless crystals are acicular with sharp corners and tips.

A large percentage of the grains are discordant, and ablation profiles are consistent with Pb-loss being the dominant cause of discordance, as opposed to zircon grains with multiple age components. The main population of grains has ages between 480 and 540 Ma, with only four older grains between 1 and 3.2 Ga (Figs. 6a, b). Three grains have ²⁰⁶Pb/²³⁸U ages of ca. 450 Ma but they do not overlap within error and all are less than 98% concordant, our cut-off for calculating concordia ages as mentioned earlier, likely because of Pb loss. In contrast, a few grains have ages between 480 and 500 Ma that overlap within error, and three of these grains produce a calculated concordia age of 487.5 ± 13 Ma with very high MSWD of 15 and probability near zero. Using only two grains produces a calculated concordia age of 485.8 ± 19 Ma with a slightly better MSWD of 10.7 and probability of 0.001. The weighted mean of 7 grains between 475 and 495 Ma is 486.8 ± 6.1 at 95% confidence with MSWD = 2.6, and probability = 0.015 (Fig. 6a, inset). Overall, we consider that the best estimate of the maximum depositional age for the sediment is ca. 487 Ma (late Cambrian to Early Ordovician).

This age, although not well constrained, is considerably younger than the age of 508.05 ± 2.75 Ma reported for an ash bed in the Hanford Brook Formation in the Somerset Street section in the city of Saint John (Landing *et al.* 1998; Schmitz 2012). Based on fossils, the age of the Hanford Brook Formation spans the traditional early to middle Cambrian boundary, or in newer time scales, the boundary between Series 2 and 3 (Palacios *et al.* 2016) at about 509 Ma (Cohen *et al.* 2013 updated 2018).

SAMPLE NB12-315 - BUCKMANS CREEK

Geological setting

The Buckmans Creek Formation (e.g., Currie 1988) in the Beaver Harbour area of the New River belt (Fig. 3) is an assemblage of fault-bounded and internally faulted sedimentary and mafic volcanic rocks that are in places fossiliferous. They have been correlated with the Saint John Group of the Saint John area (Fig. 5), implying a link between the New River and Caledonia belts (e.g., Currie 1988; Tanoli and Pickerill 1988; Landing 1996; Johnson 2001; Landing et al. 2008). Landing et al. (2008) assigned these Cambrian rocks to the marginal platform of the late Proterozoic to early Paleozoic Avalon microcontinent. They identified the lower Cambrian Chapel Island and Random formations in the Buckmans Creek area, unconformably overlain by mafic

Figure 4. (previous page) Geological map of Grand Manan Island showing the location of dated samples NB16-356, NB16-358, and GM10-01. Map is modified from Fyffe (2014).

Figure 5. Geological map of the Saint John area showing the location of dated sample BL16-01, Map is modified from Park *et al.* (2014).

volcanic-dominated rocks which Landing *et al.* (2008) assigned to the "Wade's Lane Formation". This name appears to be an incorrect transcription of "Waites Lane" which is shown on road signs in the area and on topographic maps.

Landing et al. (2008) reported that the presence of late early Cambrian trilobites and small shelly taxa in the lowest part of their "Wade's Lane Formation" demonstrates a hiatus between rocks that they assigned to the Random Formation and those of their "Wade's Lane Formation". They interpreted the volcanic rocks in the Beaver Harbour section as the result of latest early to middle middle Cambrian pyroclastic volcanism, one of three known volcanic centers that extended 550 km along the northwest margin of the Avalon microcontinent. According to Landing et al. (2008), the volcanic rocks are overlain by grey-green mudstone and limestone of the Fossil Brook Member and black mudstone of the upper Manuels River Formation. However, given the uncertainty of long-distance correlations in a complex orogen, we continue to use the earlier established name Buckmans Creek Formation collectively for all these rocks.

Near the mouth of Buckmans Creek, the formation is separated from the plutonic rocks of the Beaver Harbour porphyry by a reverse dip-slip fault (Bartsch 2005). The Beaver Harbour porphyry yielded a U–Pb zircon age of 551 ± 1.2 Ma (Barr et al. 2014a). On its northwestern margin, the formation is in faulted contact with the ca. 620 Ma Blacks Harbour granite (Barr et al. 2003b; Bartsch 2005).

Dated quartz arenite sample NB12-315 is from the unit assigned to the Random Formation by Landing *et al.* (2008). The sample is light grey and consists of recrystallized quartz grains that are sutured and polygonal in places. It contains rare felsic volcanic and quartzite clasts, and almost no matrix.

Results

A total of 203 zircon grains were analyzed from sample NB12-315. The main population has ages from 510 to 590 Ma (Figs. 6c, d). Other grains give an almost continuous range of ages from 1 Ga to 2 Ga and a few grains lie between 2 and 3.2 Ga. The youngest 4 grains that overlap within

Figure 6. Probability density plots and histograms for U-Pb data: (a) Sample NB12-314; (b) Expanded view of the data between 400 and 650 Ma for sample NB12-314; (c) Sample NB12-315; (d) Expanded view of the data between 400 and 650 Ma for sample NB12-315; (e) Sample GM10-01. Inserts in (a) and (c) show weighted mean ages for the youngest population of concordant zircon grains in each sample. Data are from Appendix Table A1. Dates with discordance >10% are excluded from these diagrams.

error have a calculated concordia age of 518.4 ± 2.8 Ma with MSWD = 6.7 and probability = 0.010. The calculated concordia age with 5 overlapping grains including one that is more discordant is 518.3 ± 4.7 Ma with much higher MSWD of 12.0 and lower probability of 0.001. The weighted mean of the same 5 grains is 517.2 ± 2.7 at 95% confidence with MSWD = 0.41 and probability = 0.80 (Fig. 6c, inset). Hence the maximum depositional age for this sample is interpreted to be ca. 517 Ma (Cambrian series 2; Cohen *et al.* 2013, revised 2018).

SAMPLE GM10-01 -THE THOROUGHFARE FORMATION

Geological setting

The Thoroughfare Formation of Grand Manan Island is exposed on Ross, Nantucket, and White Head islands off the southeastern coast (Fig. 4). It is composed of very thick- to thin-bedded, locally cross-bedded, white to light grey quartzite interbedded with grey to black carbonaceous shale. Where exposed on the western shore of The Thoroughfare, the contacts between the formation and volcanic sequences of the Priest Cove Formation are highly sheared and interpreted as thrust faults based on the presence of low-angle cleavages in the vicinity of their mutual boundaries (Fyffe 2014). The inferred age of The Thoroughfare Formation is late Proterozoic as suggested by Alcock (1948) who correlated the quartzite with quartzite interstratified with platformal stromatolitic carbonates of the Late Proterozoic Green Head Group in the Saint John area on the New Brunswick mainland, although the latter unit does not include carbonaceous shale and The Thoroughfare Formation lacks carbonate rocks, so the only rock type in common is the quartzite itself. The Thoroughfare Formation could be correlative with the Hutchins Island Quartzite in Penobscot Bay, Maine (Fig. 1b) which also has an inferred late Proterozoic age (Reusch et al. 2018).

The dated quartzite sample consists of recrystallized quartz grains that are rectangular and elongate parallel to a weak foliation. Granular quartz around the larger grains suggests that brittle deformation may have overprinted earlier ductile structures. Rare muscovite and tourmaline are also present.

Results

Sample GM10-01 is distinctive in that it contains only Paleoproterozoic and older zircon grains that are much older than the inferred Late Proterozoic stratigraphic age. Its detrital signature is unlike any others yet seen in New Brunswick, including the nearby Flagg Cove Formation (Fig. 3; Fyffe *et al.* 2009), but like those from samples from Georges Bank and Penobscot Bay inferred to represent sediments deposited on the West African Craton (Kuiper *et al.* 2017; Reusch *et al.* 2018). The biggest population of zircon grains

has ages between 1.9 and 2.2 Ga, with another significant peak at ca. 2.5, and an almost continuous range of ages from 2.5 to 3.2 Ga (Fig. 6e). The youngest two grains are around 1.65 Ga, but they do not overlap within error and cannot be used for a concordia age. Based on these youngest grains the maximum depositional age of the sample may be less than 1.65 Ga but this estimate is not robust. The maximum depositional age based on the detrital zircon populations is better constrained at 1.9 Ga based on the major population peaks.

SAMPLE NB16-356 - LONG POND BAY FORMATION

Geological setting

The Long Pond Bay Formation is exposed along Long Pond Bay and on nearby Wood Island on southern Grand Manan Island (Fig. 4). The Long Pond Bay shoreline section consists of subaqueous hyaloclastic basalt flows, mafic volcanic breccia, peperitic basalt, green cherty mudstone, and medium- to thick-bedded wacke. On Wood and adjacent islands, amygdaloidal basalt flows, felsic tuff, and arkosic sandstone appear to have been deposited in shallower water and are associated with coarse-grained gabbroic rocks (Fig. 4). A sample from a rhyolitic tuff or high-level intrusion from Wood Island yielded few zircon grains that were interpreted by Miller et al. (2007) to indicate a maximum depositional age of ca. 588 Ma. The relatively undeformed features of the unit and its lithological similarities to Silurian units of the Mascarene terrane on the mainland (McLeod et al. 1994) led to the assumption of a Silurian age (Miller et al. 2007). However, Fyffe (2014) subsequently interpreted the Long Pond Bay Formation to be part of the Ediacaran-Cambrian Castalia Group, together with the Priest Cove Formation dated at 539 ± 3 Ma by Miller *et al.* (2007). Fyffe (2014) correlated the Long Pond Bay Formation with the Simpsons Island Formation in the New River terrane on the mainland which also yielded an age of 539 \pm 4 Ma (Barr et al. 2003b).

Dated sample NB16-356 is from a grey sandstone unit in the Long Pond Bay shoreline section (Fig. 4). It is immature and matrix-supported and consists of angular quartz and less abundant plagioclase grains in a fine matrix of clay (sericite) and silt. Detrital muscovite and biotite altered to chlorite are also present.

Results

In this sample only 64 out of 145 grains are between 95 and 101% concordant and a further 22 grains are between 90 and 95% concordant. The largest population of zircon grains in sample NB16-356 is in the range between 690 and 600 Ma, with minor populations at around ca. 790 Ma, 1.1-1.2 Ga, and a few grains between 1.5-2 Ga (Figs. 7a, b). The concordia age of the youngest three grains that overlap is 614.6 ± 6.1 Ma with MSWD = 5.7 and probability (of concordance) = 0.017. The weighted mean of the youngest

Figure 7. Probability density plots and histograms for U-Pb data: (a) Sample NB16-356; (b) Expanded view of the data between 540 and 840 Ma for sample NB16-356; (c) Sample NB16-358; (d) Expanded view of the data between 300 and 900 Ma for sample NB16-358; (e) Sample BL15-01; (f) Expanded view of the data between 350 and 800 Ma for sample BL15-01. Note that the expanded-scale diagrams in (b), (d), and (f) have different scales. Inserts in (a), (c), and (e) show weighted mean ages for the youngest population of concordant zircon grains in each sample. Data are from Appendix Table A1. Dates with discordance >10% are excluded from these diagrams.

6 grains that overlap within error is 614.7 ± 4.6 at 95% confidence with MSWD = 0.67 and probability = 0.64 (Fig. 7a, inset). The interpreted maximum depositional age for this sample is therefore < 614 Ma. This result does not tighten the limited constraints on the depositional age of the Long Pond Bay Formation, previously suggested to be <588 Ma (Miller *et al.* 2007). However, the similarity of the dates from the youngest detrital grains to the U–Pb (zircon) ages of 617.6 ± 3.2 Ma and 618.3 ± 2.8 Ma for two tuffaceous samples from separate locations in the nearby Ingalls Head Formation (Fig. 4) suggest that the Ingalls Head Formation was the source of the detrital grains. The result is consistent with the inclusion of the Long Pond Bay Formation in the upper part of the Neoproterozoic to Lower Cambrian Castalia Group (Fyffe 2014).

SAMPLE NB16-358 - ROSS ISLAND FORMATION

Geological setting

The Ross Island Formation underlies the greater part of Ross and White Head islands near the southeastern coast of Grand Manan (Fig. 4). It comprises interstratified plagioclase-phyric mafic and intermediate flows and breccias intruded by numerous diabase dykes. The flows are locally pillowed and interbedded with green laminated siltstone. They range from basalt to andesite based on chemical composition, and are calc-alkalic, formed in a volcanic arc setting (Hilyard 1992; Hewitt 1993; Hodgins 1994; Pe-Piper and Wolde 2000; Black 2005). The Ross Island Formation appears to be truncated by faults that separate it from quartzite of The Thoroughare Formation on the northern tip of Ross Island and western tip of White Head Island (Fig. 4). The formation had no previous age constraints but was assumed to be part of the Precambrian to early Cambrian Castalia Group (Fyffe 2014).

Dated sample NB16-358 is dark grey laminated siltstone that occurs in peperitic relationship with basalt near the ferry terminal on the western shore of White Head Island. The sample is fine-grained and contains abundant plagioclase. Its swirly matrix contains abundant sericite and has an ashlike appearance.

Results

NB16-358 is very poor in zircon and only had 25 grains analyzed, 20 of which are betwee 95 and 101% concordant. The largest populations of zircon grains are in the range between ca. 580 Ma and 630 Ma, with a small group at ca. 700 Ma, and a few grains between 1 and 2 Ga (Figs. 7c, d). A single grain at ca. 320 Ma is not considered to be a reliable indicator of maximum depositional age. The concordia age of the youngest three grains that overlap is 585.5 ± 8.4 Ma with MSWD = 2.6 and a probability (of concordance) = 0.11. The weighted mean of the same four grains is 580 ± 11 at 95% confidence with MSWD = 0.26, and probability = 0.86.

Based on these data, the maximum depositional age for this sample is interpreted to be ca. 580 Ma, similar to that of the Long Pond Bay Formation as determined by Miller *et al.* (2007). This age is consistent with the suggestion by Fyffe (2014) that the volcanic rocks of the Ross Island Formation represent a proximal facies of the Priest Cove Formation.

SAMPLE BL15-01 - BALLS LAKE FORMATION

Geological setting

The Balls Lake Formation is a coarse clastic sedimentary unit in the Saint John area that is interpreted currently as the lower unit of the Upper Carboniferous Cumberland Group (Fig. 5). However, traditionally it was included in the Mispec Group as the middle formation, underlain by basaltic and sedimentary rocks of the West Beach Formation and overlain by plant-bearing lithic arenite of the Lancaster Formation. The sequence was considered conformable and the entire group regarded as Mississippian(?) to Pennsylvanian or Pennsylvanian based on plant remains in the Lancaster Formation (e.g., Hayes and Howell 1937; Alcock 1938). Plint and van der Poll (1982) reassigned the Balls Lake and Lancaster formations to the Cumberland Group and Park et al. (2014) showed that the West Beach Formation and the laterally correlative(?) Taylors Island Formation are part of the allochthonous Partridge Island block and not part of the stratigaphy of the Cumberland Group (Fig. 5). In the Calvert Lake area southeast of Saint John, rocks of the Partridge Island block are contained in a klippe, preserved in a synform in the Balls Lake Formation that plunges gently west-southwest. The conglomerate-sandstone-mudstone sequence of the surrounding Balls Lake Formation is overturned to the south in the footwall of the Calvert Lake klippe along its southern contact, consistent with thrust transport toward the south-southeast. The Balls Lake Formation has no direct biostratigraphic controls on its age.

The dated sample is typical reddish-grey sandstone from the Balls Lake Formation in the overturned section on Bayshore Drive. It contains subangular quartz and plagioclase in a sericitic matrix that contain abundant carbonate cement. The quartz grains are angular to subangular and varied in size and shape. Detrital muscovite and opaque phases are abundant.

Results

The largest populations of zircon grains in sample BL15-01 are in the range between ca. 430 and 390 Ma (Figs. 7e, f). Smaller groups of ages occur at ca. 550 Ma, 600 Ma and 1 Ga, with a few older grains between 1 Ga and 2 Ga. The youngest 5 grains that overlap within error have a calculated concordia age of 397.3 ± 1.9 Ma with MSWD= 5.0, and probability (of concordance) = 0.025. The weighted mean of the same 5 grains is 396.5 ± 1.9 Ma at 95% confidence with MSWD = 0.78 and probability = 0.54 (Fig. 7e, inset).

Based on these data, the maximum depositional age for this sample is interpreted to be ca. 396 Ma, much older than the inferred Late Carboniferous depositional age for the formation based on field relationships. The lack of Late Devonian–Early Carboniferous ages indicates that the Partridge Island block, which contains volcanic and plutonic rocks of that age, was not providing debris to this unit of the Balls Lake Formation. The Middle Devonian – Silurian zircon grains in the sample could have been derived from any number of plutonic suites both locally and farther afield.

DISCUSSION

Depositional ages

The depositional ages of all six samples included in this study are equivocal based on other evidence, and hence the maximum depositional ages described above based on the youngest zircon populations are potentially important. However, as in all detrital zircon studies, the data are viewed in combination with field and other evidence because of the potential for Pb loss which can move zircon ages to younger points along concordia (e.g., Dickinson and Gehrels 2010), as well as the possibility of inclusion of second-cycle detritus or lack of zircon sources close in age to the deposition of sediment. However, even with these caveats in mind, the detrital zircon U–Pb data provide valuable information about sedimentary provenance and maximum depositional ages. The samples are discussed here in reverse age order.

The Silurian and younger populations present in sample BL15-01 from the Balls Lake Formation include prominent populations of Early and Middle Devonian zircon grains but no younger grains, although the depositional age of the Balls Lake Formation is Carboniferous based on stratigraphic and field relationships (e.g., Park et al. 2014). A similar pattern of Carboniferous units with Devonian zircon grains as their youngest populations was found in a study in the southern Appalachian orogen by Thomas et al. (2017) in which several Pennsylvanian units contain significant Devonian zircon populations but no younger grains. These well-documented examples are a reminder that "maximum deposition ages" provide only an upper limit on stratigraphic age. Pre-Devonian zircon grains are sparse in sample BL15-01 (Figs. 7e, f) and could be evidence for either Gondwanan or Laurentian source areas but could also represent recycled detrital material from multiple sources.

Cheyne Settlement Road sample NB12-314 contains a significant Cambrian zircon population with a maximum depositional age of ca. 487 Ma and, therefore, latest Cambrian or younger (Figs. 6a, b). This maximum age is younger than the broadly "middle Cambrian" age generally assigned to the Hanford Brook Formation based on fossils and a U–Pb zircon date of 508.05 ± 2.75 Ma from an ash bed in the city of Saint John (Landing *et al.* 1998; Schmitz 2012). Although more work needs to be done in order to investi-

gate this apparent age enigma, it is possible that the Cheyne Settlement Formation is correlative instead with the Snider Mountain Formation in the Almond Road Group which occurs in the New River belt to the northeast (Fig. 1a). The youngest zircon population in quartz arenite in the Snider Mountain Formation is ca. 530 Ma, and the age of the upper sequence that contains feldspathic quartz arenite near its base is constrained by a cross-cutting pluton that gave an age of 475.4 ± 1.6 Ma (Johnson *et al.* 2018). It is possible that the Cheyne Settlement sample exemplifies the gradual younging of quart arenite deposition within the same unit outward from the platform during protracted rifting and opening of the ocean basin along the Gondwanan margin as illustrated by Johnson *et al.* (2018).

The sample from Buckmans Creek (Fig. 3) also has a significant Cambrian zircon population but the youngest population (maximum depoisitional age) is older at ca. 517 Ma (Cambrian series 2). Landing *et al.* (2008) interpreted the dated quartz arenite unit at Buckmans Creek to be part of the Random Formation. The age of that formation in the Saint John area (where it is historically known as the Glen Falls Formation) is constrained by volcanic ash beds with ages of ca. 528 Ma in the underlying Ratcliffe Brook Formation and ca. 508 Ma in the overlying Hanford Brook Formation. Hence the maximum depositional age of 517 Ma for sample NB12-315 is consistent with these age constraints.

In contrast to these early Paleozoic samples, the samples from the Long Pond Bay and Ross Island formations (Figs. 7a–d) do not have Cambrian or younger zircon grains and hence their maximum depositional ages based on zircon data alone appear to be Neoproterozoic. The data are broadly consistent with previous interpretations of these units as Neoproterozoic but do not narrow down the depositional age greatly, especially for the Long Pond Bay Formation, due to the small number of zircon grains that yielded concordant results. However, the results are consistent with the interpretations of Fyffe (2014) who included the Long Pond Bay Formation in the upper part of the Neoproterozoic to Lower Cambrian Castalia Group and suggested that the volcanic rocks of the Ross Island Formation are a proximal facies of the Priest Cove Formation of the Castalia Group (Fig. 4).

Provenance implications

To facilitate comparison of datasets of various sizes, data from the present study together with previously published detrital age data for samples from Avalonia and Ganderia in southern New Brunswick are displayed on probability plots normalized for the number of dates (Figs. 8, 9). Because older grains are typically much less abundant than Ediacaran grains and hence tend to be produce less prominent peaks on the probability plots (Fig. 8), the normalized plots in Figure 9 were made using only dates older than 900 Ma. Except for three samples (NB06-232, NB12-314, and NB16-358) in which the number of grains with dates >900 Ma is small (<10), the data give reasonable signatures for comparison of Mesoproterozoic and older zircon signatures among samples (Fig. 9).

Figure 8. Normalized probability distribution for the six detrital zircon samples of this study in comparison to other samples from southern New Brunswick from Barr *et al.* (2012, 2014b), Johnson *et al.* (2018), Fyffe *et al.* (2009), and Satkoski *et al.* (2010). Data are normalized against the total number of concordant dates for each sample.

Figure 9. Normalized probability distribution using only ages >900 Ma for the six detrital zircon samples of this study in comparison to other samples from southern New Brunswick from Barr *et al.* (2012, 2014b), Johnson *et al.* (2018), Fyffe *et al.* (2009), and Satkoski *et al.* (2010). Data are normalized against the total number of concordant dates >900 Ma for each sample.

With the exception of sample GM10-01 from The Thoroughfare Formation, all of the samples are characterized by prominent Ediacaran peaks in zircon ages (Fig. 8). Such peaks are characteristic of sedimentary rocks from Gondwanaderived terranes and reflect the widespread pan-African igneous activity related to the assembly of the Gondwanan continent (e.g., Satkoski et al. 2010; Pollock et al. 2009, 2015; Dokken et al. 2018; Ludman et al. 2018). It is difficult to assess the significance of the variations in the position of the Ediacaran peak or of the spread in Ediacaran ages in terms of specific provenance areas in Gondwana because even samples from a single belt or stratigraphic unit can display significant differences, as has been documented in the Ganderian parts of New Brunswick, Nova Scotia, and Newfoundland (e.g., Fyffe et al. 2009; Satkoski et al. 2010; Barr et al. 2012; van Rooyen et al. 2019).

In addition to the Ediacaran peak somewhere between 539 Ma and 619 Ma, most samples show a scatter of older Neoproterozoic ages back to about 900 Ma, although such older Neoproterozoic ages are notably absent in the Cheyne Settlement Road sample (Fig. 8). In general, Grenville-age (1.0-1.2 Ga) peaks are not present in the samples of this study or those compiled from previous studies (Fig. 9), indicating that Laurentian sources were not significant contributors to these sediments. Also lacking in most samples are prominent "Eburnean" (2.0 -2.2 Ga) peaks, generally considered indicative of African sources. Exceptions include the sample from The Thoroughfare Formation on Grand Manan Island, in which that peak is dominant, and the sample from the nearby Flagg Cove Formation (data from Fyffe et al. 2009) which likely derived sediment from The Thoroughfare Formation or equivalent units. In general, Ganderian samples have more abundant Mesoproterozoic peaks than Avalonian samples, a pattern that is generally viewed as indicating Amazonian provenance (e.g., Barr et al. 2014b) but all of the Avalonian samples have some Mesoproterozoic peaks and some Ganderian samples, especially those from Grand Manan Island, have relatively few Mesoproterozoic peaks (Fig. 9).

The interpretation of Mesoproterozoic zircon provenance is challenging as illustrated in the Fredericton trough in New Brunswick and Maine northwest of the study area. Although the Fredericton trough is farther outboard of the Gondwanan margin within Ganderia than the current study areas (Fig. 1a), it provides a comparison dataset for areas to the southeast. Ludman et al. (2017, 2018) suggested that the Fredericton trough represents an independent basin that was not linked to the more southern New England basins, and interpreted the detrital zircon signatures as being derived from dominantly Gondwanan sources. In contrast, Dokken et al. (2018) documented more mixed zircon provenance signature with significant Laurentian contributions. The differences in detrital zircon signatures are likely the result of along-strike variations in the source terranes, and support interpretations that Ganderia may have been a collection of continental fragments that accreted to the Laurentian margin at different times rather than forming one coherent crustal block (Waldron et al. 2014, 2018, 2019; Pothier et al. 2015).

In Avalonia, Barr et al. (2012) noted a change in the provenance of detrital zircon grains through time, Neoproterozoic units being characterized by lack of zircon grains with ages between 2.2 and 1.9 Ga, with the exception of a small peak at 2.0 Ga in the Neoproterozoic Broad River Group in the Caledonia belt (Fig. 9). By the early Cambrian zircon grains of this age are more abundant. Fyffe et al. (2009) noted a similar trend in Neoproterozoic to Tremadocian sedimentary units in Ganderia, with 2.2 to 1.9 Ga ages becoming much more abundant overall in Cambrian-Ordovician samples. However, exceptions to the trend occur in Cambrian samples from both Ganderia and Avalonia. For example, a quartz arenite sample from the lower Cambrian Glen Falls Formation (Random Formation of Landing and Westrop 1998) in the Avalonian Caledonia belt (Fig. 8) contains few zircon grains ages between 2.2 to 1.9 Ga, and the dominant age population is ca. 537 Ma (Barr et al. 2012). The quartzite sample from the early Cambrian Matthews Lake Formation in the Ganderian New River belt (Fig. 8) also lacks zircon grains with ages between 2.2 and 1.9 Ga and is dominated by a single statistical age population at 539 Ma (Fyffe et al. 2009). The abundant volcanic rocks in the ca. 540 Ma Belleisle Bay Group in the New River belt are the most obvious source of the ca. 539 Ma zircon grains in the Matthews Lake quartzite, and along with the voluminous ca. 540 Ma plutonic rocks in the Brookville belt are the closest possible sources for the ca. 537 Ma zircons in the Glen Falls Formation, although 40 Ar/39 Ar cooling ages show that the Brookville plutons were not exposed at the time when the Glen Falls Formation was deposited (Dallmeyer and Nance 1992; White 1996).

The absence of Mesoproterozoic and Neoproterozoic zircon grains in the quartzite samples from The Thoroughfare Formation is intriguing. Grains of those ages form the dominant populations in every other sample in this study, and in every other sedimentary sample from the region (Fig. 8). It is one of only 3 northern Appalachian samples known to have this type of signature, one from drill core recovered from Georges Bank, underlying Mesozoic sedimentary rocks (Kuiper et al. 2017) and the other from the Hutchins Island Quartzite in the Islesboro fault block in Penobscot Bay in coastal Maine (Reusch et al. 2018). As noted by Kuiper et al. (2017) and Reusch et al. (2018) these detrital signatures, with a predominant population at ca. 2.0 Ga and a small peak between ca. 2.8 Ga and 2.4 Ga, are remarkably similar to that of the Paleoproterozoic Taghdout Quartzite in Morocco on the West African craton. Similar peaks are also present in the spectrum for the Flagg Cove Formation reported by Fyffe et al. (2009), although that sample also contains abundant Mesoproterozoic, Neoproterozoic, and Paleozoic grains. Given its proximity, The Thoroughfare Formation seems the most likely source of the Paleoproterozic grains in the Flagg Cove Formation. The detrital spectrum is very different from that of the Ashburn Formation of the Green Head Group in the Brookville belt, which like

other units of that belt (Martinon Formation and Brookville paragneiss) are dominated by Mesoproterozoic zircon grains (Fig. 8). This calls into question the previous correlation (e.g., Alcock 1948) of The Thoroughfare Formation with the Green Head Group and suggests that correlation with the Isleboro fault block in Penobscot Bay may be more likely.

CONCLUSIONS

New U-Pb data from detrital zircon grains in six clastic sedimentary and metasedimentary samples from Ganderian and Avalonian terranes in southern New Brunswick show both similarities and differences in Ediacaran and older age patterns. Like previously published data from southern New Brunswick, four of the samples (BL15-01, NB12-315, NB16-356, NB16-358) have prominent Late Ediacaran to earliest Cambrian zircon age populations, but the position of the modal peak varies from ca. 548 Ma to 618 Ma. The fifth sample (NB12-314) has an early Cambrian peak at ca. 522 Ma, and the sixth sample (GM10-01) has only Paleoproterozoic peaks (Fig. 8). Some samples show a smattering of ages back to ca. 800, but generally lack 800-1200 Ma zircon grains. The samples vary widely in their abundances of older Mesoproterozoic and Paleoproterozoic grains, and a few Archean zircon grains are present in some samples. No consistent differences are apparent between Avalonian and Ganderian samples. Because Gondwanan sources areas contain a wide range of ages which are broadly similar, combined with the many variables inherent in sediment erosion, transport, deposition, and recycling, the use of detrital zircon age signatures to interpret from which part of Gondwana the Gondwana-derived components of the Appalachian orogen were derived may not be possible.

ACKNOWLEDGEMENTS

We thank Adrian Park for collecting the sample from the Balls Lake Formation. We are grateful to Brandon Boucher and Chris McFarlane for assisting Deanne van Rooyen with the U-Pb dating at the University of New Brunswick and for providing invaluable advice in processing and interpreting the age data. Brent Miller thanks the laboratory staff at Texas A & M University for their help. Comments and suggestions by journal reviewers Les Fyffe and John Waldron were helpful in improving the content and clarity of the manuscript and are much appreciated. This work was fund-ed mainly through research agreements between the Geo-logical Surveys Branch of the New Brunswick Department of Energy and Mines/Department of Energy and Resource Development and Acadia University and NSERC Discovery grants to Sandra Barr.

REFERENCES

- Alcock, F.J. 1938. Geology of Saint John region, New Brunswick. Canada Department of Mines and Resources, Mines and Geology Branch, Geological Survey of Canada Memoir 216, 65 p.
- Alcock, F.J. 1948, Grand Manan, New Brunswick: Geological Survey of Canada, Map 965A, scale 1:63,360. https://doi.org/10.4095/107704
- Archibald, D.B., Barr, S.M., Murphy, J.B., White, C.E., Mac-Hattie, T.G., Escarraga, E.A., Hamilton, M.A., and Mc-Farlane, C.R.M. 2013. Field relationships, petrology, age, and tectonic setting of the Ordovician West Barneys River Plutonic Suite, southern Antigonish Highlands, Nova Scotia, Canada. Canadian Journal of Earth Sciences, 50, pp. 727–745. https://doi.org/10.1139/cjes-2012-0158
- Barr, S.M., Davis, D.W., Kamo, S., and White, C.E. 2003a. Significance of U–Pb detrital zircon ages in quartzite from peri-Gondwanan terranes, New Brunswick and Nova Scotia, Canada. Precambrian Research, 126, pp. 123–145. https://doi.org/10.1016/S0301-9268(03)00192-X
- Barr, S.M., White, C.E., and Miller, B.V. 2003b. Age and geochemistry of Late Neoproterozoic and early Cambrian igneous rocks in southern New Brunswick: similarities and contrasts. Atlantic Geology, 39, pp. 55–73. https://doi.org/10.4138/1050
- Barr, S.M., Hamilton, M.A., Samson, S.D., Satkoski, A.M., and White, C.E. 2012. Provenance variations in northern Appalachian Avalonia based on detrital zircon age patterns in Ediacaran and Cambrian sedimentary rocks, New Brunswick and Nova Scotia, Canada. Canadian Journal of Earth Sciences, 49, pp. 533–546. https://doi.org/10.1139/e11-070
- Barr, S.M., Bartsch, C.J., Miller, B.V., and White, C.E. 2014a. U–Pb (zircon) age for the Beaver Harbour Porphyry, New River belt, southern New Brunswick, Atlantic Geology, 50, pp. 155–166. https://doi.org/10.4138/atlgeol.2014.010
- Barr, S.M., White, C.E., Davis, D.W., McClelland, W.C., and van Staal, C.R. 2014b. Infrastructure and provenance of Ganderia: evidence from detrital zircon ages in the Brookville terrane, southern New Brunswick, Canada. Precambrian Research, 246, pp. 358–370. https://doi.org/10.1016/j.precamres.2014.03.022
- Barr, S.M., Johnson, S.C., and White, C.E. 2014c. The on-going Saint John geology enigma: Avalonia versus Ganderia in southern New Brunswick. GAC-MAC Fredericton 2014, post-meeting field guide, B6, 52 p.
- Bartsch, C. 2005. Constraints on the tectonic evolution of the southern New River terrane and its relationship to other terranes in southern New Brunswick. Unpublished M.Sc. thesis, Acadia University, Wolfville, Nova Scotia, Canada, 169 p.
- Black, R. 2005. Pre-Mesozoic geology of Grand Manan Island, New Brunswick. Unpublished MSc thesis, Acadia University, Wolfville, Nova Scotia, Canada, 227p.
- Black, L.P., Kamo, S.L., Allen, C.M., Davis, D.W., Aleini-koff, J.N., Valley, J.W., Mundil, R., Campbell, I.H., Korsch,

- R.J., Williams, I.S., and Foudoulis, C. 2004. Improved ²⁰⁶Pb/²³⁸U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology, 205, pp. 115–140. https://doi.org/10.1016/j.chem-geo.2004.01.003
- Boyce, W.D. and Johnson, S. 2004: Early Cambrian trilobites from the Hanford Brook Formation, Public Landing, southern New Brunswick, Canada. Geological Association of Canada, Paleontology Division, Canadian Paleontology Conference Proceedings, 2, p. 14.
- Cohen, K.M., Finney, S.C., Gibbard, P.L., and Fan, J.-X. (2013; updated 2018) The ICS International Chronostratigraphic Chart. Episodes, 36, pp. 199–204. URL http://www.stratigraphy.org/ICSchart/ChronostratChart2018-08.pd 10 March 2019.
- Currie, K.L. 1988. The western end of the Avalon Zone in southern New Brunswick. Maritime Sediments and Atlantic Geology, 24, pp. 339–352. https://doi.org/10.4138/1661
- Dallmeyer, R.D. and Nance, R.D., 1992. Tectonic implications of ⁴⁰Ar/³⁹Ar mineral ages from Late Precambrian–Cambrian plutons, Avalon Composite Terrane, southern New Brunswick, Canada. Canadian Journal of Earth Sciences, 29, pp. 2445–2462. https://doi.org/10.1139/e92-192
- Dickinson, W.R. and Gehrels, G.E. 2010. Insights into North American Paleogeography and Paleotectonics from U–Pb ages of detrital zircons in Mesozoic strata of the Colorado Plateau, USA. International Journal of Earth Sciences, 99, pp. 1247–1265. https://doi.org/10.1007/s00531-009-0462-0
- Dokken, R., Waldron, J., and Dufrane, A. 2018. Detrital zircon geochronology of the Fredericton Trough, New Brunswick, Canada: Constraints on the Silurian closure of remnant Iapetus Ocean. American Journal of Science, 318, pp. 684–725. https://doi.org/10.2475/06.2018.03
- Fyffe, L.R. 2014. The Grand Manan terrane of New Brunswick: Tectonostratigraphy and relationship to the Gondwanan margin of the Iapetus Ocean. Geoscience Canada, 41, pp. 483–502. https://doi.org/10.12789/geocanj.2014.41.051
- Fyffe, L.R., Barr, S.M., Johnson, S.C., McLeod, M.J., McNicoll, V.J., Valverde-Vaquero, P., van Staal, C.R., and White, C.E. 2009. Detrital zircon ages from Neoproterozoic and Early Paleozoic conglomerate and sandstone units of New Brunswick and coastal Maine: implications for the tectonic evolution of Ganderia. Atlantic Geology, 45, pp. 110–144. https://doi.org/10.4138/atlgeol.2009.006
- Fyffe, L.R., Johnson, S.C., and van Staal, C.R. 2011. A review of Proterozoic to Early Paleozoic lithotectonic terranes in the northeastern Appalachian orogen of New Brunswick, Canada, and their tectonic evolution during Penobscot, Taconic, Salinic, and Acadian orogensis. Atlantic Geology, 47, pp. 211–248. https://doi.org/10.4138/atlgeol.2011.010

- Hayes, A.O. and Howell, B.F. 1937. Geology of Saint John, New Brunswick.Geological Society of America Special Paper 5, 146 p.
- Hewitt, M.D. 1993. Geochemical constraints on the source of sedimentary and volcanic sequences, Grand Manan Island, New Brunswick. Department of Geology. Oneonta, NY, Hartwick College, 28 p.
- Hibbard, J.P., van Staal, C.R., Rankin, D.W., and Williams, H. 2006.Lithotectonic map of the Appalachian orogen, Canada United States of America: Geological Survey of Canada Map 02096A, 2 sheets, scale 1:1 500 000. https://doi.org/10.4095/221932
- Hiess, J., Condon, D.J., McLean, N., and Noble, S.R. 2012. ²³⁸U/²³⁵U systematics in terrestrial uranium-bearing minerals. Science, 335, pp. 1610–1614. https://doi.org/10.1126/science.1215507
- Hilyard, M. 1992. The geologic significance of Grand Manan Island, New Brunswick. Department of Geology. Oneonta, NY, Hartwick College, 27 p.
- Hodgins, M.L. 1994. Trace element, REE, and Nd isotopic variations in metavolcanic and metasedimentary sequences, Grand Manan Island, New Brunswick. Department of Geology. Oneonta, NY, Hartwick College, 57 p.
- Jaffey, A. H., K. F. Flynn, L. F. Glendenin, W. C. Bentley, and A. M. Essling . 1971, Precision measurements of half-lives and specific activities of ²³⁵U and ²³⁸U, Physical Review C, 4, pp. 1889–1906. https://doi.org/10.1103/PhysRevC.4.1889
- Johnson, S.C. 2001. Contrasting geology in the Pocologan River and Long Reach areas: implications for the New River belt and correlations in southern New Brunswick and Maine. Atlantic Geology, 37, pp. 61–79. https://doi.org/10.4138/1972
- Johnson, S.C., Dunning, G.R., and Miller, B.V. 2018. U–Pb geochronology and geochemistry from the northeastern New River belt, southern New Brunswick, Canada: significance of the Almond Road Group to the Ganderian platformal margin. Atlantic Geology, 54, pp. 147–170. https://doi.org/10.4138/atlgeol.2018.005
- Kuiper, Y.D., Thompson. M.D., Barr, S.M., White, C.E., Hepburn, J.C., and Crowley, J.L. 2017. Detrital zircon evidence for Paleoproterozoic West African crust along the eastern North American continental margin, Georges Bank, offshore Massachusetts, USA. Geology, 45, pp. 811–814. https://doi.org/10.1130/G39203.1
- Landing, E. 1996. Avalon: Insular continent by the latest Precambrian. *In* Avalonian and Related Peri-Gondwanan Terranes of the Circum-North Atlantic. *Edited by* R.D. Nance, and M.D. Thompson. Geological Society of America, Special Paper, 304, pp. 29–63. https://doi.org/10.1130/0-8137-2304-3.29
- Landing, E. and Westrop, S.R. 1998. Avalon 1997-The Cambrian Standard. Third international field conference of the Cambrian chronostratigraphy working group and I.G.C.P. Project 366. New York State Bulletin 492, 92 p.
- Landing, E., Bowring, S. A., Davidek, K. L., Westrop, S. R., Geyer, G., and Heldmaier, W. 1998. Duration of the early

- Cambrian: U-Pb ages of volcanic ashes from Avalon and Gondwana. Canadian Journal of Earth Sciences, 35, pp. 329–38. https://doi.org/10.1139/cjes-35-4-329
- Landing, E., Johnson, S., and Geyer, G. 2008. Faunas and Cambrian volcanism on the Avalonian marginal platform, southern New Brunswick. Journal of Paleontology, 82, pp. 884–905. https://doi.org/10.1666/07-007.1
- Ludman, A., Hopeck, J., and Berry, H. 2017. Provenance and paleogeography of post-Middle Ordovician pre-Devonian sedimentary basins on the Gander composite terrane, eastern and east-central Maine: implications for Silurian tectonics in the northern Appalachians. Atlantic Geology, 53, p. 63–85. https://doi.org/10.4138/atlgeol.2017.003
- Ludman, A., Aleinikoff, J., Berry, H.N. IV, and Hopeck, J.T. 2018. SHRIMP U-Pb zircon evidence for age, provenance, and tectonic history of early Paleozoic Ganderian rocks, east-central Maine, USA. Atlantic Geology, 54, pp. 335–387. https://doi.org/10.4138/atlgeol.2018.012
- Matthew, G.F. 1891. On some causes which may have influenced the spread of the Cambrian faunas. Canadian Record of Science, 4, pp. 255–269.
- McFarlane, C.R.M. and Luo, Y. 2012. Modern analytical facilities: U–Pb geochronology using 193 nm Excimer LA-ICP-MS optimized for in-situ accessory mineral dating in thin sections. Geoscience Canada, 39, pp. 158–172.
- McLeod, M.J., Winchester, J.A., and Ruitenberg, A.A. 1994. Geochemistry of the Annidale Group: implications for the tectonic setting of Lower Ordovician volcanism in southwestern New Brunswick. Atlantic Geology, 30, pp. 87–94. https://doi.org/10.4138/2122
- Miller, B.V., Barr, S.M., and Black, R.S. 2007. Neoproterozoic and Cambrian U–Pb (zircon) ages from Grand Manan Island, New Brunswick: Implications for stratigraphy and northern Appalachian terrane correlations. Canadian Journal of Earth Sciences, 44, 911–923. https://doi.org/10.1139/e06-132
- Paces, J.B. and Miller, J.D. 1993. Precise U–Pb ages of of Duluth Complex and related mafic intrusions, northeastern Minnesota: geochronological in-sights into physical, petrogenetic, paleomagnetic and tectonomagnatic processes associated with the 1.1 Ga mid-continent rift system. Journal of Geophysical Research, 98, pp.13997–14013. https://doi.org/10.1029/93JB01159
- Palacios, T., Jensen, S., Barr, S.M., White, C.E., and Miller, R. 2016. Acritarchs from the Hanford Brook Formation, New Brunswick, Canada: new biochronological constraint on the Protolenus elegans Zone and the Cambrian Series 2–3 transition. Geological Magazine, 154, pp. 571–590. https://doi.org/10.1017/S0016756816000224
- Park, A.F., Treat, R.L., Barr, S.M., White, C.E., Miller, B.V., Reynolds, P.H., and Hamilton, M.A. 2014. Structural setting and age of the Partridge Island block, southern New Brunswick, Canada: a link to the Cobequid Highlands of northern mainland Nova Scotia. Canadian Journal of Earth Sciences, 51, pp. 1–24. https://doi.org/10.1139/cjes-2013-0120
- Paton, C., Woodhead, J., Hellstrom, J., Hergt, J.M., Greig, A.,

- and Maas, R. 2010. Improved laser ablation U–Pb zircon geochronology through robust downhole fractionation correction. Geochemistry, Geophysics, Geosystems, 11, Q0AA06, 36 p. https://doi.org/10.1029/2009GC002618
- Paton, C., Hellstrom, J., Paul, B., Woodhead, J., and Hergt, J.M. 2011. Iolite: freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26, pp. 2508–2518. https://doi.org/10.1039/c1ja10172b
- Pe-Piper, G. and Wolde, B. 2000. Geochemistry of metavolcanic rocks of the Ross Island and Ingalls Head formations, Grand Manan Island, New Brunswick. Atlantic Geology, 36, pp. 103–116. https://doi.org/10.4138/2014
- Petrus, J.A. and Kamber, B.S. 2012. VizualAge: A novel approach to laser ablation ICP-MS U-Pb geochronology data reduction. Geostandards and Geoanalytical Research, 36, pp. 247–270. https://doi.org/10.1111/j.1751-908X.2012.00158.x
- Plint, A.G. and van der Poll, H.W. 1982. Alluvial fan and piedmont sedimentation in the Tynemouth Creek Formation (Lower Pennsylvanian) of southern New Brunswick. Maritime Sediments and Atlantic Geology, 18, pp. 104–128. https://doi.org/10.4138/1393
- Pollock, J.C., Hibbard, J.P., and Sylvester, P.J. 2009. Early Ordovician rifting of Avalonia and birth of the Rheic Ocean: U–Pb detrital zircon constraints from Newfoundland. Journal of the Geological Society, 166, pp. 501–515. https://doi.org/10.1144/0016-76492008-088
- Pollock, J.C., Barr, S.M., and Sylvester, P.J. 2015. Lu–Hf zircon and Sm–Nd whole rock isotope constraints on the extent of juvenile arc crust in Avalonia: examples from Newfoundland and Nova Scotia, Canada. Canadian Journal of Earth Sciences, 52, pp. 161–181. https://doi.org/10.1139/cjes-2014-0157
- Pothier, H.D., Waldron, J.W.F., Schofield, D.I., and DuFrane, S.A. 2015. Peri-Gondwanan terrane interactions recorded in the Cambrian–Ordovician detrital zircon geochronology of North Wales. Gondwana Research, 28, pp. 987–1001. https://doi.org/10.1016/j.gr.2014.08.009
- Reusch, D.N., Holm-Denoma, C.S., and Slack, J.F. 2018. U–Pb zircon geochronology of Proterozoic and Paleozoic rocks, North Islesboro, coastal Maine (USA): links to West Africa and Penobscottian orogenesis in southeastern Ganderia? Atlantic Geology, 54, pp. 189–224. https://doi.org/10.4138/atlgeol.2018.007
- Satkoski, A.M., Barr, S.M., and Samson, S.D. 2010. Provenance of Late Neoproterozoic and Cambrian sediments in Avalonia: Constraints from detrital zircon ages and Sm–Nd isotopic compositions in southern New Brunswick, Canada. The Journal of Geology, 118, pp. 187–200. https://doi.org/10.1086/649818
- Schmitz, M. D. 2012. Radiometric ages used in GTS 2012. *In* The Geologic Time Scale 2012. *Edited by* F. M. Gradstein, J. G. Ogg, M. Schmitz, and G. Ogg). Amsterdam: Elsevier pp. 1045–77. https://doi.org/10.1016/B978-0-444-59425-915002-4
- Tanoli, S.K. and Pickerill, R.K. 1988. Lithostratigraphy of the

- Cambrian–Lower Ordovician Saint John Group, southern New Brunswick. Canadian Journal of Earth Sciences, 25, pp. 669–690. https://doi.org/10.1139/e88-064
- Thomas, W.A., Gehrels, G. E., Greb, S.F., Nadon, G.C., Satkoski, A.M., and Romero, M.C. 2017. Detrital zircons and sediment dispersal in the Appalachian foreland. Geosphere, 13, pp. 2206–2230. https://doi.org/10.1130/GES01525.1
- Thompson, M.D., Ramezani, J., Barr, S.M., and Hermes, O.D. 2010. High precision U–Pb dates for Ediacaran granitoid rocks in SE New England: Revised magmatic chronology and correlation with other Avalonian terranes. *In* From Rodinia to Pangea: The Lithotectonic Record of the Appalachian Region. *Edited by* R.P. Tollo, M.J. Bartholomew, J.P Hibbard, and P.M. Karabinos. Geological Society of America Memoir, 206, pp. 231–250. https://doi.org/10.1130/2010.1206(11)
- van Staal, C.R., Barr, S.M., Fyffe, L.R., Johnson, S.C., Park, A.F., White, C.E., and Wilson, R.A. 2011. The defining tectonic elements of Ganderia in New Brunswick. Geological Association of Canada Mineralogical Association of Canada Society of Economic Geologists -Society for Geology Applied to Mineral Deposits Joint Annual Meeting, Ottawa, 2011, Guidebook to Field trip 1B, 30 p.
- van Rooyen, D., Barr, S.M., White, C.E., and Hamilton, M.A. 2019. New U-Pb age constraints on the geological history of the Ganderian Bras d'Or terrane, Cape Breton Island, Nova Scotia. Canadian Journal of Earth Sciences. 56, pp. 829–847. https://doi.org/10.1139/cjes-2018-0248
- Waldron, J. W. F., Schofield, D. I., Dufrane, S. A., Floyd, J. D., Crowley, Q. G., Simonetti, A., Dokken, R. J., and Pothier, H. D. 2014. Ganderia–Laurentia collision in the Caledonides of Great Britain and Ireland: Journal of the Geological Society, London, 171, pp. 555–569. https://doi.org/10.1144/jgs2013-131

- Waldron, J. W. F., Schofield, D. I., and Murphy, J. B. 2018.
 Diachronous Palaeozoic accretion of peri-Gondwanan terranes at the Laurentian margin. *In* Fifty Years of the Wilson Cycle Concept in Plate Tectonics. Edited by R.W. Wilson, G.A. Houseman, K.J.W. McCaffrey, A.G. Doré, and S.J.H. Buiter. Geological Society of London, Special Publication, 470, published online 29 March 2018. https://doi.org/10.1144/SP470.11
- Waldron, J.W.F., Schofield, D.I., Pearson, G., Chiranjeeb Sarkar, C., Luo, Y., and Dokken, R. 2019. Detrital zircon characterization of early Cambrian sandstones from East Avalonia and SE Ireland: implications for terrane affinities in the peri-Gondwanan Caledonides. Geological Magazine, 156, pp. 1217–1232. https://doi.org/10.1017/S0016756818000407
- White, C.E., 1996. Geology, geochronology, and tectonic evolution of the Brookville terrane, southern New Brunswick. Unpublished Ph.D. thesis. Dalhousie University, Halifax, Nova Scotia, Canada, 513 p.
- Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., von Quadt, A., Roddick, J.C., and Spiegel, W. 1995. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostandards Newsletter 19, pp. 1–23. https://doi.org/10.1111/j.1751-908X.1995.tb00147.x
- Yoon, T.N. 1970. The Cambrian and Lower Ordovician stratigraphy of the Saint John area, New Brunswick. Unpublished M.Sc. thesis, University of New Brunswick, Fredericton, New Brunswick, Canada, 92 p.

Editorial responsibility: David P. West, Jr.

APPENDIX

Table A1. Instrument settings and run parameters for analyses completed at Texas A & M University.

laser	esi/NWR 193 nm 4 ns excimer
background/washout times	14 s /8 s
laser repetition rate	15 Hz
spot size/shape	30 μm / circle
fluence	3.25 J cm ⁻²
carrier/makeup gas	0.6 l/min He, 0.8 l/min Ar
mass spectrometer	Thermo Scientific iCAP RQ
plasma RF power	1550 W
total duty cycle	195 ms
isotopes measured (dwell times in ms)	⁴⁸ Ti (10), ⁸⁸ Sr (10), ⁹⁶ Zr (2.5), ¹⁷⁹ Hf (2.5), ²⁰² Hg (10), ²⁰⁴ Pb (20), ²⁰⁶ Pb (20), ²⁰⁷ Pb (50), ²⁰⁸ Pb (10), ²³² Th (10), ²³⁵ U (20), ²³⁸ U (10), ²³² Th ¹⁶ O (10), ²³⁸ U (10), ²

Table A2. U-Pb geochronologic data for samples GM10-01, NB12-314, and NB12-31 run at Texas A & M University (analyst Brent Miller).

	Measured concentrations ¹	concentral	tions						Isotopic ratios	atios	•							Calc	Calculated ages (Ma)	ges (Ma			
	Da Transacti								1														
Analysis F Identifier (pp	Pb U (mqq)	Th (ppm)	U/Th	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁶ Pb	±2\alpha^2	²⁰⁸ Pb/ ²³² Th	±2 σ^2	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ ²	²⁰⁷ Pb/ ²³⁵ U :	2α ±2σ ²	²⁰⁶ Pb/ ²³⁸ U	±2σ²	Rho ³	²⁰⁸ Pb/ ² ±2	$\pm2\sigma^2$ $^{207}\mathrm{Pb}/^2$	77	$\sigma^2 \frac{^{207} \mathrm{Pb}}{^{235} \mathrm{U}}$, ±2σ²	²⁰⁶ Pb/ ²³⁸ U	±20 ²	% con
NB12-314 Cheyne Settlement Road (UTM - 719036E, 5032336N; Grid Zone 19T)	ttlement	Road (UT)612 - W.	036E, 5032336	N; Grid	Zone 1	9T)																
NB314a_001 1	115.7 83	835 434	34 1.92	18000	5.2	0.13	0.0297	0.0011	0.067	0.0023	0.727	0.042	0.0784	0.0023	0.5	591	22	816 2	20 5	551 24	486	5 14	88.2
NB314a_002	99.1 59	592 354	54 1.67	15000	4.85	0.21	0.0305	0.0018	0.0668	0.0041	0.749	0.059	0.0811	0.0022	0.5	209	35	780 11	110 5	561 32	503	3 13	89.7
NB314a_003	176 98	988 534	1.85	0866	4.19	0.24	0.0378	0.0022	0.0864	0.0031	0.94	0.043	80.0	0.0018	0.5	750	43 1	336 2	21 6	672 23	496.1	1 11	73.8
NB314a_004	59.7 369.3	.3 241.1	.1 1.53	22000	5.04	0.12	0.02669	0.00047	0.05764 0	0.00082	0.6583	0.012 0	0.08283	0.0012 0	0.6433242	532.3	9.2	509	32 513.2	3.2 7.4	512.9	9 7.2	6.66
NB314a_005	65.8 7	710 247	17 2.87	14000	7.6	0.42	0.0289	0.0011	0.0614	0.0016	999.0	0.026	0.079	0.0027 0	0.7543874	576	21	648 2	22 5	518 16	490	0 16	94.6
NB314a_006	45.7 200.1	194.9	.9 1.03	00009	3.05	0.27	0.0264	0.0019	0.0595	0.0074	0.658	0.097	0.0806	0.0022 0	0.8709235	527	37	570 27	270 5	512 60	200	0 13	7.76
NB314a_007	69 420	20 261	19:11	40000	4.71	0.24	0.02895	0.00093	0.0607	0.0021	869.0	0.031	0.0838	0.0029 0	0.6419069	577	18	620 2	23 5	537 18	519	9 17	9.96
NB314a_008	37.7 178.3	3.3 145.1	.1 1.23	20000	3.49	0.16	0.02843	0.00098	0.0699	0.0046	0.777	0.04	0.0813	0.0023	0.5	267	19	910 13	130 5	583 23	504	4 14	86.4
NB314a_009 24	242.6 409.3	.3 257.9	.9 1.59	93000	5.57	0.13	0.0999	0.0018	0.1239	0.0023	5.758	0.12	0.338	0.0048	0.492303	1925	33 2	2006 2	24 19	1938 18	1877	7 23	6.96
NB314a_011	65.8 50	505 256	56 1.97	22000	5.86	0.23	0.02822	0.00071	0.0634	0.0014	0.704	0.019	0.0806	0.0015 0	0.5844654	562	14	709 4	48 5	541 12	499.9	6.8	92.4
NB314a_012 15	174.4 1073	73 284	34 3.78	26000	10.75	0.28	0.0673	0.0016	0.0838	0.0012	2.171	0.044	0.1886	0.0029 0	0.7093767	1316	31 1	1283 3	34 1171	71 14	1114	4 16	95.1
NB314a_013	49.9 249.7	7 205.6	.6 1.21	21900	4.025	0.093	0.02619	0.00052	0.0582	0.0012	699.0	0.015 0	0.08328	0.0011 0	0.4255614	522.5	10	524 4	44 519.1	.1 9.4	515.6	6 6.7	99.3
NB314a_014	193 227	27 272	72 0.83	345	1.151	0.078	0.0852	0.0065	0.317	0.023	5.05	0.49	0.1136	0.0052	0.5	1650	120 3	3560 3	35 17	1786 96	693	3 30	38.8
NB314a_015	560 1178	78 128	9.20	2390	10	2.9	0.65	0.45	0.167	0.027	7.3	1.6	0.313	0.016	0.5	8300 43	4300 2	2460 23	230 21	2100 160	1752	2 79	83.4
NB314a_016	46.5 40	400 188	38 2.13	30000	6.79	0.42	0.0266	0.0018	90.0	0.0023	0.71	0.039	0.086	0.0023 0	0.7702496	531	35	589 3	36 5	543 23	531	1 13	8.76
NB314a_018	47.4 25	250 175	75 1.43	13000	4.26	0.2	0.02972	0.00098	0.0691	0.0021	0.818	0.029	980.0	0.0015	0.5	592	19	988	63 6	606 16	531.7	7 9.1	87.7
NB314a_019	181 30	307 276	76 1.11	770	1.88	0.11	0.0702	0.0057	0.191	0.016	3.03	0.41	0.1102	0.0052	0.5	1360	110 2	2590 3	37 13	1328 81	672	2 29	9.05
NB314a_021	65.4 249.3	.3 239.1	.1 1.04	6200	2.93	0.13	0.0306	0.0013	0.0681	0.0026	0.78	0.029	0.0833	0.0022	0.5	609	56	850 7	77 5	584 16	516	5 13	88.4
NB314a_022	21.5 139.8	.8 85.5	.5 1.64	0006	5.67	0.21	0.02736	0.00085	0.0606	0.0013	0.724	0.018 0	0.08669	0.0013 0	0.5133702	545	17	611 4	45 552.1	.1 10	535.9	9 7.5	97.1
NB314a_024	44.3 261	61 173	73 1.51	17000	4.96	0.2	0.02812	0.00084	0.0605	0.0015	0.747	0.019	0.0899	0.0019 0	0.4454405	260	17	612 5	55 566.3	.3 11	555.1	1 11	0.86
NB314a_025	37.4 252.7	7 143.9	.9 1.76	24600	5.95	0.18	0.02833	0.00078	0.059	0.0011	0.745	0.016 0	0.09129	0.0012 0	0.5072991	265	15	555 3	39 564.7	1.7 9.2	563.1	1 7.3	266
NB314a_026	48.4 24	246 171.9	.9 1.43	10900	4.683	0.1	0.03067	990000	0.0613	0.0011	0.803	0.016 0	0.09523	0.0013	0.480444	611	13	638 3	39 5	598 9.2	587.2	2 7.1	98.2
NB314a_032	65 427	27 232	32 1.84	21000	4.76	0.21	0.0296	0.0014	0.0579	0.0017	0.603	0.026	0.0761	0.0037 0	0.8016144	290	28	517 3	31 4	478 17	473	3 22	99.0
	30.9 1610		(4)	41000	50.9	4.6	0.0694	0.004	0.06637 0	0.00098	0.8385	0.014 0	0.09151	0.0013 0	0.5534752	1354	9/	814 3	31 618.2	3.2 8	564.4	4 7.7	91.3
	46.8 195.7	7 152.8	.8 1.28	3300	3.39	0.12	0.0335			0.0025	0.854		0.0865		0.5	999	31		9 0/	626 16	535	5 13	85.5
		216 154.1		9500	4.61	0.11	0.02587		0.05791	0.001	0.642		0.08055		0.6108836	516.2	10		29 503.3	3 8.6	499.4	4 6.8	99.2
				20000	5.9	0.23	0.0333	0.0026	0.0673	0.0026	92.0		0.0824		0.5	661	20			573 38			89.0
			33 1.03	15000	3.01	0.15	0.0292	0.0018	0.0633	0.0065	0.74		0.0846		1.1508639	581	36		30 5			4 14	92.6
NB314a_048	188 29	290 560	0.52	630	0.97	0.25	0.0379	0.0025	0.435	0.052	7.8	1.2	0.123	0.01	0.5	752	48 3	3870 30	300 20	2090 210		7 59	35.7
NB314a_049	53.8 34	346 217	1.59	30000	4.99	0.28	0.02716	0.0008	0.0612	0.0015	0.709	0.023	0.0838	0.0019 0	0.6564746	542	16	640 3	31 5	544 14	519	9 11	95.4
NB314a_050	51.4 23	231 166	62 1.39	5300	3.78	0.11	0.03245	0.001	0.0874	0.0023	1.021	0.032	0.0846	0.0013	0.5	645	20 1	1357 4	49 7	713 16	523.5	8	73.4
NB314a_051	29 17	176 9	98 1.80	12000	5.12	0.72	0.0293	0.0053	0.067	0.014	0.74	0.11	0.0817	0.0032 1	1.7202841	280		770 3	32 5	561 61		7 19	90.4
NB314a_052	264 42	420 490	98.0 06	830	1.25	0.14	0.082	0.013	0.305	0.038	5.6	1.1	0.125	0.013	0.5	1580	250 3	3410 21	210 18	1820 200	757	7 75	41.6
NB314a_053	472 8]	810 840	96.0 01	857	1.314	0.057	0.0637	0.0037	0.277	0.012	3.52	0.25	0.0914	0.003	0.5	1266	77 3	3329 3	33 15	1517 56	564	4 18	37.2
NB314a_054	24 149.4	.4 91.2	.2 1.64	9300	5.1	0.15	0.02824	0.00078	0.0576	0.0013	0.672	0.017	0.0846	0.0015 0	0.4960102	563	15	496 3	32 520	520.9 10	523.4	4 8.8	100.5
NB314a_055	294 92	923 985	35 0.94	4530	2.27	0.11	0.0328	0.0016	0.0982	0.0071	1.09	0.1	0.0804	0.0028	0.5	653	31 1		130 7	743 50	498	8 17	77.0
NB314a_056	62 18	181 142	1.27	33000	5.007	0.11	0.0459	0.0016	0.1666	0.0034	4.12	0.15	0.179	0.0046	0.5	806	31 2	2518 3	34 16	1653 31	1061	1 25	64.2
NB314a_057	163 8.	810 700	00 1.16	48000	3.526	0.094	0.0252	0.00067	0.0594	0.0012	0.626	0.018	0.0762	0.0016 0	0.7118413	503	13	589 5	51 493.3	11 21	473.4	4 9.6	0.96

TableA2. Continued	tinued.																									
	Mea	Measured concentrations ¹	ncentrati	ions						Is	Isotopic ratios	ios								Ca	lculated	Calculated ages (Ma)	a)			
Analysis Identifier	Pb (ppm)	U (mdd)	Th (ppm)	U/Th	²⁰⁶ Pb/ 1 ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁶ Pb	⁵ / _{±2σ²} b	²⁰⁸ Pb/ ²³² Th	b/ ±25²		²⁰⁷ Pb/ ²⁰⁶ Pb ±	20 ±2 σ^2 2	²⁰⁷ Pb/ ±	2α ±2σ²	²⁰⁶ pb/ ²³⁸ U	±2 σ^2	Rho ³	²⁰⁸ pb/ ² ±	207 ±2σ ² 0	²⁰⁷ Pb/² ⁰⁶ Pb ±	20. ±2σ ² 2.	²⁰⁷ Pb/ ±2σ ²	z ^{2 206} Pb/ z ^{2 238} U	οb/ ±2σ² 'U	3-2 % con	
NB314a_058	128.7	314	300	0 1.05	5 1880	30 2.187	87 0.058		0.047 0.0	0.0012 0.	0.1462 0	0.0036	1.867	0.052 0	0.09246	0.0013	0.5	928	23	2302	35	1066	81	570 7	.5 53	53.5
NB314a_059	27.42	177.3	108.1	1 1.64	4 10200		5.38 0.	0.18 0.02741	741 0.00069		0.0609	0.0013	0.719	0.018 0	0.08567	0.0012	0.523673	546	13	623	48	549.5	10 52	529.8 7	7.4 96	96.4
NB314a_060	120.5	443.4	352.2	2 1.26	5 5200	3.205	05 0.088		0.0366 0.0	0.0011 0.	0.0931 0	0.0032	1.141 (0.039	0.0887	0.0016	0.5	727	22	1482	36	772	18 54	547.8 9	9.6 71	71.0
NB314a_061	105.3	248	288	8 0.86	5 2330	30 2.103	03 0.059		0.0404 0.0	0.0019 0.	0.1334 0	0.0051	1.728	0.089	0.094	0.0024	0.5	800	37	2124	99	1013	31	629	14 57	57.2
NB314a_062	73.4	469	356	6 1.32	2 14000		4.49 0.37		0.0241 0.0	0.0014 0.	0 6990.0	0.0077	0.667	0.068	0.0732	0.0026	0.5	481	28	750	37	515	39	455	15 88	88.3
NB314a_063	30.4	122	115	5 1.06	5 3200		3.37 0.	0.15 0.0	0.0279 0.	0.001 0.	0.0601 0	0.0019	0.721	0.021	0.0863	0.0018	0.2336851	555	21	616	59	551	13 53	533.6	11 96	8.96
NB314a_064	375	1945	1700	0 1.14	4 59000		3.65 0.11	11 0.02389	389 0.00047	_	0.05905 0.0	0.00075	0.596	0.015 0	0.07291	0.0012	0.8968335	477.1	9.3	265	38	474.4	9.2 4	453.6 7	7.3 95	92.6
NB314a_065	64.1	381	247.2	2 1.54	4 19600	00 4.745	45 0.094	94 0.02806	806 0.00064		0.05924 0.0	0.00086	0.675	0.014	0.0828	0.0014	0.7204625	559	13	268	32	522.8 8	8.8	512.5	8.4 98	0.86
NB314a_066	39	131	150	0 0.87	7 13000		2.88 0.16		0.0268 0.0	0.0012 0.	0.0594 0	0.0027	0.7	0.032	0.0861	0.0023	0.3018705	535	24	570	100	538	19	532	14 98	6.86
NB314a_067	18.5	111	62	2 1.79	9 20000	00 4.77		0.48 0.0	0.0295 0.0	0.0015 0.	0.0738 0	0.0037	0.797	0.044	0.0789	0.0032	0.5	287	30	1030	39	595	25	490	19 86	86.4
NB314a_068	51	45	86	8 0.46	5 290	90 0.624	24 0.036		0.064 (0.01	0.559	0.025	9.5	1.5	0.129	0.014	0.5	1250	190	4399	21	2437	82	622	78 32	32.0
NB314a_070	61.6	225	235	5 0.96	5 15000		2.99 0.13	13 0.02811	811 0.00096		0.0626	0.002	0.749	0.03	0.087	0.0022	0.6037424	260	19	682	69	999	17	537	13 94	94.9
NB314a_071	140	144	319	9 0.45		640 0.) 86.0	0.1 0.0	0.0491 0.0	0.0028	0.366	0.035	5.41	0.61	0.1044	0.0034	0.5	296	54	3690	22	1810 13	120	640	20 35	35.4
NB314a_072	6.09	408	233	3 1.75	5 11000		5.26 0.27	27 0.02834	834 0.00054	_	0.06422	0.001	0.724 (0.016	0.0819	0.0017	0.7376729	564.8	11	744	33	552.9	9.4 50	507.6	9.9	8.16
NB314a_073	46.1	155.7	188	8 0.83	3 4100		2.96 0.11	11 0.02669	9900000 699		0.0587 0	0.0014	0.706	0.017	0.0872	0.0015	0.3704538	532	13	541	23	541.8	10	539 8	8.9	99.5
NB314a_074	268.2	1937	1145	5 1.69	00006 6		5.21 0.	0.13 0.02551	551 0.00078		0.0604 0	0.0018	0.646	0.022	0.0779	0.0013	0.484024	509	15	624	20	206	14 48	483.5 7	7.7 65	65.4
NB314a_075	51	245	184	4 1.33	3 12000		4.02 0.	0.19 0.03016	016 0.00099		0.0697 0	0.0033	0.816	0.042	0.0853	0.0017	0.5	009	20	899	24	604	22 52	527.6	10 87	87.4
NB314a_076	171.7	1210	655	5 1.85	5 21000		4.63 0.12	12 0.02864	864 0.00094		0.0596 0	0.0011	0.585 (0.017	0.0706	0.0019	0.7851674	571	18	582	33	467.5	11	440	11 94.1	Ξ
NB314a_077	58	268	126	6 2.13	3 2580		3.68 0.11		0.049 0.0	0.0028 0.	0.1188	0.003	1.343 (0.049	0.0829	0.0016	0.5	996	55	1932	45	698	18 5	513.5	9.6 59	59.1
NB314a_078	537	1170	1400	0 0.84	4 1560	50 1.785	85 0.063		0.0433 0.	0.003 0.	0.1499 0	0.0043	1.73	0.074	0.0834	0.0018	0.5	856	28	2339	25	1018	27 51	516.1	11 50	50.7
NB314a_079	88	516	331	1 1.56	5 50000		4.39 0.14	14 0.02992	992 0.00079		0.0684 0	0.0017	0.763 (0.025	0.0812	0.0019	0.5	969	15	870	51	575	14	503	11 87	87.5
NB314a_080	19.1	64	99	6 0.97	7 5100		2.93 0.	0.19 0.0	0.0282 0.0	0.0016 0.	0.0679 0	0.0035	0.8	0.047	0.0858	0.0025	0.5	563	31	850	56	296	26	531	15 89	89.1
NB314a_081	76.8	207.1	270.9	9 0.76	5 5500	00 2.289	_		0.03052 0.		0.0912 0	0.0032		0.039	0.0848	0.0014	0.5	809	20	1445	29	735	19 52	524.7	8.2 71	71.4
NB314a_082	88	400	318	8 1.26	5 6200		3.06 0.27		0.0305 0.0	0.0025 (0.095	0.012	86.0	0.15	0.0746	0.0024	0.5	209	49	1450	27	684	73	464	14 67	8.79
NB314a_083	32.4	168	126	6 1.33	3 10500	00 4.382	82 0.11		0.02733 0.00057		0.059 0	0.0011	0.705	0.015 0	0.08659	0.0011	0.4929411	545	11	256	41	541.4 9	9.1 53	535.3	6.7 98	6.86
NB314a_084	22	86	86	6 1.14		500	3.5 0.12		0.02724 0.00079		0.0594 0	0.0023	0.677	0.02	0.0838	0.0016	0.2322481	543	16	260	28	527	14 5	518.7	86 8.6	98.4
NB314a_085	32	91	102		9 5200		2.44 0.15			0	0	0.0039		990.0	0.0872	0.0034	0.5	636	32	1301	68	710	32		20 75	75.9
NB314a_086	855	_	2220			950 1.189	89 0.054				0.216	0.019	2.59	0.28	0.086	0.002	0.5	820	47	2900	56		72	532	12 41	41.8
NB314a_087	349	350	710	0 0.49		310 0.87	87 0.13		0.0501 0.	0.002	0.456	0.051	^	1.1	0.1082	0.0067	0.5	886	38	4010	200	2040 10	160	199	39 32	32.4
NB314a_089	65	144	47.8	8 3.01	1 43000	00 11.76	76 0.37		0.1516 0.0	0.0037 0.	0.2046 0	0.0023	15.27	0.31	0.541	0.0089	0.8330032	2851	64	2861	18	2830	19 2	2786	37 98	98.4
NB314a_090	29	156	104	4 1.50	00006 0	00 4.31	31 0.34		0.0294 0.	0.002 0.	0.0667 0	0.0032	0.783 (0.051	0.0857	0.0048	0.6959478	585	40	820	30	286	30	530	29 90	90.4
NB314a_091	53	207	220	0 0.94	4 51000		2.89 0.23	23 0.02435	435 0.00092		0.0638 0	0.0022	0.669	0.049	0.0767	0.0062	0.9044489	486	18	732	73	519	30	476	37 91	91.7
NB314a_092	43.9	194	153	3 1.27	7 4300	3.576	76 0.11		0.0309 0.	0.001	0.073 0	0.0021	0.872	0.029	0.0868	0.0017	0.5	919	20	1005	31	989	15 53	536.6	9.8 84	84.4
NB314a_093	31	273	85	5 3.21	1 5000		6.7	1.4 0.0	0.0399 0.0	0.0043 0.	0.0883 0	0.0098	96.0	0.13	0.0788	0.0028	0.5	791	84	1320	230	929	29	489	17 72	72.3
NB314a_094	26.44	185.1	102.4	4 1.81	1 9800		5.98 0.15	15 0.02779	779 0.00064		0.05826 0.0		969.0	0.015 0	0.08656	0.0012	0.615696	554	13	529	32	535.5 8	8.8 53	535.1 7	7.3 99	6.66
NB314a_095	93.6	343	376	6 0.91	1 16400		3.09 0.085		0.02702 0.00043		0.05775 0.0	0.00088	0.674	0.013 0	0.08496	0.0011	0.6155832	538.9	8.5	512	33	522.7 7	7.9 52	525.6	6.8 100	9.001
NB314a_096	265	1022	681	1 1.50	0 1790		2.85 0.14		0.0421 0.0	0.0014 (0.128 0	0.0062	1.403 (980.0	0.0798	0.0016	0.5	833	28	2040	33	883	36 49	194.8	.3 56	26.0
NB314a_097	55		207		5 70000		5.02 0.34		0.0289 0.0	_	_			0.025	0.0764		0.0630735	575	28	731	98		15	474	12 92	92.0
NB314a_098	49.7	132	84	4 1.57	7 820		2.13 0.19		0.0733 0.	0.006	0.209	0.018	2.93	0.39	0.0981	0.0042	0.5	1430	110	2800	34	1342	88	603	24 44	44.9

Table A2. Continued.	inued.																								
	Meas	sured cor	Measured concentrations ¹	ons ¹						Isotopic ratios	ratios								Cal	culated	Calculated ages (Ma)	a)			
Analysis Identifier	Pb (mdd)	U (ppm)	Th (ppm)	U/Th	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁶ Pb	±20 ²	²⁰⁸ pb/ ²³² Th	±2 σ^2	²⁰⁷ Pb/ ²⁰⁶ Pb	±20 ²	²⁰⁷ Pb/	±2σ²	²⁰⁶ Pb/ ²³⁸ U	±2 σ^2	² Rho ³	²⁰⁸ pb/² 32Th ±	²⁰⁷ ±2σ ² 0	²⁰⁷ Pb/² ±′	²⁰⁷ ±2σ ² 23	²⁰⁷ Pb/ ±2σ ²	1.4		±2σ² %	. =
NB314a_099	64.6	333	230	1.45	3700	4.31	0.15	0.02899	0.00067	0.0646	0.0022	0.736	0.022	0.0835	0.0016	0.0880526	578	13	740	34	559	13 5	516.7	.5 92	92.4
NB314a_100	30	187	106	1.76	15000	5.66	0.44	0.0275	0.0017	0.0607	0.0017	0.705	0.029	0.0847	0.0024	0.7338017	548	34	623	61	541	17	524	14 96	6.96
NB314a_101	10.9	52	40	1.30	18000	3.47	0.27	0.0296	0.0016	0.0697	0.0043	0.782	0.052	0.0819	0.0023	0.5	290	32	910	35	586	30	208	14 86	86.7
NB314a_102	44	280	169	1.66	19000	5.1	0.22	0.0274	0.0011	0.0594	0.0017	829.0	0.02	0.0839	0.0016	0.3686476	546	21	574	63	525	12 5	519.4	9.4 98	6.86
NB314a_103	52.4	184.4	208.5	0.88	4900	2.953	0.07	0.02718	0.00054	0.05989	0.00099	0.708	0.014 (0.08567	0.0012	0.566763	542.1	11	290	36 5	542.9 8	8.4 5.	529.9	6.9	9.76
NB314a_104	7.3	105	29.7	3.54	80000	10.84	0.53	0.0254	0.0013	0.0579	0.0021	0.62	0.019	0.0781	0.0017	0.0730491	208	56	513	82	489	12 4	484.9	10 99	99.2
NB314a_105	27.3	84	83	1.01	3100	2.75	0.38	0.0322	0.0022	0.123	0.019	1.3	0.18	0.0777	0.0025	0.5	641	44	1900	37	835 7	77	482	15 57	57.7
NB314a_106	59.1	325	244	1.33	4100	4.85	0.32	0.0274	0.00094	0.0602	0.0013	0.694	0.017	0.0837	0.0013	0.4927479	546	18	603	46 5	534.5	10 5	517.9 7	7.8 96	6.96
NB314a_107	80	32	57	0.56	213	0.59	0.022	0.152	0.027	0.651	0.027	16.9	1.7	0.188	0.016	0.5	2830	460	4622	38	2903	95 1	1109	88 38	38.2
NB314a_108	137	100	201	0.50	310	0.809	0.056	0.0813	0.0093	0.445	0.023	8.3	1.1	0.133	0.01	0.5	1570	170	4053	83	2220 12	120	826	71 37	37.2
NB314a_109	250	121	570	0.21	161	0.591	0.063	0.051	0.011	0.605	0.029	10.3	1.3	0.124	0.014	0.5	1000	210	4514	72	2440 11	110	751	80 30	30.8
NB314a_110	156	29	178	0.38	228	0.61	0.028	0.0943	0.0053	0.627	0.029	14.4	1.2	0.166	0.011	0.5	1819	86	4577	36	2765 7	75	986	63 35	35.7
NB314a_111	167	202	336	09.0	1550	1.48	0.36	0.0501	0.0067	0.278	0.065	4	1.2	0.0959	0.0051	0.5	066	130	3060	460	1500 25	250	290	30 35	39.3
NB314a_112	179	242	234	1.03	457	1.193	0.089	0.112	0.015	0.333	0.026	5.7	0.83	0.1205	0.0092	0.5	2210	310	3570	40	1880 13	130	731	52 38	38.9
NB314a_113	640	1100	1570	0.70	909	1.249	0.056	0.0482	0.0028	0.266	0.018	3.41	0.42	0.0942	9900.0	0.5	951	53	3250	22	1497 9	95	280	38 38	38.7
NB314a_114	179	1150	530	2.17	10100	3.66	0.89	0.0324	0.0049	0.087	0.02	92.0	0.16	0.0645	0.003	0.5	644	95	1280	440	5 695	06	403	18 70	70.8
NB314a_115	64.9	230.8	260.4	0.89	14600	2.917	0.074	0.02697	0.00053	0.0583	0.0013	989.0	0.017	0.08529	0.0013	0.462268	537.9	10	529	23 5	529.7	10 5	527.6 7	7.8 99	9.66
NB314a_116	49.2	310.9	198.9	1.56	400	4.95	0.15	0.02697	0.00079	0.0592	0.0015	0.682	0.018	0.0843	0.0015	0.3952024	538	16	999	55	530	12 5.	521.6	86 6	98.4
NB314a_117	50.2	188.5	158.1	1.19	009	3.207	0.087	0.03421	0.00087	0.0796	0.0019	0.981	0.028	0.0898	0.0015	0.5	089	17	1174	24	695	14	554	9.2 7.9	7.67
NB314a_118	77.8	132	297	0.44	780	1.22	0.079	0.0296	0.0018	0.257	0.019	3.19	0.37	0.0842	0.0033	0.5	262	37	3100	130	1389 7	62	521	19 37	37.5
NB314a_119	132	570	420	1.36	19300	3.19	0.48	0.0356	0.0094	0.09	0.036	1.06	0.55	0.0815	9900.0	0.5	200	180	1120	25	670 20	200	505	39 75	75.4
NB314a_120	136	368	309	1.19	1090	2.1	0.12	0.0452	0.0038	0.155	0.012	1.68	0.18	0.0794	0.0091	0.5	893	73	2400	35) /66	9	492	54 45	49.3
NB314a_121	52	272	137	1.99	2800	4.84	0.21	0.0347	0.0016	0.0776	0.0047	0.897	0.065	0.0843	0.0029	0.5	689	31		120	649	36	522	17 80	80.4
NB314a_122	43	240	125	1.92	5500	3.3	1.3	0.054	0.02	0.12	0.064	1.31	0.74	0.0783	0.0071	0.5	1060	390	1640	56	800 32	320	486	42 60	2.09
NB314a_123	26	160	103	1.55	41000	3.1	1.4	0.041	0.017	960.0	0.061	1.02	0.7	0.0766	0.0062	0.5	810	330		1100		330	476	37 69	0.69
NB314a_124	43.8	191.9	162.3	1.18	8600	3.6	0.11	0.02945	0.001	0.0594	0.0015	0.709	0.017	0.0872	0.0019	0.3942885	286	20			543.6	10 5.	539.1	11 99	99.2
NB314a_125	91	267	165	1.62	1600	3.11	0.39	0.0526	0.0054	0.118	0.018	1.4	0.27	6980.0	0.0086	0.5	1040	100	1870	290	880 11	110	537	51 61	61.0
NB314a_126	100	460	420	1.10	18000	3.04	0.14	0.02469	0.00067	0.063	0.0029	0.61	0.027	0.0708	0.0028	0.40111	493	13	200	28		18	441	17 91	91.3
NB314a_127	10.3	61	33	1.85	30000	4.25	0.5	0.0316	0.0034	0.0671	0.0022	0.72	0.12	0.079	0.013	0.5	629	99	840	69	551	75	488	22 88	9.88
NB314a_128	36	157	109	1.44	00009	3.18	0.19	0.0339	0.0019	0.0699	0.0022	8.0	0.15	0.0782	0.0082	0.5	673	36	920	56	588	78	485	50 82	82.5
NB314a_129	51	450	167	2.69	100000	6.41	0.33	0.033	0.0011	0.0666	0.0026	0.725	0.037	0.0793	0.0028	0.5	655	21	809	79	552 2	22	492	17 89	89.1
NB314a_130	65	480	228	2.11	18000	4.93	0.18	0.02987	0.00095	0.058	0.0011	0.571	0.022	0.071	0.0028	0.8819089	595	19	527	30	458	14	442	17 96	96.5
NB314a_131	88	417	289	1.44	10600	3.75	0.28	0.0334	0.0037	0.082	0.01	86.0	0.16	0.0855	0.0044	0.5	699	73	1170	210	629	75	529	26 77	77.9
NB314a_132	52.1	220.6	178.3	1.24	200	3.26	0.15	0.03132	0.00099	0.0748	0.0025	0.855	0.03	0.0831	0.0019	0.5	623	19	1050	99	626	16 5	514.3	11 82	82.2
NB314a_133	46	266.9	183	1.46	6400	4.49	0.18	0.02783	9600000	0.0592	0.0013	0.657	0.017	0.0804	0.0015	0.5545158	555	19	269	36 5	512.2	10 49	198.2	8.9 97	97.3
NB314a_134	83.1	362	259.7	1.39	2100	3.511	0.097	0.0342	0.0011	0.0739	0.0018	0.865	0.021	0.0856	0.002	0.5	089	22	1027	47	632	12	529	12 83	83.7
NB314a_135	215	450	620	0.73	431	1.24	0.14	0.0521	0.009	0.321	0.033	4.87	0.82	0.1096	960000	0.5	1020	170	3490	37	1750 15	150	699		38.2
NB314a_136	44	173.4	174.8	66.0	9700	3.12	0.083	0.02723	0.00068	0.0582	0.0012	999.0	0.016	0.0831	0.0014	0.5384437	543	13	524	45 5	517.8	9.8 5	514.4	8.5 99	99.3
NB314a_137	11	09	30	2.00	40000	4.68	0.38	0.0388	0.0053	0.08	0.0054	0.937	0.067	0.0855	0.0026	0.5	770	100	1180	38	670	35	529	15 79	79.0

Table A2. Continued	tinued.																								
	Mea	Measured concentrations ¹	ncentrati	ons						Isotopic ratios	ratios								Ca	lculated	Calculated ages (Ma)	(a)			
Analysis Identifier	pb (mdd)	U (bpm)	Th (ppm)	U/Th	²⁰⁶ pb/ ²⁰⁴ pb	²⁰⁸ Pb/ ²⁰⁶ Pb	±2 σ^2	²⁰⁸ Pb/ ²³² Th	±2 σ^2	²⁰⁷ Pb/ ²⁰⁶ Pb	±20 ²	²⁰⁷ Pb/	² ±2σ ²	²⁰⁶ pb/ ²³⁸ U	±20 ²	Rho ³	²⁰⁸ pb/ ² ³² Th	202 ±2σ ² 0	²⁰⁷ Pb/² ⁰⁶ Pb ±	20. ±2σ ² 2.	²⁰⁷ Pb/ ²³⁵ U ±20	²⁰⁶ Pb/ ±2σ ² ²³⁸ U		±2σ² %	
NB314a_138	59	290	165	5 1.76	31000	3.79	0.69	0.0372	0.0093	0.083	0.036	0.88	0.36	0.0782	0.004	0.5	740	180	1040	540	620 1	091	485	24 78	78.2
NB314a_139	45.7	, 286	176	5 1.63	20000	5.11		0.0292	0.0013	0.0589	0.0018	89.0	0.021	0.084		0.2890654	582	56	550	39	526			8.4 98	8.8
NB314a_140	94.2	206	347	7 1.46	80000	4.35	0.17	0.02926	0.00083	0.0688	0.0027	0.788	0.036	0.0828	0.0025	0.5	583	16	988	9/	289	20	513	15 87	87.1
NB314a_141	500	386	413	3 0.93	2900	2.93	0.38	0.1295	0.007	0.253	0.017	15.05	0.64	0.443	0.032	0.5	2460	120	3180	40	2814	41 2	2360 1	150 83	83.9
NB314a_142	51.9	373	, 210	1.78	30000	5.86	0.38	0.0281	0.0017	0.0612	0.0019	0.707	0.024	0.0843	0.0022 0.	0.4907848	559	33	989	25	543	14	522	13 96	96.1
NB314a_143	104	06) 196	5 0.46	257	0.807	0.05	0.113	0.036	0.432	0.03	7.9	1.5	0.131	0.02	0.5	2090	610	4023	94	2130	150	790 1	110 37	37.1
NB314a_144	94	167	, 267	69.0 2	620	1.41	0.13	0.0431	0.0027	0.284	0.025	3.92	0.5	0.0973	0.0042	0.5	851	52	3240	41	1570	100	298	24 38	38.1
NB314a_145	40	230	125	5 1.84	16000	4.32	0.29	0.0321	0.0028	0.0648	0.0044	99.0	0.064	0.0743	0.0046 0	0.7183748	638	55	260	23	513	38	462	28 90	90.1
NB314a_146	310	066 () 786	5 1.26	086	2.26	0.12	0.0432	0.0021	0.1591	0.0087	1.72	0.12	0.0777	0.0016	0.5	855	40	2426	94	1009	45 4	482.1	9.5 47	47.8
NB314a_147	72.5	, 295.5	5 209	9 1.41	2630	3.36	0.14	0.038	0.0011	9660.0	0.0038	1.213	0.048	0.0886	0.0017	0.5	754	22	1605	24	805	22 5	547.4	10 68	0.89
NB314a_148	94.7	446	315.7	7 1.41	2300	3.67	0.12	0.0325	0.0012	0.0724	0.0027	0.827	0.028	0.0834	0.0022	0.5	645	24	973	9/	611	15	517	13 84	84.6
NB314a_149	38.23	148.6	148.1	1.00	8500	3.136	0.087	0.02804	0.00072	0.0589	0.0014	269.0	0.019	0.0853	0.0014 0.	0.5001025	559	14	549	25	536	12 5	527.8	8.2 98	98.5
NB314a_150	50.4	361.8	191.6	5 1.89	21000	5.75	0.16	0.02851	9900000	0.0621	0.0011	0.727	0.02	0.0848	0.0017 0.	0.7660355	268	13	672	37	554	12 5	524.5	10 94	94.7
NB314a_151	111.7	, 641	457	7 1.40	15000	4.115	0.076	0.02647	0.00045	0.06155	0.00098	0.651	0.016	0.0767	0.0013 0.	0.7655638	528	8.9	652	76	508.7	10 4	476.3	7.9 93	93.6
NB314a_152	94.8	684	346.2	2 1.98	33000	5.62	0.13	0.02969	0.00067	0.06176	0.00082	0.7	0.014	0.0823	0.0015 0	0.7625137	591	13	661	28	538.6	8.5 5	509.6	8.7 94	94.6
NB314a_153	157.7	, 961	640	0 1.50	29000	4.397	0.11	0.02625	0.00062	0.0602	0.0016	609.0	0.019	0.07345	0.001 0	0.5324457	524	12	601	20	482	11 4	456.9	6.3 94	94.8
NB314a_154	101.6	797	, 297.1	1 2.68	0099	6.13	0.17	0.0363	0.0013	0.0764	0.0018	0.82	0.019	0.0781	0.0013	0.5	721	25	1094	27 (607.5	11 4	484.8	7 7.	8.62
NB314a_155	166	5 430	400	0 1.08	00009	2.53	0.49	0.0394	0.0096	0.118	0.07	1.18	0.46	0.0851	0.0092	0.5	780	180	1350	200	750 1	170	526	55 70	70.1
NB314a_157	120	738	3 437	7 1.69	8000	4.29	0.2	0.0301	0.0018	0.0746	0.005	0.763	0.068	0.0737	0.0017	0.5	009	36	1020	28	270	35 4	458.3	10 80	80.4
NB314a_158	24.2	158.4	81.6	5 1.94	9300	5.49	0.25	0.0328	0.0021	0.0693	0.0036	0.837	0.047	0.0879	0.0015	0.5	651	41	860	110	613	25	543 8	8.9 88	9.88
NB314a_159	27	, 92	, 62	2 1.48	2500	2.47	0.78	0.048	0.011	0.116	0.04	1.41	0.55	0.0882	0.0083	0.5	940	220	1770	59	870 2	240	545	49 62	62.6
NB314a_160	21.1	316	88.3	3 3.58	0086	11.25	0.43	0.02603	0.000085	0.0574	0.0013	0.634	0.017	0.0804	0.0017	0.575992	519	17	497	20	498.1	11 4	498.3	10 100	100.0
NB314a_161	82.7	, 406	5 288	3 1.41	00006	3.83	0.13	0.0316	0.0011	0.0795	0.0034	0.926	0.045	0.0853		0.5	628	21	1169	30	671	20 5	527.7	10 78	9.87
NB314a_162	39.3	, 262	161.9	9 1.62	16700	5	0.16	0.02657	0.00074	0.0583	0.0014	0.641	0.018	0.0801		0.5349065	530	15	527	53	502	11 4	496.6	8.7 98	6.86
NB314a_163	66.1	313	, 282	2 1.11	10700	3.564	_	0.02543	0.00054	0.0588	0.0011	0.65		0.08013		0.4579106	9.705	11	558	31		8.2 4	496.9	7 97	8.76
NB314a_164	7.1	. 65	, 24	1 2.71	36000	7.55	0.56	0.0282	0.0021	0.0728	0.0095	0.74	0.093	0.0743	0.0024	0.5	563	41	1000	76	295	55	462	14 82	82.2
NB314a_165	61.5	304	197.1	1.54	3300	3.74		0.0343	0.0021	0.0758	0.0026	0.873	0.04	0.0842		0.5	682	41	1083	89	637	22	521	21 81	81.8
NB314a_166	127	, 600	290	0 1.02	00006	4.38	0.93	0.0266	0.0022	0.065	0.017	0.646	0.07	0.0737		2.4078989	531	43	910	32	504	40	458	41 90	6.06
NB314a_167	69.4	245	, 244.1	1.00	70000	2.72	0.27	0.0312	0.003	0.0657	0.0021	0.778	0.05	9980.0	0.0067	0.9145187	620	29	962	9	584	28	535	40 91	91.6
NB314a_168	272.6	562	409		13600	4.8		0.0761	0.0058	0.1146	0.0036	4.11	0.15	0.2617		0.5155055	1480	110	1866	33	1655	29 1	1498	29 90	90.5
NB314a_169	176	558	3 731	92.0	23000	2.459	0.063	0.02651	0.00054	0.06281	0.0009	0.711	0.018	0.0819	0.0016 0	0.8262124	528.8	11	702	32		10 5	507.4	9.3 93	93.1
NB314a_170	164	172	520	0.33	242	0.912	0.1	0.0532	0.009	0.439	0.033	7.15	0.95	0.1165	0.0088	0.5	1040	170	4000	34	2100 1	130	208	50 33	33.7
NB314a_171	157.9	450	248	3 1.81	771	2.322	0.088	0.0707	0.0027	0.1657	0.0073	2.02	0.13	0.0887	0.0028	0.5	1379	20	2497	64	1113	39	547	16 49	49.1
NB314a_172	33.2	157	, 119	9 1.32	9200	4.11	0.49	0.0314	0.0027	0.086	0.02	1	0.25	0.0834	0.0026	0.5	624	53	1070	35	670 1	100	516	15 77	77.0
NB314a_173	166	85	991 ;	5 0.51	142	0.597	0.057	0.124	0.044	0.65	0.044	9.61	5.9	0.219	0.056	0.5	2330	092	4620	100	3020 2	240 1	1260 2	280 47	47.7
NB314a_174	333	1140	702	2 1.62	963	2.498	0.083	0.055	0.0025	0.1453	0.005	1.643	0.088	0.0823	0.002	0.5	1080	48	2280	36	066	36	209	12 51	51.4
NB314a_175	63.7	, 162.4	170.8	3 0.95	2940	2.197	0.073	0.0406	0.0012	0.1269	0.0032	1.623	0.051	0.093	0.0015	0.5	802	23	2050	46	8/6	20 5	573.1	8.8 58	9.85
NB314a_176	149			3.82	36000	11.3	1.8	0.0698	0.0025	0.0897	0.0032	2.45	0.23	0.197	0.015	0.93298	1364	48	1411	69	1244		1157	79 93	93.0
NB314a_177	64.5	376	5 253	3 1.49	11000	4.53	0.16	0.02777	0.00082	0.0612	0.0022	0.713	0.026	0.0849	0.002 0	0.3448343	554	16	634	37	546	15	525	12 96	96.2

Table A2. Continued	tinued.																								
	Meası	Measured concentrations ¹	centratio	ns						Isotopic ratios	ratios								Ca	culated	Calculated ages (Ma)	ſa)			
Analysis Identifier	dd (mdd)	U (mdd)	Th (ppm)	U/Th	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁶ Pb	±2\alpha^2	²⁰⁸ Pb/ ²³² Th	±2σ²	²⁰⁷ pb/ ²⁰⁶ pb	² ±2σ ²	²⁰⁷ pb/ ²³⁵ U	2π ±2σ ²	²⁰⁶ Pb/ ²³⁸ U	±2 σ^2	Rho ³	²⁰⁸ Pb/² ³² Th ±	207 ±2σ ² 0	²⁰⁷ Pb/² ± ⁰⁶ Pb	207. ±2σ ² 233	²⁰⁷ Pb/ ±2	$\pm 2\sigma^2$ 23	²⁰⁶ Pb/ ±2	±2σ ² %	% con
NB314a_178	357	1770	1230	1.44	36000	3.79	0.52	0.0313	0.0051	0.084	0.026	0.75	0.17	0.0747	0.0018	0.5	622	66	1040	400	610 1	140	472	18 7	77.4
NB314a_179	171	674	463	1.46	1370	2.887	0.1	0.0413	0.0021	0.1106	0.0038	1.254	9200	0.0824	0.003	0.5	819	40	1801	38	822	34	510	18 6	62.0
NB314a_180	32.8	177.7	131.6	1.35	12800	4.59	0.15	0.02698	0.00053	0.0584	0.0011	989.0	0.014 0	0.08563	0.0012	0.4512286	538.1	10	533	41 5	529.9	8.4 5	529.6	6.9	6.66
NB314a_181	56.8	203	208	0.98	0029	2.76	0.29	0.0295	0.002	0.0715	0.009	0.85	0.11	0.0879	0.0034	0.5	587	39	910	39	619	53	543	20 8	87.7
NB314a_182	133.9	835	516.4	1.62	80000	4.51	0.12	0.02788	0.00094	0.0654	0.0017	99.0	0.018	0.0736	0.0013	0.5	256	19	781	55	514	11 4	457.7	8.1 8	89.0
NB314a_183	87.1	387.5	368.5	1.05	12000	3.374	0.095	0.02583	0.00067	0.0598	0.0017	0.671	0.021	0.0817	0.0014	0.4334907	515	13	584	40	521	12 5	5.905	8.1 97	97.2
NB314a_184	116	147	292	0.50	392	1.147	0.047	0.045	0.0026	0.269	0.017	3.78	0.3	0.1012	0.0033	0.5	888	51	3270	110	1573	69	621	19 3	39.5
NB314a_185	156.7	1048	664	1.58	19000	4.39	0.12	0.02587	0.00081	0.0636	0.0014	0.632	0.017	0.0725	0.0014	0.5889966	516	16	722	41 4	497.2	11	451	8.6 9.	2.06
NB314a_186	50.4	306.4	182.1	1.68	10300	4.52	0.42	0.0303	0.0027	0.079	0.0043	0.889	0.046	0.0822	0.0015	0.5	604	53	1170	27	645	25	509	8.8	78.9
NB314a_187	115	400	430	0.93	14000	2.95	0.17	0.02621	0.001	0.0675	0.0048	0.734	90.0	0.0795	0.0043	0.5	523	20	830	140	557	34	493	26 8	88.5
NB314a_188	62	280	186	1.51	4100	4.4	4.4	0.033	0.033	0.073	0.073	0.81	0.81	0.08	0.08	0.5	650	650	1000	42	9 009	009	500	500 8	83.3
NB314a_189	23.9	95.3	96.2	66.0	5400	3.12	0.14	0.02711	0.00091	0.0627	0.003	0.727	0.034	0.0846	0.0022	0.2360362	541	18	670	24	554	20	523	13 9	94.4
NB314a_190	84.8	534	353.2	1.51	14000	4.81	0.12	0.02608	0.00062	9090.0	0.0011	999.0	0.016	0.0795	0.0014	0.6592134	520	12	614	39 5	517.7	10 4	493.1	8.2 9	95.2
NB314a_191	65.8	484	278.8	1.74	21000	5.35	0.19	0.02544	0.00071	0.0595	0.0019	0.639	0.022	0.0788	0.0019	0.449934	208	14	572	25	504	15	489	11 97	0.76
NB314a_192	39	215.1	160	1.34	14400	4.38	0.12	0.02652	0.00056	0.0584	0.0012	0.663	0.014 0	0.08256	0.0013	0.4084449	529	11	532	47 5	516.3	8.8 5	511.4	7.6 9.7	99.1
NB314a_193	247	175	460	0.38	240	0.619	0.054	0.0593	0.0041	0.61	0.049	10.65	1	0.1232	0.0092	0.5	1164	26	4490	76	2460 1	150	748	53 3	30.4
NB314a_194	223.9	1336	1027	1.30	37000	3.937	0.1	0.02384	0.00055	0.0598	0.0014	0.593	0.015	0.0721	0.0012	0.4379545	476	Ξ	591	50 4	472.4	9.8 4	448.8	7.5 9	95.0
NB314a_195	44.3	162.4	170.3	0.95	8400	3.137	0.084	0.02804	0.00055	0.0609	0.0019	0.734	0.023 0	0.08737	0.0013	0.2465725	558.8	11	262	27	554	11 5	539.9	7.5 9.	5.76
NB314a_196	69.7	379	265.7	1.43	36000	4.2	0.19	0.02842	0.00086	0.0619	0.0017	0.723	0.028	0.0851	0.0026	0.7095127	999	17	664	57	552	17	526	15 99	95.3
NB314a_197	252.8	798	552.7	1.44	2730	2.475	0.058	0.0491	0.0012	0.1328	0.0033	1.441	0.041 0	0.07872	0.0012	0.5	896	23	2129	43	606	19 4	188.4	7.1 5	53.7
NB314a_198	1200	1260	286	4.41	303	1.5	0.15	0.484	0.065	0.343	0.018	7.21	0.54	0.158	0.011	0.5	7720	860	3636	28	2131	48	942	59 4	44.2
NB314a_199	34.1	243	122.3	1.99	2400	5.46	0.54	0.0306	0.0024	0.0827	0.0067	0.932	0.07	0.0825	0.0022	0.5	609	47	1230	150	999	36	511	13 7	7.97
NB314a_200	208	400	301	1.33	384	1.53	0.081	0.0754	0.002	0.257	0.015	3.64	0.31	9660.0	0.0026	0.5	1469	38	3189	29	1521	09	611	15 4	40.2
NB314a_201	62.8	216	243	0.89	12000	2.74	0.17				0.0027	0.795		0.0876	0.0023	0.3104085	268	56	810	80	593	18	541	14 9	91.2
NB314a_202	56.5	305	242	1.26	23000	4.184	0.11	0.0254	0.00054	0.05804 (0.6328	0.012 0	0.07939	0.0011	0.5398206	506.8	7	521	30 4	498.3	8	492.5	6.5 98	98.2
NB314a_203	154	295	225.6	1.31	17000	4.36		0.075	0.005	0.0977	0.0058	3.44	0.23	0.2572	0.0074	0.4610627	1461	95	1580	110	1512	. 54	1475	38 9	9.76
NB314a_204	176	402	436	0.92	1360	2.204	0.091	0.04346	0.001	0.1288	0.0065	1.7	960.0	0.0953	0.0016	0.5	860	70	2018	31	994	34 5	286.7	9.3 5	59.0
NB314a_205	284	748	744	1.01	520	1.817	0.068	0.041	0.0028	0.1937	0.0077	2.078	0.1	0.078	0.0024	0.5	813	54	2767		1139	33	484	14 4	42.5
NB314a_206	20	340	197	1.73	19000	5.25	0.14	0.02801	0.00098	0.0643	0.0019	0.739	0.025	0.0832	0.0015	0.488871	558	19	739	32	561	15 5	515.3	6 6	91.9
NB314a_207	124.9	878	467	1.88	36000	5	0.21	0.0289	0.00088	0.0644	0.002	0.664	0.019	0.0761	0.0016	0.2463087	276	17	758	69	516	12 4	472.6	6 6.6	91.6
NB314a_208	79	290	310	1.90	38000	5.24	0.39	0.0272	0.0017	0.0623	0.0025	0.628	0.031	0.0734	0.002	0.5832058	543	34	675	28	494	19	457	12 9.	92.5
NB314a_209	68.4	311	231	1.35	5400	3.555	0.094	0.0323	0.0012	0.0764	0.0025	0.887	0.034	0.0846	0.0016	0.5	643	23	1094	33	644	18 5	523.7	9.5 8	81.3
Primary reference material5	ıce materi	al5																							
91500 (n=32)	15.04	80.26	30.03	2.67	10150	10150 9.3655	0.294	0.0542	0.00161	0.07488	0.0013	1.8538 (0.0381 0	0.17962	0.00246	0.5497078	1062.7	6.5 10	1052.2	6.1 10	1063.3	2.9 10	1065.6	2.9	
Secondary reference material(s)5 R33 (n=10) 43 15 258 48	rence mater	rial(s)5	212 72	1 2 2 8	122 8741 666667 4 7078	4 7078	0.177	0.02198	0.00072	982500	0.0017) 2383 (0.0189	0.06715	0.00018	0.558043	422 6	7	406.0 14.0		4173	2 6	418.2	6	
(AT - TT)		7.00		1		? /? /F	, , ; ;			20,000					211200	20000	C. 77		2.001					}	I

TableA2. Continued	nued.															,								
	Meas	$Measured\ concentrations^1$	ncentrati	ions ¹						Isotopic ratios	ratios								Cal	Calculated ages (Ma)	ages (M	(a)		ı
Analysis Identifier	Pb (ppm)	D Pd (mdd)	Th (ppm)	U/Th	²⁰⁶ pb/ ²⁰⁴ pb	²⁰⁸ Pb/ ²⁰⁶ Pb	±2σ²	²⁰⁸ Pb/ ²³² Th	±2 σ^2	²⁰⁷ Pb/ ²⁰⁶ Pb	±2\alpha^2	²⁰⁷ Pb/ ²³⁵ U	±2 σ^2	²⁰⁶ Pb/ ²³⁸ U	±2 σ^2	Rho³	²⁰⁸ pb/² ³²Th ±	207 ±2σ² ο	²⁰⁷ Pb/ ² ±2	$\pm 2\sigma^2$ $^{207}\text{Pb/}$	οb/ ±2σ ² U	3 ² 238U	¹b/ ±2σ² U	ر ر دon
NB12-315 Buckmans Creek (UTM	nans Cre	eek (UT)	M - 678	894E, 4	- 678894E, 4994291N; Grid Zone 19T)	rid Zone	(19T)																	ı
NB315a_01	75.3	363	306	6 1.19	21000	0 2.92	2 0.25	5 0.0257	0.0011	0.0641	0.0014	0.793	0.016	0.0927	0.0013	0.2239513	513	21	730	46 59	8 6.165	8.8 57	571.2 7	7.6 96.5
NB315a_02	67.2	240.9	85.8	8 2.81	29000	0 6.67	7 0.49	9 0.0846	0.0035	0.1216	0.0023	5.064	960.0	0.3095	0.0049	0.4202736	1641	92	1976	33 1	1829	16 1	1738	24 95.0
NB315a_03	37	320	138	8 2.32	23300	0 4.66	6 0.36	5 0.0288	0.0014	0.0673	0.0019	0.828	0.02	0.0925	0.0014	0.0211745	574	28	825	69	613	12 57	570.1 8	8.1 93.0
NB315a_04	185	812	232.1	1 3.50	205000	0 7.71	1 0.54	4 0.0879	0.0035	0.1229	0.0014	4.987	0.076	0.3027	0.0034	0.6678714	1703	9	1997	20 1	1816	13 1	1704	17 93.8
NB315a_05	18.8	217	78.3	3 2.77	12300	0 5.99	9 0.46	5 0.02592	0.0012	0.0616	0.0019	0.745	0.021	0.0901	0.0012	0.0274095	517	24	631	99	564	12 55	556.1	7 98.6
NB315a_06	53.3	135.6	37.9	9 3.58	38000	0 9.1	1 0.66	5 0.1555	0.0065	0.2393	0.0029	19.91	0.25	0.6202	0.0089	0.6014034	2919	110	3112	20 3	3086	12 3	3109	35 100.7
NB315a_07	16.4	68.3	71	1 0.96	3000	0 2.27	7 0.18	8 0.02576	0.0013	0.0647	0.003	0.774	0.033	0.0892	0.0019	0.0669106	514	26	700	001	285	18	250	11 94.5
NB315a_08	62.5	109	55.4	4 1.97	34000	0 5.45	5 0.39	9 0.1297	0.0054	0.1737	0.0026	11.98	0.16	0.5087	0.0072	0.4090556	2464	96	2588	25 2	2602	12 2	2650	31 101.8
NB315a_09	59.4	413	267	7 1.55	13800	0 3.997	7 0.29		0.001	0.0596	0.0013	0.703	0.015	0.08702	0.00091	0.1991273	505	21	582	49 53	539.6	.1 53	537.8 5	5.4 99.7
NB315a_10	9.69	342.2	310	0 1.10	16900	0 3.165	5 0.23	3 0.02581	0.0011	0.0602	0.0014	0.727	0.017	0.0885	0.0012	0.2993411	515	21	594	52	554	10 54	546.8 7	7.2 98.7
NB315a_11	228	519	335	5 1.55	00069	0 5.92	2 0.42	2 0.0813	0.0033	0.1069	0.0012	4.627	0.07	0.312	0.0043	0.7021688	1580	61	1745	20 1	1753	12 1	1750	21 99.8
NB315a_12	51.3	231	211	1 1.09	0092	0 3.27	7 0.25	5 0.02911	0.0013	0.0627	0.002	0.785	0.022	0.0912	0.0014	0.0041829	280	25	829	69	290	13 56	562.6 8	8.5 95.4
NB315a_13	386	414	310	0 1.34	74000	0 4.489	9 0.32		0.0058	0.1866	0.0016	14.2	0.13	0.5483	0.0057	0.621833	2891	100	2710	14 276	2762.3 8	8.6 2	2817	24 102.0
NB315a_14	18.3	111.8	81.3	3 1.38	3600	0 4.07	7 0.32	2 0.0281	0.0014	0.0569	0.0016	869.0	0.022	0.0877	0.0011	0.455363	260	28	475	9	536	13 54	541.8 6	6.6 101.1
NB315a_15	86.6	1081	375	5 2.88	29000	0 8.56	6 0.61	1 0.02844	0.0011	0.05762	0.00079	0.758	0.013	0.0951	0.0015	0.656057	292	22	809	30 57	572.5 7	7.3 58	585.8 8	8.6 102.3
NB315a_16	202	247.9	195.4	4 1.27	, 124	4 1.074	4 0.1	1 0.1202	0.0097	0.299	0.015	5.13	0.29	0.1245	0.0036	0.463423	2290	180	3449	83 1	1834	51	756	21 41.2
NB315a_17	20	134.9	86.4	4 1.56	2100	0 4.23	3 0.33	3 0.0274	0.0014	0.0586	0.0019	0.701	0.023	0.0866	0.0014	0.2701615	546	27	519	20	537	14 53	535.5	8 99.7
NB315a_19	17.5	157	66.3	3 2.37	5300	0 6.73	3 0.53	3 0.0299	0.0014	0.0596	0.0019	0.775	0.023	0.0946	0.0014	0.0950376	262	28	529	29	581	13 58	582.4 8	8.1 100.2
NB315a_20	48.8	202.7	191.7	7 1.06	0016	0 3.29	9 0.25	5 0.02803	0.0012	0.0585	0.0014	0.721	0.018	0.0895	0.0012	0.3440297	559	23	538	52	250	11 55	552.6 7	7.2 100.5
NB315a_21	16.29	41.6	43.6	6 0.95	11100	0 5.27	7 0.43	3 0.0316	0.0017	0.0598	0.0022	0.793	0.027	0.0945	0.0019	0.1534212	628	34	286	81	591	15		11 98.5
NB315a_22	17.5	34.8	43.8	8 0.79	0069	0 4.53	3 0.45	5 0.0313	0.0031	0.0652	0.0073	0.85	0.11	0.0923	0.0021	0.8031105	622	09	650 1	170	594	42	269	13 95.8
NB315a_23	188.8	371	216.4	4 1.71	203000	0 10.29	9 0.72	2 0.0734		0.08611	0.00085	2.751	0.04	0.2282	0.0029	0.7454191	1432	53	1338	19 1	1341	11 1	1325	15 98.8
NB315a_24	25.3	89.1	69	9 1.29	0069	0 7.52	2 0.57	7 0.03031	0.0014	0.0583	0.0012	0.754	0.015	0.0924	0.0013	0.303766	603	28	532	49 57	571.3 8	8.5 56	569.8 7	7.8 99.7
NB315a_26	86.3	92.2	230	0 0.40	14200	0 2.469	9 0.18	0		0.0594	0.002		0.024	0.0932	0.0016	0.110725	627	24	563	74		14 57		9.2 98.7
NB315a_27	127.6	206	105.3	3 1.96	143000	0 11.7	7 0.84	4 0.0965	0.0039	0.1166	0.0016	5.031	0.087	0.3104	0.0043	0.6316865	1862	72	1901	24 1	1823	15 1	1742	21 95.6
NB315a_28	49.4	55.2	48.94	4 1.13	28000	0 7.6	6 1.2	2 0.0841	0.0042	0.1114	0.004	4.02	0.17	0.2571	0.0083	0.5644697	1631	79	1810	66 1	1627	37 1	1472	43 90.5
NB315a_29	41.9	71.8	123	3 0.58	12800	0 3.72	2 0.28	8 0.02814	0.0013	0.0594	0.0014	0.742	0.015	0.0892	0.001	0.0466522	561	25	929	49 56	562.8 9	9.1 55	550.7 5	5.9 97.9
NB315a_30	84.9	104.9	74.4	4 1.41	92000	0 9.38	8 0.72	0.0966	0.0041	0.1075	0.0014	4.677	0.071	0.3119	0.0038	0.5657753	1863	9/	1754	25 1	1762	13 1	1750	19 99.3
NB315b_01	180.3	301	224.8	8 1.34	12600	0 4.875	5 0.15	5 0.08717	0.00087	0.10699	0.0015	4.491	0.053	0.3037	0.0039	0.3550648	1689	16	1749	27 172	1728.6 9	9.7	1709	19 98.9
NB315b_03	11.79	73	44.5	5 1.64	1790	0 5.68	8 0.29	9 0.0293	0.0011	0.0579	0.0017	0.723	0.022	0.0909	0.0015	0.3347255	584	21	502	29		12 56		8.6 101.4
NB315b_04	331.2	1110	394	4 2.82	00009	0 6.37	7 0.36	5 0.0924	0.003	0.1025	0.0024	2.91	0.12	0.2056	0.0056	0.8431913	1785	26	1662	43 1	1379	30 1	1205	30 87.4
NB315b_05	28.9	145.4	96.4	4 1.51	2200	0 4.83	3 0.21		0.0012	0.0655	0.0028	0.8	0.038	0.0885	0.0014	0.451881	601	23	756	72	593	18 54	546.9	8 92.2
NB315b_06	127.9	181	144.8	8 1.25	13700	0 4.485	5 0.14	4 0.0973	0.0015	0.1194	0.0019	5.446	0.1	0.3305	0.0061	0.6264296	1876	53	1944	28 1	1890	16 1	1840	30 97.4
NB315b_07	58.5	308	222.5	5 1.38	10300	0 4.67	7 0.19	9 0.02872	0.00051	0.0598	0.0012	0.76	0.014	0.09245	0.0013	0.2594005	572	10	585	46 57	574.8	8.6 50	569.9	7.5 99.1
NB315b_09	18.77	94.2	79.4	4 1.19	3000	0 4.07	7 0.18	3 0.02612	0.00086	0.0578	0.0017	0.668	0.018	0.0839	0.0014	0.1551042	521	17	200	29	518	11 51	519.1	8.2 100.2
NB315b_10	29.9	234	112.8	8 2.07	5100	0 6.98	8 0.56			0.0588	0.0013	0.754	0.015	0.0931	0.0017	0.3308796	276	15	549	48 57	570.1 8	8.6 57	573.7 9	9.9 100.6
NB315b_11	56.9	193	220	0 0.88	9200	0 3.013	3 0.11	0.02789	0.00054	0.0579	0.0014	0.721	0.018	0.0906	0.0015	0.3782956	556	11	512	52	250	11	559 8	8.9 101.6
NB315b_12	237	129.9	179	9 0.73	26000	0 2.738	8 0.087	7 0.1432	0.0018	0.1883	0.0028	13.61	0.19	0.5256	0.0071	0.414286	2705	32	2725	24 2	2722	13 2	2722	30 100.0

Table A2. Continued	inued.																								
	Mea	sured co	Measured concentrations ¹	ons ¹						Isotopic ratios	ratios								Cal	culated	Calculated ages (Ma)	(a)			1
Analysis Identifier	Pb (ppm)	U (bpm)	Th (ppm)	U/Th	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁶ Pb	±2 σ^2	²⁰⁸ Pb/ ²³² Th	±2 σ^2	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ ²	²⁰⁷ Pb/ ²³⁵ U	² ±2σ ²	²⁰⁶ Pb/ ²³⁸ U	±2σ²	Rho ³	²⁰⁸ Pb/ ² ±2	²⁰⁷ ₁ ±2σ ² 06	²⁰⁷ pb/ ² ±2	±2 σ^2 235	²⁰⁷ pb/ ±2σ ²		²⁰⁶ Pb/ ₂₃₈ U ±2σ ²	ς con	_
NB315b_13	48.2	284	198	1.43	7700	4.87	0.17	0.02606	0.00052	0.05807	0.0012	0.692	0.013	0.0864	0.0013	0.2693665	520	10	535	40 5	533.7 7	.6 5.	534.3	8 100.3	7
$NB315b_14$	238.3	315.7	256.8	1.23	79000	4.431	0.16	0.0998	0.0015	0.1193	0.0017	5.678	0.077	0.3447	0.0052	0.5093968	1922	78	1944	26 1	1929	12 1	1909	25 99.0	0.
NB315b_15	70.5	184.5	82	2.25	36000	8.05	0.27	0.0918	0.0016	0.1127	0.0017	4.939	0.064	0.318	0.0043 (0.3516189	1774	. 62	1841	27 18	1808.1	11 1	1780	21 98.4	4.
NB315b_16	49.9	64.4	34.3	1.88	27000	7.17	0.34	0.153	0.0053	0.2191	0.0061	17.29	0.71	0.571	0.014	0.7510166	2875	93	9967	45 2	2942	40 2	2908	57 98.8	×.
NB315b_17	22.2	71.8	82.6	0.87	6500	2.852	0.12	0.02865	0.0008	90.0	0.0021	0.752	0.024	0.091	0.0015	0.0620324	571	16	583	73	267	14 50	561.3	8.9 99.0	0
NB315b_18	50.2	203.7	78.2	2.60	127000	9.32	0.34	0.0686	0.0015	0.0864	0.0014	2.826	0.042	0.237	0.0034	0.3848936	1340	78	1342	32 13	1361.4	11 1	1371	18 100.7	<u></u>
NB315b_19	37.6	184	148.5	1.24	000006	4.12	0.15	0.02703	0.00062	0.0592	0.0014	0.716	0.014 (0.08797	0.0012	0.0171363	539	12	561	50 5	547.8 8	8.1 5	543.5 7	7.3 99.2	7
NB315b_20	44.9	268.8	81	3.32	78000	12.8	2.3	0.0609	0.0018	0.0752	0.0017	1.71	0.1	0.1627	0.0076	0.9318062	1195	34	1062	46	266	39	696	42 97.2	7
NB315b_21	205.6	977	464	2.11	34000	8.37	0.28	0.0502	0.0013	0.084	0.0016	2.154	90.0	0.1856	0.0045	0.741042	686	. 24	1285	37 1	1163	19 1	1097	24 94.3	3
NB315b_22	140.2	361	268	0.64	0089	2.144	0.069	0.02736	0.00037	0.05809	0.0012	0.701	0.012	0.08728	0.0012	0.1175531	545.6	7.2	524	44	539 7	7.1 5	539.4 7	7.2 100.1	-:
$\rm NB315b_24$	17.52	121.9	71.7	1.70	3600	5.97	0.24	0.02661	0.00079	0.0586	0.0016	0.716	0.018	0.0881	0.0014	0.1740104	531	15	540	63	547	11 5	544.1 8	8.4 99.5	5
NB315b_25	136.7	772	123.9	6.23	70000	24.27	0.78	0.1198	0.0018	0.1629	0.0023	10.057	0.12	0.4463	0.0054 (0.3096923	2286	33	2484	24 24	2440.8	11 2	2381	25 97.5	r.
NB315b_26	31.8	128.5	120.3	1.07	2000	3.56	0.16	0.0286	0.0011	0.0657	0.0037	908.0	0.043	0.0905	0.0015	0.02863	570	21	733	92	595	22 5	558.3	9.1 93.8	∞
NB315b_28	254.4	269	274.2	2.54	27000	9.46	0.4	0.0987	0.0012	0.12127	0.0017	290.9	0.081	0.3628	0.0054 (0.5114642	1902	21	1973	25 1	1986	12 1	1995	25 100.5	r.
NB315b_29	8.26	42	12.3	3.41	2040	9.81	0.65	0.0743	0.0068	0.0862	0.0033	2.211	0.089	0.1882	0.0039	0.3501519	1440	120	1324	76 1	1178	27 1	1111	21 94.3	33
NB315b_30	156.1	306	221.4	1.38	29000	4.92	0.17	0.074	0.0012	0.09385	0.0014	3.421	0.042	0.2639	0.0033	0.2754212	1447	21	1502	28 15	1508.7 9	9.5	1510	17 100.1	-:
NB315c_01	31.88	127.9	42.79	2.99	26000	10.61	0.35	0.0806	0.0015	0.09139	0.0011	3.59	0.089	0.2767	0.0054	0.8790411	1566	27	1451	24 1	1546	20 157	574.5	27 101.8	×.
NB315c_02	133.4	285	184.4	1.55	11000	3.991	0.14	0.0786	0.0019	0.083	0.0016	2.352	0.091	0.1983	0.0056	0.8799239	1528	35	1267	38 1	1226	27 1	1166	30 95.1	-:
NB315c_03	136.7	173.2	136.8	1.27	37000	4.115	0.14	0.1084	0.0017	0.1133	0.0018	5.55	0.15	0.3314	0.007	0.8094742	2080	32	1852	29 1	1910	25 1	1845	34 97.6	9
NB315c_04	48.5	130.6	56.1	2.33	27000	8.09	0.27	0.0932	0.0018	0.1038	0.0014	5.03	0.16	0.3159	0.0064 (0.9623553	1800	33	1689	25 1	1817	28 1	1770	31 97.4	4.
$\rm NB315c_05$	188.7	006	190.1	4.73	190000	16.68	0.63	0.1062	0.0019	0.1287	0.0022	7.07	0.17	0.3721	0.012	0.8549881	2041	36	8202	30 2	2118	22 2	2051	48 96.8	∞.
NB315c_06	330.6	905	471.8	1.91	170000	6.946	0.2	0.07594	0.00084	0.0904	0.00089	3.375	0.038	0.263		0.9606779	1479	16	1432	19 14	1497.7 8	8.7 1	1505	27 100.5	r.
NB315c_07	57.1	218.5	219.4	1.00	22000	3.221	0.12	0.02799	0.00052	0.0575	0.0013	0.731	0.02	0.08519	0.0018	0.5914716	558	10	495	20	256	12	527	11 94.8	∞
NB315c_08	71.2	6.69	50.1	1.40	00099	5.311	0.16	0.153	0.0025	0.1941	0.0024	16.15	0.53	0.552		1.0101379	2877	4	2777	19 2	2879	32 2	2833	46 98.4	4.
NB315c_09	48.1	216.7	160	1.35	15000	4.76	0.22	0.03276	0.00065		0.0011	0.902	0.024	0.1034	_	0.7123977	651	13	535	40	651	12 6	634.2	13 97.4	4.
NB315c_10	54.1	236	95.3		82000	8.52	0.26	0.061	0.00092		96000.0	2.254	0.039	0.2005	0.004	0.7880695	1197	18	1134	24	1196	12 11	1177.6	21 98.5	7.
NB315c_11	47.9	48.7	131.6	0.37	7000	1.279	0.061	0.03901	0.00066	0.0721	0.0021	1.284	0.055	0.1309	0.0031	0.762668	773	13	971	28	836	25	793	18 94.9	6
NB315c_12	42.9	230	158	1.46	42000	4.56	0.18	0.02893	0.00058	0.0675	0.002	0.814	0.028	9060.0	0.002	0.5219134	576	11	830	55	602	15 5	559.2	12 92.9	6
NB315c_13	74	218	75	2.91	180000	12.53	0.75	0.1135	0.0028	0.1311	0.0015	7.03	0.18	0.4083	0.0097	0.8951994	2171	20	2110	20 2	2109	23 2	2206	44 104.6	9
NB315c_14	31.5	727	40.4	18.00	160000	66.4	2.7	0.0839	0.0026	0.09617	0.0012	3.566	0.073	0.2887	0.0064	0.8316286	1628	. 49	1549	24 1	1541	16 1	1635	32 106.1	
NB315c_15	27.9	129.8	113.4	1.14	32000	3.947	0.14	0.02643	0.00058	0.0607	0.0012	0.725	0.021	0.08794	0.0018	0.7312881	527	11	621	46	551	13 5	543.3	11 98.6	9
NB315c_16	22.4	104.3	87.9	1.19	13000	4.11	0.15	0.02728	0.00062	0.0608	0.0016	0.732	0.027	0.0911	0.0021	0.7052968	544	12	809	57	555	15	562	12 101.3	3
NB315c_17	19.8	92.3	73.1	1.26	19000	4.25	0.18	0.02913	0.00084	0.0627	0.0018	0.802	0.031	0.0924	0.0021	0.6752841	580	16	089	09	594	17 50	8.695	12 95.9	6
NB315c_18	09	205.1	84.2	2.44	115000	6.63	0.3	0.0769	0.0022	0.0973	0.0017	2.453	0.083	0.1875	0.0045	0.8716163	1496	. 40	1568	32 1	1260	26 1	1107	24 87.9	6
NB315c_19	20.17	127.3	71.8	1.77	14000	5.93	0.25	0.03005	0.00082	0.0608	0.0013	0.78	0.02	0.09461	0.002	0.5969758	601	15	819	45	584	12 58	582.7	12 99.8	∞
NB315c_20	264	406.8	308	1.32	160000	4.82	0.23	0.0921	0.0012	0.1197	0.0014	5.069	0.081	0.3125	0.0062	0.8077635	1784	24	1949	21 1	1829	13 1	1753	31 95.8	∞
NB315c_21	39.7	216.6	89.9	2.41	16000	6.87	0.4	0.048	0.0013	0.063	0.0014	1.095	0.035	0.1185	0.0029	0.7202137	948	25	200	46	749	17	722	17 96.4	4.
NB315c_22	19.66		78.8		20000	4.26	0.21	0.02705	0.00097	0.0574	0.0017	0.701	0.029	0.0838	0.0019	0.7187582	539	19	490	63	537	17 5	518.5	11 96.6	9
NB315c_23	31.8	77.1	43.2	1.78	62000	6.04	0.24	0.0783	0.0015	0.0878	0.0015	3.34	0.11	0.2617	0.0056	0.8873326	1528	27	1371	33 1	1486	26 1	1498	29 100.8	∞.

TableA2. Continued	red.															•								
	Measure	Measured concentrations ¹	trations							Isotopic ratios	atios								Calc	ulated	Calculated ages (Ma)	(7)		Ī
Analysis Identifier (p	dd) (mdd) 1 qd	U Th (ppm)	h m) U/Th		²⁰⁶ Pb/	²⁰⁸ Pb/ ²⁰⁶ Pb	±2σ²	²⁰⁸ Pb/ ²³² Th	2 ±2σ²	²⁰⁷ Pb/ ²⁰⁶ Pb	² ±2o²		²⁰	²⁰⁶ Pb/ ²³⁸ U	±20 ² Rb	Rho ³ 3	²⁰⁸ Pb/ ² ³² Th ±2	$\pm 2\sigma^2$ 207	$^{207}\mathrm{Pb/}^2$ $\pm2\sigma^2$ $^{06}\mathrm{Pb}$	σ^2 207 Pb/ σ^2 235 U	b/ ±2σ² U	²⁰⁶ Pb/ ²³⁸ U	3/ ±2σ²	% con
NB315c_24	32.9	134.8	132.2 1.0	1.02	41000	3.508	0.11	0.02664	0.0005	0.0551	0.0012	0.741	0.023	0.0883	0.0019 0.71	0.7127908	531.4	6.6	398	48	561 1	3 545.7	5.7 11	97.3
NB315c_25	30.5	160.1	116.9	1.37	42000	4.66	0.16	0.02796	0.00055	0.0555	0.0011	0.74	0.021 0.	0.09064	0.0019 0.71	0.7160523	557	11	418	46	561 12	2 559.3	9.3	1 99.7
NB315c_26	20.07	123.2	77 1.0	1.60	48000	4.99	0.2	0.02781	0.00088	0.0562	0.0019	0.737	0.037	0.0865	0.0023 0.78	0.7807494	554	17	444	73	558 21	1 534.5	4.5 14	8.26
NB315c_27	39.1	152	140 1.0	1.09	19000	3.9	0.2	0.03097	0.00098	0.0554	0.0014	962.0	0.029	0.0953	0.0023 0.72	0.7228514	919	19	415	57	593	16 5	587 14	0.66
NB315c_28	100.4	424	389 1.0	1.09	42000	3.744	0.11	0.02788	0.00045 0	0.05468 (0.00085	0.727	0.013 0.	0.09122	0.0019 0.68	0.6872612	555.7	8.8	391	35 55	554.1 7.8		562.7 11	101.6
NB315c_29	30.7	115.9 L	121.3 0.9	96.0	48000	3.41	0.14	0.02714	0.0005	0.0539	0.0014	0.738	0.023 0.	0.08952	0.0019 0.56	0.5647321	541.3	6.6	347	99	559 14		552.6 11	6.86
NB315c_30	12.6	, 5.99	41.2 1.0	1.61	41000	5.3	0.26	0.0327	0.0013	0.0658	0.002	0.981	0.05	0.0988	0.0022 0.95	0.9558975	649	56	788 (62	689 2	5 607.5	7.5 13	88.2
NB315d_01	27.9	222 10	107.8 2.0	5.06	32000	5.95	0.15	0.02762	0.0016 0	0.06527	0.0017	0.74	0.019	0.0908	0.0026 0.54	0.5446025	550.6	31	780	53 56	561.8 11	1 560.2	0.2 15	5 99.7
NB315d_02	181.8	283 1	142.3 1.9	1.99	230000	6.464	0.13	0.1363	0.0076	0.1927	0.0044	12	0.29	0.4993	0.014 0.62	0.6263602	2582	140 2	2764	38 20	2604 22		2610 60	100.2
NB315d_03	89.8	1352	222 6.0	60.9	330000	18.9	1.2	0.04346	0.0025 0	0.07336	0.0017	1.238	0.03	0.1345	0.0038 0.61	0.6196214	860	48 1	1023	49 81	817.3	14 81	813.3 22	99.5
NB315d_04	129.5	422	509 0.8	0.83	92000	2.597	0.083	0.02725	0.0015 0	0.06425	0.0016	0.715	0.02	0.0888	0.0026 0.62	0.6224444	543.4	30	744	53 54	546.8 1	12 548	548.2 15	5 100.3
NB315d_05	56.8	276 20	207.8 1.3	1.33	48000	3.949	0.097	0.02901	0.0017 0	0.06584	0.0017	0.755	0.02	9060.0	0.0026 0.56	0.5647148	578	33	662	55 57	570.8 1	12 55	558.9 16	6.76
NB315d_06	193.2	733	246 2.9	2.98	139000	9.57	0.23	0.0848	0.0048 0	0.10634	0.0025	3.641	960.0	0.2692	0.0076 0.63	0.6310864	1645	90 1	1735 4	43 1	1560 2	20 15	1537 3	38 98.5
NB315d_07	84.4	110.4	77.5 1.	1.42	64000	4.892	0.1	0.1141	0.0064	0.1421	0.0034	7.183	0.18	0.3942	0.011 0.59	0.5964373	2183 1	120 2	2249	41 2	2135 21		2141 52	100.3
NB315d_08	39 34	341.5	54.6 6.2	6.25	130000	12.95	0.44	0.0777	0.0045 0	0.08018	0.002	1.579	0.044	0.1514	0.0044 0.61	0.6167339	1513	84 1	1203	46	961 17		909 25	94.6
NB315d_09	31.3 12	126.1	122.6 1.0	1.03	34000	3.52	0.15	0.02655	0.0015	0.0618	0.0017	0.689	0.019	0.0854	0.0025 0.53	0.5331076	529	30	658	58 53	531.5	11 528.1		15 99.4
NB315d_10 2	23.93	79.3	61.7 1.3	1.29	18000	4.352	0.1	0.04019	0.0024	0.0677	0.0018	1.18	0.031	0.1314	0.0038 0.5	0.539383	962	46	849	55 79	790.5	15 79	795.5 22	100.6
NB315d_11	72.6	480	122 3.9	3.93	310000	17.78	0.67	0.064	0.005	9680.0	0.0023	3.282	0.094	0.2542	0.0083 0.65	0.6562948	1252	95 1	1414	50 1	1476 2	22 14	1460 42	6.86
NB315d_12	22.8 13	125.4	82.2 1.	1.53	32000	5.19	0.17	0.02798	0.0016 0	0.05787	0.0015	0.748	0.02	0.0892	0.0025 0.55	0.5528361	558	32	516	58 56	566.4 1	12 5	551 1	15 97.3
NB315d_13	21.7	113.6	79.4 1.	1.43	20000	4.66	0.2	0.02779	0.0017	0.0612	0.0027	0.744	0.031	0.0836	0.0025 0.27	0.2744803	554	33	604	82	562 1	7 513	517.3 15	92.0
NB315d_14	35.2 14	148.9	129.9	1.15	19000	3.778	0.099	0.02798	0.0016	0.0582	0.0017	0.735	0.02 0.	0.08754	0.0024 0.42	0.4281882	558	32	523 (62	559 1	12 540	540.9 14	8.96
NB315d_15	51.2	148	59.5 2.4	2.49	14000	8.34	0.25	0.0885	0.0052	0.105	0.0026	4.311	0.11	0.2844	0.008 0.57	0.5776244	1713	97 1		45 169	1694.2 2	20 16	1613 40	95.2
NB315d_16	6.99	122	96.5 1.3	1.26	33000	4.261	980.0	0.0716	0.0041 0	0.08492	0.002	2.85	0.072	0.2343	0.0066 0.61	0.6162145	1397	77 1	1310 4	47 13	1368	13	1357 35	99.2
NB315d_17	58.1 15	153.7	65 2	2.36	105000	8.88	0.23	0.095	0.0054 0	0.10791	0.0025	5.173	0.13	0.3343	0.0094 0.62	0.6265354	1834 1	100	1762	43 18	1847 2	1 18	1859 46	100.6
		102	108 0.9	0.94	12800	3.27	0.12	0.0271	0.0016	0.0575	0.0016	0.705	0.022	0.086		0.5757394	540	31		62 54	540.5	13 53	531.8 15	
	109.5	317	401 0.7	0.79	15000	2.651	0.073	0.02888	0.0017 0	0.05857	0.0015	0.761	0.021	0.0918		0.5979723	575	33		57 57		12 56	566.4 16	
NB315d_20	_		44.84 3.9	3.95	30000	98.6	0.38	0.0721	0.0045	0.0807	0.0023	2.019		0.1785		0.6834465	1406	85 1		26 1		24 10	1058 35	
NB315d_21	51.8	263 20	205.9 1.3	1.28	70000	4.638	960.0	0.02934	0.0017 0	96090.0	0.0015	0.757	0.02	0.0936	0.0026 0.58	0.5887492	584.5	33	632	54 57	572.5 1	11 57	576.5 15	5 100.7
NB315d_22	55.7 20	264.5	173.9 1.	1.52	6400	4.28	0.23	0.0392	0.0035	0.0922	0.0068	1.111	980.0	0.091	0.0026 0.30	0.3094573	775	68 1	1370 1	70	746 3	38 56	561.4 1	15 75.3
NB315d_23	49.9	154.3 2	213.6 0.7	0.72	19100	2.598	0.054	0.02729	0.0015	0.0609	0.0017	969.0	0.019 0.	0.08689	0.0024 0.48	0.4833582	544.2	30	979	60 53	535.9 1	11 537.1		14 100.2
NB315d_24	22.4 13	122.7 10	101.8 1.2	1.21	12000	4.54	0.15	0.02615	0.0016	0.0613	0.0018	629.0	0.019 0.	0.08423	0.0023 0.43	0.4360782	522	31	645 (64 52	525.4 1.	12 52	521.3 14	1 99.2
NB315d_25	123.5	218 1	156.4 1.3	1.39	28000	5.455	0.12	0.0929	0.0052 0	0.11472	0.0027	4.817	0.12	0.3207	0.0093 0.62	0.6281815	1796	97 1	1873	42 1.	1788 2	1 17	1793 45	5 100.3
NB315d_26	169.4	461	413 1.	1.12	22900	4.116	0.1	0.04827	0.0027 0	0.07755	0.0019	1.565	0.042	0.1548	0.0044 0.60	0.6081936	953	52 1	1132	48	955 1	17 9	928 25	5 97.2
NB315d_27	31.2	152	61.7 2.	2.46	28000	9.43	0.24	0.0625	0.0038	0.0835	0.0021	2.203	0.064	0.202	0.0062 0.6	0.646837	1226	73 1	1277	50 1	1180 2	20 11	1186 33	3 100.5
NB315d_28	76 15	150.5 10	106.6 1.	1.41	46000	5.275	0.12	0.0844	0.0049	0.1039	0.0025	3.78	0.12	0.2792	0.0091 0.72	0.7205752	1638	91 1	7697	45 1	1584 2	25 15	1586 46	100.1
NB315d_29	11.34 (69.2	47.2 1.	1.47	3100	5.38	0.17	0.02829	0.0017	0.063	0.0021	0.759	0.025	0.0929	0.0027 0.42	0.4275027	564	34	683	7.	572 1	14 57.	572.9 16	5 100.2
NB315d_30	14.19	63.8	27.1 2.3	2.35	2000	8.85	0.24	0.0619	0.0037	0.0842	0.0022	2.238	90.0	0.2049	0.0058 0.55	0.5516819	1213	71 1	1671	52 1	1191	19 12	1201 31	100.8
NB315e_01	63.1	196	237 0.8	0.83	16000	3	0.18	0.02929	0.0012	0.0602	0.0011	0.778	0.016	0.0935	0.0011 0.47	0.4700784	583	24	602	42 58	583.7 9.2		576.2 6.3	3 98.7
NB315e_02	19.85	103.1	76.5 1.3	1.35	20000	4.25	0.22	0.02765	0.0012	0.0617	0.0015	0.739	0.017	0.0874	0.0012 0.20	0.2005182	551	23	646	51	561 10		541.6 7.6	5 96.5

Table A2. Continued	nued.																								
	Mea	Measured concentrations ¹	ncentrati	ons ¹						Isotopic ratios	atios								Calc	culated	Calculated ages (Ma)	(a)			l
Analysis Identifier	Pb (ppm)	U (ppm)	Th (ppm)	U/Th	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁶ Pb	±2\alpha^2	²⁰⁸ Pb/ ²³² Th	±2 σ^2	²⁰⁷ Pb/ ²⁰⁶ Pb	±2 σ^2	²⁰⁷ Pb/ ²³⁵ U	±2σ²	²⁰⁶ Pb/ ²³⁸ U	±2 σ^2	Rho ³	²⁰⁸ Pb/² 32Th ±	207. ±2σ ² 06	²⁰⁷ Pb/ ² ⁰⁶ Pb ±2	$\pm 2\sigma^2$ $^{207}\text{Pb/}$	²⁰⁷ pb/ ±2σ ²	²⁰⁶ Pb/ 5 ² ²³⁸ U	οb/ ±2σ² U	ς ² %	
NB315e_03	15.25	116.4	60.7	1.92	10000	6.46	0.33	0.02686	0.0011	0.0584	0.0011	0.709	0.014 (0.08818	0.00091	0.3475069	536	22	530	42 5	543.2 8	8.3 54	544.7 5	5.4 100.3	3
NB315e_04	52.5	267.8	251.1	1.07	20000	4.069	0.2	0.02216	0.00099	0.0635	0.0013	0.771	0.02	0.0885	0.0015	0.6153002	443	20	719	43	280	11 54	546.6 9	9.2 94.2	7
NB315e_05	274	243	199	1.22	200000	4.9	0.47	0.1514	0.0067	0.1868	0.0018	13.2	0.22	0.5147	0.008	0.8232209	2847	120	2712	16 2	7697	16 2	2675	34 99.4	4
NB315e_06	23.2	109.7	95.8	1.15	16000	4.041	0.2	0.02644	0.0011	0.0586	0.0012	0.705	0.016	0.08689	0.00099	0.4361122	527	21	547	49 5	540.8 9	9.6	537 5	5.9 99.3	3
NB315e_07	18.81	91.7	78.8	1.16	1000	4.01	0.2	0.02601	0.0011	0.0595	0.0013	0.693	0.016	0.0845	0.0011	0.3745602	519	23	570	49 5	533.5 9	9.5 52	523.1 6	.3 98.1	-
NB315e_08	42.5	149.9	164.7	0.91	30000	3.003	0.14	0.02783	0.0011	0.0585	0.0011	0.725	0.011	0.09029	0.00098	0.016878	554.7	21	534	40 5	552.8 6	6.8 55	557.2 5	.8 100.8	∞
NB315e_09	28.7	164	115.1	1.42	21000	4.81	0.24	0.027	0.0011	0.0595	0.0011	0.709	0.014	0.08687	0.0009	0.3799605	538	22	625	38 5	544.9 8	9.8	537 5	5.4 98.6	9
$\rm NB315e_10$	12.11	59.1	44.3	1.33	2000	4.61	0.24	0.02949	0.0013	0.0609	0.0012	0.835	0.019	0.0991	0.0012	0.5010813	287	26	633	46	615	10	2 609	7.3 99.0	0
NB315e_11	31.8	172	134.2	1.28	17000	4.33	0.22	0.02557	0.001	0.0582	0.0011	0.685	0.013	0.08574	0.00089	0.2809545	510.3	70	522	41 5.	528.8 7	7.6 53	530.3 5	5.3 100.3	3
NB315e_12	32.1	174	134.2	1.30	40000	4.381	0.22	0.02566	0.001	0.0579	0.001	0.678	0.013	0.08526	0.00095	0.4528638	512.1	70	512	40 5	524.6 7	7.6 52	527.4 5	5.6 100.5	5
NB315e_13	83.5	411	336	1.22	23000	4.026	0.19	0.02677		0.05871	0.0007	0.708	0.01		0.00088	0.558252	533.9	70	250	26 5	542.9 6	6.1 53	539.3 5		33
NB315e_14	23.09	146.2	94.1	1.55	11000	5.08	0.26	0.02691	0.0012	0.0622	0.0018	0.697	0.019	0.0819	9600000	0.0673279	537	23	629	28	536	11 50	507.4 5	5.7 94.7	_
NB315e_15	30.2	139.7	130	1.07	00006	3.634	0.17	0.02505	0.00099	0.0585	0.001	699.0	0.012	0.08321	0.00091	0.380136	200	19	538	38 5	519.2 7	7.3 51	515.2 5	5.4 99.2	7
NB315e_16	58.7	457	225.9	2.02	00006	6.91	0.33	0.02834	0.0011	0.05965	0.00067	0.758	0.011	0.0923	0.001	0.6417968	564.8	22	286	24 5	572.3 6	6.5 50	569.1 6	6.1 99.4	4
NB315e_17	90.2	186.8	172.6	1.08	13000	3.795	0.19	0.05667	0.0021	0.0802	0.00098	2.12	0.032	0.1922	0.0026	0.640383	1114	41	1197	24 1	1154	11 1	1133	14 98.2	7
NB315e_18	108.8	218.8	126.1	1.74	105000	6.38	0.3	0.094	0.0036	0.1224	0.0012	5.462	0.072	0.3241	0.0034	0.6786632	1816		6861	18 1	1894	11 1	1809	16 95.5	5
NB315e_19	26.5	208	105.9	1.96	14000	6.64	0.32	0.0269	0.0011	0.05866	0.00079	0.728	0.011	0.09044	0.00098	0.5019068	536	21	546	30	9 252	6.5 55	558.1 5	5.8 100.6	9
NB315e_20	28.65	130.1	124.4	1.05	1600	3.651	0.18	0.02515	0.001	0.0601	0.001	0.685	0.014 (0.08297	0.00086	0.58603	502	20	298	39 5.	528.9 8	8.3 51	513.8 5	5.1 97.2	7
NB315e_21	7.67	217	318	89.0	18000	2.282	0.11	0.02718	0.001	0.05804 (0.00083	0.7135	9600.0	9680.0	0.001	0.336594	542.1	20	527	32 5	546.4 5	5.7 55	553.3	6 101.3	3
NB315e_22	8.09	246	251.3	0.98	18000	3.363	0.17	0.02624	0.001	0.05845 (0.00089	0.706	0.013	0.0879	0.0011	0.5724344	523.5	20	540	33 5.	541.7 7	7.5 54	542.9 6	6.3 100.2	2
NB315e_23	32.4	215	134.1	1.60	17000	5.24	0.26	0.02614	0.0011	0.05888 (0.00089	0.677	0.011	0.08339	0.00079	0.4069205	521	21	553	33 5.	524.4 6	6.4 5]	516.3 4	4.7 98.5	5
NB315e_24	120.4	939	454.4	2.07	12000	6.67	0.33	0.02894	0.0013	0.0602	0.0011	0.766	0.019	0.09194	0.0009	0.7767253	929	25	298	35	276	10	567 5	5.3 98.4	4
NB315e_25	45.2	61.8	50	1.24	20000	4.65	0.29	0.0981	0.004	0.1199	0.0016	5.787	0.087	0.3518	0.0041	0.5244095	1890	73	1950	23 1	1943	13 1		19 99.9	6
NB315e_26	59.1	292.1	236.8	1.23	20000	4.214	0.21	0.027	0.001	0.0618	0.0012	0.759	0.015	0.0895	0.00091	0.2909111	538.4	70	654	40 57	572.2 8	8.7 55	552.5 5	5.4 96.6	9
NB315e_27	278.3	250.4	304.3		75000	3.035	0.14	0.0999	0.0036	0.12051 (0.00085	5.846	0.049	0.352	0.0029	0.6399274	1924		1964	12 19	1952.7 7	7.3	1944	14 99.6	9
NB315e_28	106.3	298	157.2	1.90	51000	6.88	0.33	0.07354	0.0027	0.09619	0.00077	3.534	0.043	0.2668	0.0025	0.7532943	1434	25	1549	15 153	1533.7 9	9.5	1524	13 99.4	4
NB315e_29	77	354.7	118.4	3.00	32000	11.4	69.0	0.0707	0.0027	0.09206	0.00064	3.162	0.035	0.2498	0.0025	0.7869409	1384	53	1466	13 14	1448.3 8	8.3	1437	13 99.2	7
NB315e_30	24.9	146	99.2	1.47	2900	4.98	0.25	0.02723	0.0011	0.0614	0.0012	0.755	0.016	0.08944	9600000	0.4008179	543	21	639	43 5.	570.3 9	9.5 55		5.6 96.8	∞
NB315f_01	46.9	293	186	1.58	30000	5.5	0.32	0.0269	0.0011	0.0627	0.0017	0.775	0.026	0.0886	0.0013	0.6151961	536	21	684	51	581	14 54	547.3 7	7.4 94.2	7
NB315f_02	117	306	244	1.25	30000	4.96	0.45	0.0529	0.002	0.0738	0.0012	1.723	0.029	0.1702	0.0025	0.4745635	1041	38	1030	33 1	1019	12	1013	14 99.4	4
NB315f_03	92	241	176	1.37	30000	4.87	0.23	0.04086	0.0014	0.06728 (0.00097	1.257	0.02	0.1354	0.0014	0.4625932	808	27	839	30 8.	825.8 8	8.7 8	818.7 7	7.9 99.1	-
NB315f_04	105.2	137.6	116	1.19	34000	4.429	0.19	0.0988	0.0032	0.1225	0.0012	5.995	0.075	0.3547	0.0039	0.6595387	1904	26	0661	18 1	1974	11	1957	19 99.1	-
NB315f_05	15.63	62.05	58.85	1.05	200	3.56	0.21	0.0296	0.0015	0.0739	0.0027	0.907	0.033	0.0887	0.0014	0.2072425	290	56	1014	73	653	17 54	547.7 8	.1 83.9	6
NB315f_06	86	359	202	1.78	93000	5.8	0.27	0.0521	0.0022	0.078	0.0012	1.798	0.037	0.1678	0.0027	0.673009	1027	45	1142	31 1	1043	13	666	15 95.8	∞.
NB315f_07	35.2	169	116.6	1.45	35000	4.58	0.26	0.0319	0.0014	0.068	0.0021	0.881	0.03	0.0934	0.0012	0.4238884	635	27	898	99	641]	16 57	576.9 7	7.3 90.0	0
NB315f_08	38.8	244	157.8	1.55	70000	5.41	0.25	0.02693	0.00091	0.05957	0.00099	0.733	0.013	0.0892	0.001	0.4124917	537.1	18	278	37 5	557.6 7	7.5 55	550.7 6	6.2 98.8	∞.
NB315f_09	20.92	80.7	78.3	1.03	00006	3.22	0.18	0.0294	0.0014	0.0759	0.004	0.875	0.048	0.0831	0.0015	0.2816301	585	78	1060	100	633 2	25 51	514.6 8	8.8 81.3	33
NB315f_10	39.4	185	162	1.14	70000	4.07	0.21	0.0265		0.05855 (0.00092	0.691	0.012	0.0856	0.0011	0.4925028	529	18			532.8	7 52	529.3 6	6.5 99.3	.3
NB315f_11	16.82	369	48.41	7.62	110000	27.9	1.5	0.0381	0.0016	0.06536	0.00098	1.137	0.02	0.1257	0.0016	0.5507305	756	30	780	32 77	770.3 9	9.3 76	763.1 9	9.3 99.1	-:

Table A2. Continued.	ed.																								
	Measured concentrations ¹	concent	rations							Isotopic ratios	ratios								Calc	ulated	Calculated ages (Ma)	(F			I
Analysis Identifier (p	Pb U (mdd)	Th (ppm)	h m) U/Th		²⁰⁶ Pb/	²⁰⁸ Pb/ ²⁰⁶ Pb	±20 ²	²⁰⁸ Pb/ ²³² Th	±20 ²	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ²	²⁰⁷ Pb/ ²³⁵ U	±2 σ^2	²⁰⁶ Pb/ ²³⁸ U	±2 σ^2	Rho³	²⁰⁸ pb/² 32Th ±	²⁰⁷ ±2σ ² 06	²⁰⁷ Pb/ ² ⁰⁶ Pb ±2	$\pm 2\sigma^2$ $^{207}\mathrm{Pb}/$	b/ ±2σ² U	, ² ²⁰⁶ Pb/ ²³⁸ U	b/ ±2σ² J	-2 Con	
NB315f_12	64.4 62	62.9	95.1 0.0	99.0	20000	2.484	0.12	0.0738	0.0025	0.095	0.0016	3.318	0.058	0.2527	0.0036	0.4514762	1438	48	1521	32 14	1484 1	4 14	1452	19 97.8	∞
NB315f_13	107.4 228.1		132.6 1.3	1.72	000009	3.92	0.19	0.0866	0.0031	0.1022	0.002	2.808	0.074	0.2002	0.0048	0.7014206	1679	57	1660	36 13	1356 2	20 1.	1176	25 86.7	<u></u>
NB315f_14	63.7 148.4		91.2 1.6	1.63	00006	5.901	0.26	0.0761	0.0025 (0.09565	0.0011	3.458	0.036	0.2616	0.0025	0.3389965	1482	46	1537	22 151	1516.8 8.	8.3 14	1498 1	3 98.8	8
NB315f_15	7.97	365	8.6 42.44		10000001	149.9	8	0.1014	0.0045 (0.11705	0.0011	5.418	0.067	0.3351	0.0039	0.6950185	1949	83	1911	18 18	1886 1	11 18	1862 1	19 98.7	^
NB315f_16	45 288.3		200.6 1.4	1.44	29000	5.162	0.23	0.0243 (0.00078	0.05864	0.00083	999.0	0.011	0.0823	0.001	0.5483517	485.2	15	546	31 51	517.8 6.	9.9	510 5	5.9 98.5	5
NB315f_17	47.5 140.9		197 0.3	0.72	50000	2.536	0.12	0.02628 (0.00093	0.0584	0.0012	0.71	0.014	0.0882	0.0011	0.2483244	524	18	530	46 54	543.8 8.	8.5 54	544.6 6	6.4 100.1	_
NB315f_18	74.2 3	319	285 1.	1.12	44000	3.67	0.18	0.02822	0.0011	0.0618	0.0014	0.782	0.022	0.0921	0.0019	0.6063828	562	23	. 299	48	586 1	12	268	11 96.9	6
NB315f_19	89.4	219 16	166.5 1.3	1.32	65000	4.731	0.22	0.058	0.002	0.0803	0.0014	2.317	0.046	0.2096	0.0032	0.5332714	1140	38	6611	35 12	1216 1	14 13	1226	17 100.8	∞
NB315f_20 1	14.59 81	81.6 5	50.8 1.6	1.61	12000	5.14	0.32	0.0318	0.0016	0.0637	0.002	0.782	0.027	0.0888	0.0018	0.4409434	632	32	713	99	585 1	16	548 1	11 93.7	^
NB315f_21	41.9 241.6		164.4 1.4	1.47	43000	5.14	0.25	0.0279	0.00099	0.0595	0.0012	0.732	0.017	0.0885	0.0012	0.5024741	556	20	. 985	45	557 1	10 54	546.3 7	7.3 98.1	_
NB315f_22	86.8	293	356 0.8	0.82	30000	2.71	0.15	0.02647	0.001	0.0693	0.002	0.793	0.024	0.084	0.002	0.450985	528	20	893	62	595 1	15	520	12 87.4	4.
NB315f_23	37.3 20	200	160 1.3	1.25	18000	4.78	0.28	0.02588 (0.00097	0.0581	0.0011	0.673	0.015	0.084	0.0011	0.5307124	516	19	524	43 52	521.7 8.	8.8 51	519.8 6	6.3 99.6	9
NB315f_24	51.4 249.6		198.3 1.2	1.26	11000	4.07	0.21	0.02789	0.0011	0.0654	0.0028	0.763	0.033	0.0845	0.0011	0.1838833	556	21	780	3	573 1	18 52	522.7 6	6.6 91.2	7
NB315f_25	27.6 151.6		111.4 1.3	1.36	80000	4.57	0.22	0.02712 (0.00099	0.0616	0.0013	0.735	0.016	0.0863	0.001	0.3226472	541	20	. 059	47 55	558.4 9.	9.5 53	533.3	6 95.5	5
NB315f_26	229 28	285	280 1.0	1.02	100000	3.87	0.17	9680.0	0.0029	0.1091	0.0013	4.649	0.064	0.3078	0.0033	0.550418	1735	53	1782	22 17	1757 1	12 15	1730 1	16 98.5	5
NB315f_27	170.2 9;	931 38	382.2 2.4	2.44	130000	8.85	0.38	0.04829	0.0015 (0.07223	0.00067	1.671	0.018	0.1677	0.0017	0.607867	953	59	992	18 99	9 8.966	6.8 99	999.1	9.3 100.2	7
NB315f_28	36 1	145	145 1.0	1.00	0	3.552	0.17	0.02713 (0.00094	0.0585	0.0012	0.735	0.016	0.0911	0.0011	0.3783494	541	18	539	46	560 9.	9.3 56	562.1 6	6.7 100.4	4
NB315f_29	63.1 256.6		244.6 1.0	1.05	00006	3.687	0.18	0.02829	0.0011	0.0626	0.0021	0.773	0.027	0.0892	0.0011	0.2864193	564	21	629	9	580 1	15 55	550.6	6.6 94.9	6
NB315f_30 1	116.5 80	862	479 1.8	1.80	300000	6.473	0.28	0.02654 (0.00087	0.05807	0.00064	0.7284	0.0092	0.091	0.0011	0.6031709	529.4	17	531	25 55	555.3 5.	5.4 56	561.5 6	6.4 101.1	_
NB315g_01 2	245.2 9	947	373 2.5	2.54	220000	9.59	0.36	0.0675	0.0014 (0.09543 (0.00088	3.591	0.051	0.2698	0.0036	0.7775842	1321	26	1534	17 1	1547 1	11 15	1539	18 99.5	5
NB315g_02	23.4 1	145 9	98.3 1.4	1.48	12000	4.99	0.2	0.02467 (0.00056	90.0	0.00095	0.702	0.011	0.08469	0.00093	0.335405	492	11	293	34 54	540.7 6.	6.7	524 5	5.5 96.9	6
NB315g_03	60.4 363.4	3.4	77 4.3	4.72	16000	21.3	1.9	0.0826	0.0016	0.11149 (0.00086	4.808	0.058	0.3107	0.0036	0.7879638	1603	53	1824	14 17	1785 1	10 13	1744	18 97.7	_
NB315g_04	27 147.6		115.3 1.2	1.28	0	4.49	0.18	0.02445 (0.00051	0.0603	0.0012	0.706	0.016	0.0845	0.0011	0.4864734	488	10	615	44 54	541.3 9.	9.2 52		6.3 96.5	5
NB315g_05	49.2	131 9	95.6 1.3	1.37	30000	5.05	0.26	0.0555	0.0011	0.07895	0.00097	2.109	0.03	0.1926	0.0024	0.5829705	1091	20	1165	24 115	1150.6 9.	9.8		13 98.6	9
NB315g_06	14.9	57 5	55.8 1.0	1.02	4400	3.8	0.27	0.0277	0.0011	0.0613	0.0018	0.741	0.022	0.0874	0.0013	0.2722793	552	22		65	561 1	13 53	539.9	8 96.2	7
NB315g_07	77.3 199.6		100.1	1.99	29000	7.413	0.26	0.0825	0.0012	0.10742	0.00098	4.546	0.055	0.3054	0.0032	0.6820824	1602	23	1753	17 173	1738.3 1	10 13	1718	16 98.8	∞
NB315g_08	58.2 314.8		259.8 1.2	1.21	26000	4.277	0.16	0.02393	0.00039	0.05904	0.00088	9/9.0	0.01	0.08293	0.00087	0.3438478	478	7.7	229	33		6.3 51		5.2 98.0	0
NB315g_09	101 115.1		86.5 1.3	1.33	25000	5.05	0.19	0.1264	0.0026	0.1797	0.0023	11.14	0.24	0.4499	0.0069	0.8104089	2405	46	2648	21 25	2533 2	20 23	2394	30 94.5	5
NB315g_10	26.3 10	103	100 1.0	1.03	800	3.6	0.18	0.02861	0.0008	0.0636	0.0016	0.832	0.022	0.0952	0.0015	0.3775149	570	16	721	52 (615 1	13 58	586.2 8	8.9 95.3	3
NB315g_11	185 29	297	140 2.	2.12	120000	7.33	0.31	0.1505	0.0047	0.239	0.0026	16.15	9.4	0.491	0.011	0.8983976	2832	82	3111	18 28	2883 2	24 25	2574 4	47 89.3	3
NB315g_12	55.5 2:	234	222 1.0	1.05	18000	3.89	0.21	0.02846 (0.05908	0.00092	0.727	0.012	0.0896	0.0011	0.4458169	292	12	260	34 55	554.2 6.	6.9 55		8.66 9.8	8
NB315g_13	16.5 95	92.6	65.3 1.4	1.46	20000	5.1	0.24	0.02785	0.00067	0.0599	0.0013	0.728	0.016	0.08834	0.00096	0.2723907	555	13	581	47 55	554.1 9.1		545.7 5	5.7 98.5	5
NB315g_14	59.8 176.8		221.4 0.8	0.80	20000	2.695	0.1	0.03019	0.00055	0.0611	0.001	908.0	0.015	0.096	0.0013	0.5195274	601	11	633	35 59	599.6 8.	8.4 59	590.8 7	7.4 98.5	5
NB315g_15	28.5 86	86.7 7	70.9	1.22	10900	2.75	0.13	0.0445	0.0017	0.1113	0.0039	1.422	0.055	0.0928	0.0013	0.4285439	880	33	96/1	3 99	896 2	24	572 7	7.9 63.8	∞,
NB315g_16	54.1 5	515 22	221.8 2.3	2.32	00006	8.24	0.31	0.02723 (0.05847	0.00063	0.737	0.01	0.0916	0.001	0.6318556	542.9	9.1	542	23 56	560.2 5.	5.9	292	6 100.9	6
NB315g_17	42.4 20	203	179 1.	1.13	21000	3.9	0.16	0.0261	9900000	0.0587	0.0012	0.705	0.016	0.0872	0.0012	0.4587154	521	13	545	45 54	542.5 9.		538.9 7	7.1 99.3	3
NB315g_18	51.2 291.4		161.2 1.8	1.81	70000	5.208	0.19		0.00086	0.06254 (0.00098	0.831	0.015	9960.0	0.0011	0.5106962	707	17	663	33 61	614.8 8.	8.5 59	594.4 6	6.5 96.7	_
NB315g_19 1	125.7 4	454 15	158.3 2.8	2.87	160000	11.04	0.48	0.0876	0.0012	0.11188	0.00086	4.909	0.065	0.3184	0.0036	0.8151592	1697	23	1830	13 18	1802	1 I	1782	18 98.9	6
NB315g_20	105 203.7		150.6 1.3	1.35	35000	4.831	0.17	0.0774	0.0012	0.0958	0.00086	3.553	0.04	0.2692	0.0028	0.6590326	1506	23	1541	17 153	1538.2	9 15	1536	14 99.9	6

		con %	100.9	96.1	100.3	0.86	92.8	99.3	99.2	94.1	266								98.7	97.7	98.1	8.86	88.7	95.0	6.66	79.0	74.4	98.6	97.4	94.5	98.3	99.2	93.6	96.3	94.7	8.66	95.2	78.2	98.4
		±2\alpha^2	7.9	7.4	14	5.8	7.7	6.7	5.7	•	12		3.7		1.8	1.3	1.1		40	40	40	40	36	4	38	22	43	38	29	40	40	52	80	38	51	32	28	31	46
		²⁰⁶ Pb/ ²³⁸ U	525.8	534.5	1317	546	615.9	531.7	531.2	554.5	574		1063.8		1102.3	562.4	417.0		2427	1977	1894	2037	1987	2219	1984	866	1136	1979	2621	1698	1992	2691	2411	1881	2370	1724	2512	1623	2473
	(Ma)	±2σ ²	12	13	9.5	8.6	11	9.4	7.3	14	13		3.4		1.4	1.5	1.3		8.1	15	15	11	11	14	13	12	28	13	24	17	13	13	30	13	13	10	18	16	13
	Calculated ages (Ma)	²⁰⁷ Pb/ ²³⁵ U	521	556	1312.9	557.4	664	535.2	535.3	589	276		1063.1		1105.8	562.9	419.1		2459.1	2024	1931	2061	2013	2337	1985	1264	1527	2008	2692	1796	2026	2714	2575	1954	2502	1727	2639	2075	2512
	alculat	±20 ²	61	72	21	47	47	47	37	28	89		11.8		3.4	7.3	7.7		20	53	37	33	29	76	33	32	44	27	30	33	28	79	54	28	27	33	30	31	28
	0	²⁰⁷ Pb/ ² ⁰⁶ Pb	471	639	1290	581	812	521	532	691	573		1054.7		3.0 1104.2	559.4	423.6		2484	2069	1973	2082	2033	2442	1993	1730	2127	2042	2764	1920	2063	2734	2716	2035	2617	1725	2748	2557	2544
		±2σ²	10	16	24	12	13	11	12	10	20		9.4		3.0	4.5	2.0		88	78	110	110	85	100	82	41	64	83	110	84	84	100	160	74	100	70	110	09	100
		²⁰⁸ Pb/ ² ³² Th	507	485	1298	524	613	513	522	999	525		1065.1		1093.7	548.7	401.4		2507	2140	2136	2224	2210	2573	2134	691	1246	2204	2962	2145	2200	2927	2970	2017	2861	1817	2892	1051	2696
		Rho ³	0.3613656	0.2572564	0.6201043	0.370172	0.343048	0.4564116	0.3506846	0.5270426	0.2698019		0.4940114 1065.1		0.6451225	0.4405425	0.416241		0.6631424	0.7145333	0.5577116	0.585835	0.715121	0.7430956	0.607704	0.6872764	0.7863809	0.7381851	0.8231186	0.7195702	0.7164184	0.7485016	0.5618699	0.738265	0.7770625	0.5149119	0.741033	0.5992674	0.631661
		±2 σ^2	0.0013		0.0027	0.00099	0.0013	0.0011	9600000		0.002		0.00355		0.00367	0.00157	0.00146		0.009	0.0084	0.0083	0.0085	0.008	96000	0.0081	0.0039	0.008	0.0083	0.016	0.0081	0.0085	0.012	0.018	0.0079	0.011	0.0064	0.013	0.0063	0.01
		²⁰⁶ Pb/ ²³⁸ U	0.085	0.0865	0.2267	0.0884	0.1003	0.086	0.08591	0.0898	0.0932		0.17951		0.18743	0.09084	0.06693		0.4572	0.3591	0.3417	0.3718	0.3606	0.4113	0.3606	0.1674	0.1928	0.3588	0.502	0.3016	0.3623	0.5186	0.454	0.339	0.4448	0.3066	0.477	0.2863	0.4677
		±2 σ^2	0.02	0.023	0.034	0.017	0.02	0.016	0.012	0.026	0.023		0.0523		0.0414	0.0169	0.0168		0.09	0.1	0.1	0.081	0.076	0.14	0.092	0.036		0.088	0.33	0.099	0.097	0.18	0.37	0.086	0.15	0.055	0.24	0.12	0.15
		²⁰⁷ Pb/ ²³⁵ U	0.672	0.732	2.648	0.733	0.925	0.696	0.695		0.765		1.8559		1.9806	0.7427	0.5176		10.273	6.35	5.72	6.598	6.261	9.01	6.078	2.464	3.51	6.209	13.22	4.875	6.372	13.51	11.66	5.867	10.77	4.484	12.47	6.72	10.89
	c ratios	±2 σ^2	0.0016	0.0019	0.00091	0.0013	0.0014	0.0012	0.00099	0.0018	0.0019		0.00189 1.8559		0.00131 1.9806	0.00129	0.00172		0.0025	0.0021	0.0025	0.0024	0.002	0.0025	0.0022	0.0018	0.0034	0.002	0.0035	0.0022	0.0021	0.003	0.0064	0.002	0.0029	0.0019	0.0035	0.0031	0.0028
	Isotopic ratios	²⁰⁷ pb/ ²⁰⁶ pb	0.0569	0.061	0.08411	0.0599	0.0665	0.0583	0.05837	0.0634	0.0596		0.0749		0.07679	0.05941	0.05616		0.1629	0.1281	0.1217	0.1293	0.1254	0.159	0.1229	0.106	0.1324	0.126	0.1929	0.1178	0.1277	0.1892	0.1875	0.1256	0.1764	0.1058	0.191	0.1701	0.1689
		±2 σ^2	0.00052	0.00079	0.0013	0.00063	0.00066	0.00058	0.00059	0	0.001		0.0026		0.002	0.00149	0.00091		0.0049	0.0043	0.0063	0.0063	0.0047	0.0056	0.0045	0.0021		0.0046	0.0062	0.0046	0.0047	0.0059	0.0092	0.0041	0.0059	0.0038	0.0061	0.0031	0.0056
		²⁰⁸ Pb/ ²³² Th	0.02539	0.02428	0.0664	0.02625	0.03078	0.02573	0.02617	0.02842	0.0263		0.05412		0.05701	0.02735	0.02059	9T)	0.1321	0.1117	0.1117	0.1165	0.1156	0.1358	0.1114	0.0348	0.0636	0.1153	0.1579	0.112	0.115	0.1559	0.1586	0.105	0.1521	0.0941	0.1538	0.0534	0.1427
		±2σ ²	0.14	0.17	0.2	0.2	0.48	0.14	0.2	0.18	0.35		0.522		0.269	1.555	0.255	Zone 1	0.27	0.54	1	2.2	0.32	0.56	0.3	0.74	0.27	0.52	0.42	0.32	0.52	0.28	2.2	0.29	0.94	0.63	0.38	0.78	0.16
		²⁰⁸ Pb/ ²⁰⁶ Pb	3.164	3.91	4.99	5.24	3.96	3.595	4.18	4.55	5.2		9.3729		6.3923	26.65	4.6885	V; Grid	4.358	8.45	13.74	28	5.097	8.75	4.693	11.41	3.79	8.2	6:39	4.81	8.11	4.395	18.7	4.596	14.9	9.75	5.79	11.46	2.563
		²⁰⁶ Pb/ ²⁰⁴ Pb	20000	2500	00069	00006	27000	13000	70000	00006	17000		30.09 2.71 38364.94253 9.3729		257.14 1.95 301474.7126 6.3923	35802.5	34333.89831	E, 49489581	108000	300000	2000	20000	14000	280000	21000	64700	161000	250000	160000	150000	57000	220000	330000	270000	130000	107000	000009	00086	120000
	1S1	U/Th	0.92	1.06	1.47	1.58	1.44	1.07	1.20	1.45	1.52	rial	2.71 3	terial(s	1.95 3	69.7	1.15 3	680759	1.25	2.60	4.43	8.18	1.65	2.91	1.47	2.21	1.32	2.57	2.00	1.79	2.57	1.31	6.19	1.41	5.08	2.86	1.84	1.97	92.0
	Measured concentrations ¹	Th (mqq)	178.3	83.6	123.8	91.9	164	106.9	153	117.9	111.5	nce mate	30.09	ence ma	257.14	26.36	263.06	(UTM -	136.4	134.3	7.57	9.56	100.4	239.3	53.7	756	2197	149.7	162.7	362.1	75.1	241	151.8	373.6	171.7	8.68	331.8	791	237.2
	red conc		164.5	88.4	182.5	144.9	236	114.3	184	170.8	169.4	у геfеге	81.54	ary refe		202.58	302.64	mation	170.7	349.6	33.5	78.2	165.8	969	78.8	1670	2890	384.9	326	649	192.8	316	939	525	873	256.4	612	1560	180.4
nued.	Measu	Pb U (mdd)	42.6	19.03	79.1	22.82	48.9	25.9	37.4	32	28.1	of primar	15.04	of second	140.56 501.73	6.75 2	50.51 3	hfare For	166.7	137.8	69.2	88.6	105.1	294.3	52.9	230	1209	151.4	224.4	348.2	75.8	326.5	209	340.5	224.1	73.9	438	360	288.8
Table A2. Continued		Analysis Identifier	NB315g_22	NB315g_23	NB315g_24	NB315g_25	NB315g_26	NB315g_27	NB315g_28	NB315g_29	NB315g_30	Weighted means of primary reference material	91500 (n=85)	Weighted means of secondary reference material(s)	FC1 (n=77)	Peixe (n=37)	R33 (n=50)	GM10-01 Throughfare Formation (UTM - 680759E, 4948958N; Grid Zone 19T)	GM10-01a_001	GM10-01a_002	$GM10-01a_003$	GM10-01a_004	GM10-01a_005	GM10-01a_006	GM10-01a_007	GM10-01a_008	$GM10-01a_009$	GM10-01a_010	GM10-01a_011	GM10-01a_014	GM10-01a_015	GM10-01a_016	GM10-01a_017	GM10-01a_018	GM10-01a_019	GM10-01a_020	GM10-01a_021	GM10-01a_022	GM10-01a_023

	±2σ² %	33 94.5	46 98.6	46 76.8	46 98.2	46 96.6	54 99.0	39 87.9	34 98.6	43 99.9	47 99.2	49 97.5	49 92.6	51 98.5	47 96.6	36 97.6	49 97.4	45 98.7	43 98.2	39 92.5	75 103.2	47 99.1	37 82.5	39 97.7	46 99.6	38 97.5	48 98.2	41 98.7	39 98.3	41 97.8	39 96.1	51 95.4	35 98.5	26 71.0	47 99.1	43 94.2	48 94.6	34 87.9	9 00 91
	²⁰⁶ Pb/ ²³⁸ U	1773	1983	1659	2766	1827	2674	1670	1589	2484	2644	2373	1810	2667	2696	1726	2626	2438	2410	1718	2734	2636	1520	1981	2473	1945	2419	2415	2022	1962	1852	2074	1922	1277	2722	2262	2362	1540	000
(Ma)	±20 ²	7.5	17	19	9.6	15	13	20	13	9.1	12	18	18	14	20	12	13	12	11	16	30	11	17	12	12	9.5	15	10	11	14	13	20	10	12	12	12	13	13	(
Calculated ages (Ma)	²⁰⁷ Pb/ ²³⁵ U	1876.1	2012	2159	2816.2	1892	2701	1899	1611	2485.9	2665	2433	1954	2708	2790	1769	2695	2470	2453	1857	2650	2660	1843	2028	2483	1995.7	2463	2447	2058	2006	1927	2174	1952	1799	2746	2401	2496	1752	1
Calculat	±2σ ²	28	38	31	26	43	28	59	27	26	29	35	36	25	39	28	. 26	27	27	28	39	24	29	25	27	28	25	56	53	28	28	31	53	25	27	25	26	30	
	$^{207}\mathrm{Pb/}^2$	1990	2043	2692	2844	1981	2723	2170	1642	2488	2689	2493	2111	2741	2857	1821	2747	2494	2484	2015	2578	2679	2235	2077	2491	2041	2501	2470	2092	2047	2008	2278	1982	2464	2762	2516	2601	2018	
	±2\alpha^2	78	84	74	100	350	100	. 46	. 67	93	110	120	220	100	230	71	110	92	92	83	150	66	2/	9/		. 76	68		78	80	78	100	. 76	53	110	68	94	74	1
	$^{208}\mathrm{Pb}/^2$ $^{32}\mathrm{Th}$	2130	2187	1612	2851	1780	2948	854	1755	2648	2831	7666	1090	2925	3540	1932	2765	2623	2601	1963	3070	2804	1852	2106	2625	2114	2580	2552	2170	2160	2137	2407	2044	1302	2823	2550	2673	1895	
	Rho³	0.7893947	0.6076334	0.818797	0.6222731	0.5742916	0.7567916	0.7987113	0.7976565	0.7112136	0.5290366	0.5187581	0.7450757	0.7698247	0.3338071	0.7857454	0.6961262	0.6943735	0.6780024	0.8150302	0.7526742	0.770248	0.7973831	0.7701477	0.6764214	0.7301385	0.7593812	0.669238	0.6573681	0.7544021	0.7864561	0.7897089	0.6460043	0.7594981	0.610723	0.764453	0.8248181	0.730338	
	±2σ ²	0.0068	0.0096	0.0092	0.011	0.0095	0.013	0.0079	0.0067	0.0098	0.011	0.011	0.01	0.012	0.011	0.0073	0.011	0.01	0.0097	0.0079	0.018	0.011	0.0072	0.0081	0.01	0.0078	0.011	0.0093	0.0082	0.0085	0.008	0.011	0.0074	0.0049	0.011	0.0095	0.011	0.0066	
	²⁰⁶ Pb/ ²³⁸ U	0.3166	0.3604	0.2937	0.536	0.3281	0.5144	0.2959	0.2797	0.4702	0.5073	0.4454	0.3246	0.5129	0.5193	0.3072	0.5033	0.46	0.4536	0.3057	0.529	0.5056	0.266	0.3599	0.468	0.3518	0.4558	0.4545	0.3686	0.356	0.3331	0.3799	0.3475	0.2191	0.5249	0.4206	0.443	0.27	
	±20 ²	0.047	0.12	0.16	0.15	0.097	0.2	0.13	0.061	0.11	0.16	0.19	0.13	0.2	0.31	0.069	0.19	0.13	0.12	0.094	0.4	0.15	0.11	0.088	0.13	0.07	0.17	0.11	0.08	0.099	0.085	0.15	0.068	0.067	0.17	0.13	0.15	0.071	
	²⁰⁷ Pb/ ²³⁵ U	5.349	6.27	7.4	15.02	5.456	13.28	5.51	3.894	10.56	12.82	10.02	5.87	13.43	14.65	4.721	13.25	10.38	10.18	5.243	12.66	12.75	5.13	6.38	10.56	6.135	10.34	10.15	6.597	6.214	5.685	7.5	5.846	4.878	13.97	99.6	10.7	4.619	
atios	±2 σ^2	0.0019	0.0027	0.0034	0.0033	0.0029	0.0032	0.0022	0.0015	0.0025	0.0034	0.0036	0.0027	0.0029	0.005	0.0017	0.003	0.0026	0.0026	0.0019	0.004	0.0027	0.0023	0.0019	0.0026	0.002	0.0026	0.0025	0.0022	0.002	0.0019	0.0026	0.002	0.0024	0.0032	0.0025	0.0027	0.0021	
Isotopic ratios	²⁰⁷ Pb/ ²⁰⁶ Pb	0.1225	0.1264	0.1845	0.2024	0.1222	0.1881	0.1356	0.101	0.1634	0.1845	0.1637	0.1313	0.1901	0.2046	0.11149	0.1909	0.164	0.163	0.1242	0.1725	0.1831	0.1408	0.1285	0.1637	0.1259	0.1644	0.1616	0.1298	0.1265	0.1238	0.1445	0.122	0.161	0.1927	0.1661	0.1747	0.1244	
	² ±2σ ²	0.0043		0.004	0.0058	0.02	900.0	0.0024	0.0036	0.0052	0.006	0.0065	0.012	0.0058	0.014	0.0039 0	0.0062	0.0052	0.0052	0.0045	0.0089	0.0056	0.0042	0.0042		0.0041	0.005	0.005	0.0043	0.0044	0.0043	0.0058	0.0042	0.0028	0.0062	0.005	0.0053	0.004	
	²⁰⁸ Pb/ ²³² Th	0.1111	0.1143	0.083	0.1515	0.095	0.1571	0.0432	0.0907	0.14	0.1504	0.1412	0.056	0.1558	0.192	0.1003	0.1467	0.1386	0.1374	0.1021	0.1644	0.1489	960.0	0.1098	0.1387	0.1103	0.1362	0.1346	0.1134	0.1128	0.1115	0.1266	0.1065	9990.0	0.15	0.1345	0.1414	0.0983	1
	±2σ ² 2	0.72	0.29	0.47	0.36	42	0.15	0.7	0.78	0.13	0.21	0.36	1	0.32	0.5	99.0	0.15	0.23	0.26	3	0.32	0.39	0.63	0.5	0.34	0.34	0.27	0.25	0.2	6.0	0.41	0.34	0.46	0.36	0.49	0.37	1	0.5	
	²⁰⁸ Pb/ ²⁰⁶ Pb	11.43	4.399	7.11	5.72	215	2.321	89.6	12.24	2.135	3.267	5.17	10.71	5.118	5.86	10.47	2.362	3.614	3.89	24	4.44	6.133	9.35	7.9	5.36	5.284	4.346	3.15	3.209	14.21	80.9	5.08	7.15	5.739	7.43	5.956	16.23	7.4	
	²⁰⁶ Pb/ ²	0	26000	32000	200000	18000	200000	64200	700000	30000	42000	15000	42000	0009	84000	110000	120000	11000	57000	270000	52000	77000	106000	180000	200000	150000	170000	260000	00009	110000	120000	240000	32000	80600	25000	000009	510000	203000	
ons ¹	U/Th	3.94	1.38	2.08	1.54	29.16	0.70	1.40	3.95	0.62	0.95	1.59	0.78	1.54	2.01	3.40	99.0	1.06	1.12	6.80	1.29	1.75	3.44	2.36	1.54	1.58	1.29	0.81	96.0	4.43	1.97	1.65	2.16	1.72	2.04	1.87	5.09	2.58	
centratic	Th (ppm)	442.2	118.1	247	154	1.9	325.8	365	104.6	268	90.6	24.86	520	192	188.5	176.6	299.4	128	134.8	79.6	27.2	92.1	137	153.1	139.9	196	326	313	214.6	8.66	255	181	9.69	666	34.8	429.7	174.6	241	
ed. Measured concentrations ¹	U (mdd)	1743	163.2	513	237.4	55.4	229.4	510	413	166.4	86.4	39.5	404	295	378	601	199.1	135.4	151.3	541	35.2	161.4	471	361	215.1	310	419	254.4	207	442	503	299.1	150	1720	71	805	889	621	
nued. Meast	Pb (mdd)	422	114	172	202.8	1.15	432.6	132.9	9.08	319	115.6	29.5	100.4	254.7	312	150.7	371	148.5	155.2	6.89	37.1	114.6	110.2	141.7	162.6	180.2	374	353	206	94.7	237.8	190.8	62.3	269	44	492.3	210	197	
TableA2. Continued	Analysis Identifier	GM10-01a_024	GM10-01a_025	GM10-01a_026	GM10-01a_027	GM10-01a_028	GM10-01a_029	GM10-01a_030	GM10-01a_031	GM10-01a_032	GM10-01a_033	GM10-01a_034	GM10-01a_035	GM10-01a_036	GM10-01a_037	GM10-01a_038	GM10-01a_039	GM10-01a_040	GM10-01a_041	GM10-01a_042	GM10-01a_043	GM10-01a_044	GM10-01a_045	GM10-01a_046	$GM10-01a_047$	GM10-01a_048	GM10-01a_049	GM10-01a_050	GM10-01a_051	GM10-01a_052	GM10-01a_053	$GM10-01a_054$	GM10-01a_055	GM10-01a_056	GM10-01a_057	GM10-01a_058	GM10-01a_059	GM10-01a_060	

TableA2. Continued	ned.																								1
	$Measured\ concentrations^1$	d concer.	ıtrations	s ₁						Isotopic ratios	atios								Calc	ulated	Calculated ages (Ma)	1)			
Analysis Identifier (J	Pb U (ppm)		Th U,	U/Th	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁶ Pb	±20 ²	²⁰⁸ Pb/ ²³² Th	±2o ² 2	²⁰⁷ Pb/ ²⁰⁶ Pb	+2\osigma^2	²⁰⁷ Pb/ :	20 ±2σ ² ,	²⁰⁶ Pb/ ²³⁸ U	±2σ² Rì	Rho ³ 3	²⁰⁸ Pb/ ² ±2	$\pm 2\sigma^{2}_{06}$	$^{207}\mathrm{Pb/}^2$ $\pm2\sigma^2$ $^{06}\mathrm{Pb}$	σ^2 $^{207}\mathrm{Pb}/$ σ^2 $^{235}\mathrm{U}$	b/ ±2σ² U	²⁰⁶ Pb/ ²³⁸ U	$^{5/}_{J}$ $^{+2}\sigma^{2}$	con	
GM10-01a_102	26.01	56.8 1	18.74	3.03	38000	9.45	0.63	0.1454	0.0063	0.1804	0.0031	12.33	0.17	0.4937	0.01 0.54	0.5462084	2740	110 2	2653 2	28 20	2628 1	3 25	2586 45	5 98.4	
GM10-01a_103	157.9 2	240.6	104.3	2.31	110000	7.32	0.51	0.167	0.0097	0.2601	0.0049	20.84	0.61	0.58	0.018 0.80	0.8063663	3120	170	3250	32 3	3134 2	27 29	2947 74	1 94.0	
GM10-01a_104	59.5	79.2	9.99	1.40	55000	4.54	0.33	0.1123	0.0047	0.131	0.0022	6.643	0.082	0.3672	0.008 0.64	0.6414089	2150	86	2108	30 20	2065 1	11 20	2015 3	38 97.6	٠,0
		366	270	1.36	54200	5.37	0.39	0.0451		0.1477	0.0029	4	0.15	0.197	0.0088 0.90	0.9002763	890	54	2321	31 10	1634 3	32 11	1157 47	7 70.8	90
	117.8	306	107.4	2.85	000006	7.53	0.58	0.1194	0.0053	0.1231	0.0025	5.93	0.16	0.351	0.012 0.80	0.8045905	2278	95]	1997	35 19	1962 2	24 19	1937 57	7 98.7	_
$GM10-01a_107$		172.9	74.2	2.33	100000	6.74	0.43	0.1155	0.0047	0.1258	0.0021	6.365	0.075	0.3668	0.008 0.65	0.6534558	2209	85 2	2039	30 20	2026 1	10 20	2014 3	38 99.4	#
GM10-01a_108	29.2	107.4 7	74.58	1.44	00089	10.3	29.0	0.0422	0.0022	0.1329	0.0024	5.994	0.08	0.326	0.0071 0.56	0.5613551	836	42 2	2131	32 19	1975 1	11 18	1818 3	34 92.1	_
GM10-01a_109	144.3	176.5	137.4	1.28	800000	3.827	0.24	0.1128	0.0044	0.1257	0.0022	6.357	690.0	0.3664	0.008 0.60	0.6080823	2159	80 2	2034	30 202	2025.2 9.5			38 99.3	~
GM10-01a_110	160.7	215 1	156.2	1.38	300000	4.094	0.26	0.1113	0.0043	0.1251	0.002	6.248	0.071	0.3611	0.0077 0.67	0.6773058	2133	78	2027	29 20	2010 1	10 19	1987 37	7 98.9	_
GM10-01a_111	98.4	170	94.4	1.80	700000	5.41	0.36	0.115	0.0046	0.1243	0.0021	6.264	0.091	0.365	0.0086 0.70	0.7022834	2199	84	2014	30 20	2011 1	13 20	2005 40	7.66 (_
GM10-01a_112	10.62	19.2	10.12	1.90	80000	5.75	0.4	0.1168	0.0058	0.1316	0.0035	6.75	0.16	0.3724	0.0093 0.40	0.4039067	2230	100	2110 4	46 20	2074 2	21 20	2039 4	44 98.3	~
GM10-01a_113	59.5	199	59.4	3.35	000006	10.21	99.0	0.11116	0.0045	0.1264	0.002	6.269	990.0	0.3583	0.0074 0.66	0.6600301	2138	82 2	2046	29 201	2013.1 9.3		1976 3	36 98.2	~ 1
GM10-01a_114	159.8	187 1	116.4	1.61	150000	5.04	0.36	0.1547	0.0059	0.198	0.0031	14.44	0.14	0.5272	0.011 0.7	0.702492	2906	100	2807	25 277	2777.8	9 27	2728 47	7 98.2	6 1
GM10-01a_115	398.8	1659	615	2.70	301000	8.14	0.53	0.0762	0.0038	0.119	0.002	3.892	0.055	0.2386	0.0059 0.75	0.7564809	1483	71	1938	31 16	1611 1	1 13	1379 31	1 85.6	2
GM10-01a_116	212.8	799 2	220.1	3.63	320000	9.91	0.63	0.111	0.0043	0.121	0.0021	5.38	0.1	0.323	0.0089 0.78	0.7844372	2127	78	3961	31 18	1879 1	16 18	1803 4	44 96.0	
GM10-01a_117	75.6	113.5	72.7	1.56	000006	4.868	0.31	0.1193	0.0046	0.1351	0.0023	7.295	0.093	0.3904	0.0085 0.62	0.6245996	2277	83 2	2164	30 2	2147 1	12 21	2124 4	40 98.9	•
GM10-01a_118	643 1	1193	490	2.43	2000000	7.012	0.44	0.151	0.0056	0.1878	0.0028	11.75	0.13	0.4526	0.0094 0.72	0.7212499	2842	66	2721 2	24 2585.2	5.2 9.6		2406 4	42 93.1	_
GM10-01a_119	492	248	324 (0.77	410000	2.465	0.16	0.1729	0.0064	0.222	0.0034	17.93	0.25	0.5851	0.013 0.7	0.731954	3223	110	2995	26 29	2986 1	13 29	2968 5	3 99.4	
GM10-01a_120	258.4	277	189.2	1.46	130000	4.85	0.31	0.1591	0.0059	0.2038	0.0031	15.33	0.2	0.5426	0.012 0.7	0.741586	2984	100	2854	25 28	2836 1	12 27	2792 52	2 98.4	-
GM10-01a_121	37.6	44	40.15	1.10	20000	3.588	0.24	0.1085	0.0049	0.1229	0.0029	6.02	0.11	0.3544	0.0079 0.33	0.3363348	2082	89	7 0661	42 19	1976 1	16 19	1955 3	98.9	•
GM10-01a_122	94.1	312 1	113.8	2.74	240000	8.94	0.57	0.1011	0.0043	0.1266	0.002	5.78	0.068	0.3291	99.0 6900.0	0.6657343	1946	78	2051 2	29 19	1942 1	10 18	1833 3	34 94.6	٠,0
GM10-01a_123	92.5	371	168	2.21	207000	10.42	69.0	0.0681	0.0032	0.1769	0.0028	7.469	0.095	0.3042	0.0068 0.72	0.7226611	1330	61 2	2622	27 2	2168 1	12 17	1712 3	34 79.0	0
GM10-01a_124	79.2 10	101.4	54.4	1.86	100000	99.9	0.43	0.1801	0.007	0.2601	0.004	22.72	0.23	0.633	0.013 0.69	0.6920297	3346	120	3245	24 3.	3215 1	10 31	3160 51	1 98.3	~
GM10-01a_125			131.3	1.18	110000	3.925	0.25	0.0874		0.103	0.0018	4.111		0.2878		0.548394	1693			34 10				30 98.5	
GM10-01a_126		163.2	82	1.88	000006	6.21	0.4	0.1119		0.1257	0.0021	6.378	0.064	0.3666		0.6041612	2144			29 202	2029.6 9.1			36 99.2	~ 1
GM10-01a_127		337.1	150.1	2.25	190000	8.11	0.52	0.1412	0.0057	0.178	0.0028	11.98	0.14	0.4852	0.01 0.65	0.6516384		100		26 20	2602 1	11 25	2549 4	45 98.0	
GM10-01a_128				1.05	150000	3.353	0.21	0.0895	0	0.10352	0.0016	4.038	0.05	0.2822	0.0058 0.6	0.661816				28 10		10 16	•	97.6	٠,
	275.2 20	261.2	222.8	1.17	100000	4.131	0.26	0.1552	9900'0	0.2085	0.0033	15.38	0.19	0.533	0.012 0.73	0.7352489		120	. ,	25 28	2838 1	12 27	-	52 97.0	
GM10-01a_130	363	349	332	1.05	210000	3.415	0.21	0.137		0.166		10.1	0.15	0.4412	0.0098 0.73	0.7383447	2593	93 2		25 2,	2442 1	13 23	2355 4	44 96.4	#
GM10-01a_131	196.4	181.3	183 (66.0	300000	3.378	0.21	0.1353	0.0051	0.1627	0.0024	10.221	0.097	0.4545	0.0092 0.73	0.7345321	2565	90	2481 2	25 2,	2454 8.8		2414 41	1 98.4	
GM10-01a_132		368 1	164.8	2.23	350000	7.56	0.63	0.11111	0.0042	0.1282	0.002	6.336		0.3572	0.0078 0.7	0.706767	2129	76 2	2070	27 20	2024 1	11 19	1968 37	7 97.2	~ 1
GM10-01a_133	143.8	354 1	163.6	2.16	290000	7.02	0.44	0.1117	0.0042	0.124	0.0019	6.081	0.087	0.3548	0.008 0.74	0.7413643	2141	75 2	2011 2	28 19	1992 1	11 19	1960 3	7 98.4	
GM10-01a_134	146.3	339 1	113.2	2.99	350000	10.94	69.0	0.1618	0.0061	0.2125	0.0032	16.55	0.18	0.5613	0.012 0.74	0.7495719	3031	110 2		24 29	2908 1	10 28	2871 5	50 98.7	_
GM10-01a_135	154	350 1	174.5	2.01	700000	6.74	0.43	0.112		0.1286	0.002	6.52	0.078	0.3672	99.0 9200.0	0.6656247	2145	76		27 20	2047 1	1 20	2016 3	36 98.5	10
GM10-01a_136	180.5 2	215.3 2	208.8	1.03	320000	3.316	0.22	0.1112	0.0044	0.1248	0.0022	980.9	0.099	0.3533	0.0079 0.62	0.6238763	2130	80	2027	34 19	1987 1	14 19	1950 3	38 98.1	_
GM10-01a_137	44.7	74.4	50.3	1.48	200000	4.918	0.32	0.1125	0.0044	0.131	0.0023	6.574	0.093	0.363	0.0078 0.58	0.5816015	2153	80	2107	31 20	2054 1	12 19	1996 37	7 97.2	~ 1
GM10-01a_138	234	218	198	1.10	140000	3.965	0.26	0.1509	0.0057	0.1907	0.0028	13.56	0.13	0.5141	0.011 0.81	0.8144673	2840	001	2747	24 271	2718.3 9.2		2673 4	46 98.3	~
GM10-01a_139		296	321	1.86	4000000	6.336	0.4	0.1335		0.1635	0.0024	10.16	0.14	0.4491		0.7577553	2533	88				13 23	2390 4	44 97.6	٠,
GM10-01a_140	200.6	528 1	188.1	2.81	4000000	9.91	0.65	0.1353	0.0051	0.1644	0.0024	10.66	0.12	0.4687	0.0097 0.73	0.7338032	2564	91 2	2500	24 2,	2493 1	11 24	2477 4	43 99.4	

Table A2. Continued	ned.																							
	Meast	red con	Measured concentrations ¹	ns						Isotopic ratios	atios								Calc	ulated a	Calculated ages (Ma)	<u>-</u>		
Analysis Identifier (F	Pb (mdd)	U (mdd)	Th (ppm)	U/Th	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁶ Pb	±2σ²	²⁰⁸ Pb/ ²³² Th	±2 σ^2	²⁰⁷ Pb/ ²⁰⁶ Pb	±2♂²	²⁰⁷ Pb/ ²³⁵ U	2α ±2σ²	²⁰⁶ Pb/ ²³⁸ U	±2σ² Ε	Rho ³ 3	²⁰⁸ Pb/ ² ³² Th ±2	$\pm 2\sigma^2$ 207 F	$^{207}{ m Pb}/^2$ $\pm 2\sigma^2$ $^{06}{ m Pb}$	3 ² 235U	b/ ±2σ² J	² ²⁰⁶ Pb/ ²³⁸ U	ο' ±2σ²	% oo
GM10-01a_141	60.3	493	75	6.57	870000	19.93	1.3	0.1031	0.0042	0.1327	0.002	5.509	0.078	0.3	0.0068 0.7	0.7588777	1982	78 2	2132	27 19	1900 1	12 1691	91 34	89.0
GM10-01a_142	192	829	217	3.12	2300000	10.36	0.7	0.1103	0.0044	0.1397	0.0026	92.9	0.17	0.3472	0.011 0.8	0.8094187	2114	81 2	2222	32 20	2078 2	3 19	1920 53	92.4
GM10-01a_143	87.1	550	181.5	3.03	000089	21.87	1.5	0.0625	0.0042	0.2507	0.0051	15.19	0.28	0.4412	0.011 0.5	0.5957095	1223	80 3	3186	31 28	2826 1	17 23	2355 51	83.3
GM10-01a_144	335	807	269.9	2.99	1500000	9.62	9.0	0.1573	0.0064	0.1992	0.0029	13.87	0.17	0.503	0.011 0.7	0.7769922	2951 1	110 2	2818	24 27	2739 1	12 26	2625 48	92.8
GM10-01a_145	159.9	198.4	146	1.36	610000	4.574	0.29	0.1384	0.0054	0.1617	0.0027	10.17	0.13	0.4544	0.01	0.65568	2618	95 2	2469	29 24	2449 1	12 2417	17 46	98.7
GM10-01a_146	58.5	204.3	299	3.06	500000	10.15	0.65	0.1107	0.0044	0.1235	0.0019	6.209	0.065	0.3632	0.0078 0.7	0.7430639	2121	80 2	2004	28 2004.7	4.7 9.2		1996 37	9.66
GM10-01a_148	3.85	83.5	4.22	19.79	270000	67.6	9	0.1144	0.0088	0.1256	0.0021	6.208	0.086	0.3576	0.0078 0.6	0.6422409	2180 1	160 2	2033	29 20	2006 1	12 19	1970 37	98.2
GM10-01a_149	725	794	879	0.90	1000000	2.894	0.18	0.1044	0.0039	0.12254	0.0018	5.679	0.081	0.3346	0.0076 0.7	0.7772054	2007	71 1	1993	27 19	1926 1	13 18	1860 37	9.76
GM10-01a_150	43.3	31.1	37.2	0.84	500000	2.888	0.2	0.1469	900.0	0.1872	0.0037	13.22	0.18	0.5115	0.012 0.5	0.5402197	2769 1	110 2	2712	33 26	2693 1	13 26	2661 50	98.8
GM10-01a_152	232	398	285	1.40	0000009	4.768	0.3	0.1018	0.0045	0.1245	0.0019	6.023	0.07	0.3497	0.0074 0.	0.711491	1958	83 2	2019	27 19	1978 1	10 19	1933 36	97.7
GM10-01a_153	243	478	272	1.76	8000000	5.571	0.35	0.1121	0.0042	0.1262	0.0019	6.177	0.084	0.3534	0.0078 0.7	0.7419834	2146	77 2	2045	28 19	1999	12 19	1950 37	97.5
GM10-01a_155	326	463	236	1.96	2000000	6.92	0.46	0.1752	0.0068	0.2472	0.0036	20.3	0.23	0.5945	0.013 0.7	0.7960604	3262 1	120 3	3165	23 31	3104 1	11 30	3006 51	8.96
GM10-01a_156	158	370	182.1	2.03	0000006	6.65	0.43	0.1091	0.0042	0.1245	0.002	6:029	990.0	0.3525	0.0073 0.6	0.6415957	2092	76 2	2022	27 1983.3	3.3 9.5		1946 35	98.1
GM10-01a_157	94.1	142.2	102.6	1.39	240000	4.557	0.29	0.1156	0.0044	0.1303	0.0022	6.734	0.082	0.3727	0.0077 0.5	0.5764501	2211	80 2	2098	29 20	2077 1	10 20	2042 37	98.3
GM10-01a_158	144.9	456	162.2	2.81	3000000	8.81	0.56	0.1121	0.0045	0.12414	0.0018	6.088	0.084	0.3551	0.0079 0.7	0.7738351	2147	81 2	2016	25 19	1987 1	12 19	1958 38	98.5
GM10-01a_159	118.4	184.8	139.6	1.32	70000	4.58	0.32	0.108	0.0042	0.1228	0.002	6.002	0.069	0.3541	0.0075 0.6	0.6478984	2072	76 1	1994	29 1976.5	6.5 9.6		1953 35	98.8
GM10-01a_160	828	785	821	96.0	8100000	3.117	0.2	0.1319	0.005	0.1644	0.0025	69.63	0.14	0.4235	0.01 0.7	0.7831299	2503	88 2	2499	26 23	2398 1	13 22	2275 46	94.9
GM10-01a_161	312	327	287	1.14	2100000	3.87	0.25	0.1363	0.005	0.1633	0.0025	10.34	0.12	0.4574	0.0096 0.	0.699609	2581	89 2	2488	25 2467.7	7.7 9.9	9 2427	27 43	98.4
GM10-01a_162	183.1	325.1	168.2	1.93	100000000	6.684	0.42	0.1356	0.0051	0.1666	0.0025	10.58	0.11	0.4595	0.0097 0.7	0.7484651	2569	91 2	2521	25 2486.1	6.1 9.7		2436 43	98.0
GM10-01a_163	723	2140	633	3.38	100000000	10.25	0.65	0.1433	0.0054	0.1675	0.0025	9.85	0.095	0.4262	0.0091 0.7	0.7918753	2705	95 2	2531	25 2419.9		9 22	2288 41	94.5
GM10-01a_164	969	933	999	1.65	270000000	4.79	0.31	0.1548	0.0065	0.1889	0.0034	11.83	0.25	0.4576	0.012 0.7	0.7310953		110 2	2734	31 25	2593 21	1 2427	27 54	
GM10-01a_165	79.5	299	67.5	4.43	30000000	14.18	0.92	0.1462	9000	0.1816	0.0028	11.69	0.14	0.4661	0.01 0.7	0.7122171	2757 1	100	7997	26 25	2580 11		2465 44	95.5
GM10-01a_166	178	174	202	98.0	4100000	3.15	0.22	0.1139	0.0044	0.1256	0.0019	6.511	0.063	0.3747	0.0077 0.7	0.7218908	2179	81 2	2037	26 2046.5	6.5 8.5		2051 36	_
GM10-01a_167	099	928	563	1.65	30000000	5.55	0.36	0.1446	0.0053	0.1794	0.0025	11.89		0.4789	0.011 0.8	0.8322438	2730	94 2		23 25	2594 1	13 2521	21 47	
GM10-01a_168	25.98	37.9	19.45	1.95	800000	66.9	0.48	0.1637	0.0077	0.2215	0.0045	17.86	0.41	0.583		0.6884226	3059 1	130 2		32 25	2976 2	22 29	2958 65	99.4
	129.2	259.5	129.8	2.00	8000000	98.9	0.46	0.1228	0.0049	0.135	0.002	7.643		0.4098		0.7786672	2340	89 2		26 2189.1	9.1 8.5		2213 39	
GM10-01a_170	6.99	135.1	70	1.93	1200000	6.63	0.43	0.1175	0.0047	0.1328	0.0021	7.326		0.3976		0.7061691	2245						57 40	_
GM10-01a_171	159	243.1	186	1.31	3000000	4.572	0.29	0.1045	0.0039	0.1239	0.0019	6.235		0.3636	0.0073 0.6	0.6682077	5005	71 2		28 2008.5			1999 34	99.5
GM10-01a_172	75.7	112.6	61.4	1.83	370000	6.57	0.43	0.1493	0.0059	0.1924	0.0029	14.18	0.13	0.5335	0.011 0.7	0.7458854	2811 1	100		24 2762.4	2.4 8.7		2756 45	
	113.2	463.5	151.2	3.07	1300000	10.05	0.64	0.0902		0.10566	0.0015	4.339	0.044	0.2964	0.0063 0.8	0.8190384	1746	65 1		26 17	1700 8.4		1673 31	98.4
GM10-01a_174	64	51.9	51	1.02	200000	3.33	0.23	0.1536	0.0074	0.2141	0.0051	15.55	0.43	0.528	0.019 0.7	0.7497692	2886 1	130 2	2933	38 28	2846 27		2729 80	95.9
	252.3	249.3	224.2	1.11	7000000	3.845	0.24	0.1346	0.005	0.1627		10.652	0.094	0.4731	0.0096 0.7	0.7595847	2552	88 2		25 2492.4	2.4 8.3		2496 42	
GM10-01a_176	260	284	194.1	1.46	30000	5.329	0.34	0.1605	0.0059	0.2159	0.0031	17.65	0.13	0.5904	0.012 0.8	0.8723781	3008	100		23 2970.2	0.2 6.9		2990 47	100.7
GM10-01a_177	51.8	87.4	55.7	1.57	000009	5.26	0.34	0.1114	0.0045	0.1271	0.0022	209.9	0.093	0.3764	0.0081	0.59691	2133	82 2		31 20	2060 1	13 20	2059 38	100.0
GM10-01a_178	281.8	751	588	1.28	468000	5.4	0.35	0.0567	0.0026	0.1394	0.0023	4.725	0.076	0.2452	0.0063 0.7	0.7823446	1114	49 2	2217 2	29 17	1770 1	14 14	1413 32	79.8
GM10-01a_179	545	618	479	1.29	20000	4.54	0.36	0.1384	0.0059	0.1871	0.0031	13.14	0.28	0.509	0.015 0.8	0.8344446	2619	110 2	2715 2	28 26	2688 2	20 26	2652 65	98.7
GM10-01a_180	69.3	167.5	78.6	2.13	200000	7.18	0.46	0.1051	0.0042	0.1221	0.0019	6.062		0.3587	0.0072 0.6	0.6486113	2019	77 1		27 1983.8	3.8 8.7		1976 34	9.66
GM10-01a_181	72.6	141.9	76.2	1.86	200000	6.19	0.4	0.1135	0.0048	0.1325	0.0023	7.06	0.089	0.3861		0.6166278	2173	86 2			2118 11		2104 39	99.3
GM10-01a_182	856	1140	1061	1.07	1800000	3.78	0.24	0.0976	0.0044	0.1815	0.0031	9.22	0.33	0.368	0.013 0.8	0.8847241	1881	81 2	2664	28 23	2353 3	35 20	2016 63	83.7

ed.
ıtinu
Con
A2.
able
-

I able AZ. Continued	ınuea.																								
	Meası	Measured concentrations ¹	centratio	ns ₁						Isotopic ratios	c ratios								Cal	culated	Calculated ages (Ma)	la)			
Analysis Identifier	Pb (mdd)	n (mdd)	Th (mdd)	U/Th	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁶ Pb	±2σ ²	²⁰⁸ Pb/ ²³² Th	±2\alpha^2	²⁰⁷ Pb/ ²⁰⁶ Pb	±2 σ^2	²⁰⁷ Pb/ ²³⁵ U	±2σ²	²⁰⁶ Pb/ ²³⁸ U	±2σ ²	Rho ³	²⁰⁸ Pb/ ²	²⁰ ±2σ ² (²⁰⁷ pb/ ² ⁰⁶ pb ±.	$\pm 2\sigma^2$	²⁰⁷ Pb/ ²³⁵ U ±2	$\pm 2\sigma^2$ $^{206}\mathrm{Pb}/$	b/ ±2σ² υ	con	
GM10-01a_183	286	326	216	1.51	8000000	5.328	0.34	0.1554	0.0058	0.2088	0.0031	16.34	0.15	0.5653	0.011	0.6787407	2919	100	2894	24 28	2896.2	9.1 28	2888 4	46 99.7	
GM10-01a_184	60.2	147.2	65.5	2.25	700000	7.58	0.49	0.107	0.0042	0.1273	0.0022	6.469	0.071	0.3667	0.0075	0.5348087	2055	92	2056	30 20	2040.5	9.6	2013 3	35 98.7	7
GM10-01a_185	246.7	322.3	266.7	1.21	670000	3.997	0.26	0.1084	0.0043	0.1232	0.002	6.346	0.086	0.3735	0.0084	0.6987253	2080	79	2001	56	2024	12 20	2045 3	39 101.0	_
$GM10-01a_186$	70.8	133.3	56.7	2.35	260000	8.13	0.57	0.1503	0.0076	0.1922	0.0037	14.47	0.29	0.5457	0.014	0.6702629	2829	130	2759	32	2779	19 28	2806 5	57 101.0	_
GM10-01a_187	179	1402	232	6.04	1800000	17.99	1.2	0.0916	0.0064	0.1209	0.0024	4.96	0.16	0.2969	0.011	0.8447432	1770	120	1968	35	1811	27 16	1675 5	53 92.5	,,
$GM10-01a_188$	204	227	209	1.09	700000	3.693	0.24	0.1132	0.0042	0.1285	0.002	906.9	0.067	0.3879	0.0078	0.6566932	2167	9/	2074	27 20	3098.6	8.6 21	2113 3	36 100.7	
GM10-01a_189	172.1	214	179	1.20	200000	4.05	0.29	0.1115	0.0042	0.132	0.002	7.033	0.068	0.3842	0.0078	0.7032426	2136	9/	2122	26 21	2114.7 8	8.5 20	2095 3	37 99.1	
$GM10-01a_190$	49.7	88.9	51.49	1.73	000009	5.93	0.4	0.1114	0.0045	0.1264	0.0022	6.79	0.1	0.3876	0.0088	0.6421416	2135	82	2044	32	2083	13 21	2111 4	41 101.3	- م
GM10-01a_191	50.9	78.7	55.5	1.42	000009	4.818	0.31	0.1065	0.0043	0.1246	0.0023	6.431	9200	0.3724	0.0079	0.4965025	2044	78	2018	32	2035	10 20	2040 3	37 100.2	٤.
GM10-01a_192	141.3	84.6	111.8	92.0	100000	2.599	0.16	0.1448	0.0055	0.185	0.0029	13.12	0.16	0.5114	0.011	0.6969874	2732	26	2697	27	2687	12 26	2662 4	46 99.1	
GM10-01a_193	94	66	9.99	1.49	1000000	5.39	0.47	0.1667	0.0076	0.1715	0.0029	12.02	0.18	0.5073	0.011	0.6290031	3112	130	2569	78	2606	14 26	2644 4	47 101.5	10
GM10-01a_194	93.6	334.1	101.3	3.30	110000	11.09	0.7	0.1055	0.004	0.12163	0.0018	6.133	0.054	0.3641	0.0073	0.7378134	2028	74	1978	26 15	1994.2	7.7 20	2001 3	34 100.3	ء ــ
GM10-01a_196	269.6	236.4	287.8	0.82	200000	2.729	0.17	0.1068	0.0039	0.1227	0.0019	6.212	0.061	0.3645	0.0072	0.6362553	2051	72	1996	28 20	2005.3	8.5 20	2003 3	34 99.9	_
GM10-01a_197	138.3	225	263	98.0	160000	3.167	0.21	0.0614	0.0033	0.1464	0.0048	4.87	0.15	0.243	0.012	0.7601317	1204	62	2296	57	1795	26 14	1400 6	60 78.0	_
GM10-01a_198	207.7	366	227	1.61	1000000	5.34	0.34	0.1051	0.0041	0.1232	0.002	6.125	0.065	0.3595	0.0077	0.677173	2020	75	2004	31	1993	9.3 19	1979 3	37 99.3	~
GM10-01a_199	208.4	170	158.4	1.07	110000	3.87	0.33	0.1501	0.0056	0.1895	0.003	14.86	0.24	0.5662	0.014	0.7782812	2826	86	2735	76	2806	15 28	2889 5	56 103.0	_
GM10-01a_200	167.8	174	140.6	1.24	270000	4.166	0.26	0.1373	0.0052	0.1638	0.0025	10.706	0.088	0.4722	0.0096	0.7418581	2600	92	2492	26 24	2497.2	7.7 24	2493 4	42 99.8	~
GM10-01a_201	184.2	606	187.2	4.86	400000	14.76	0.97	0.1122	0.0042	0.12579	0.0018	680.9	0.075	0.3492	0.0074	0.7586085	2150	75	2038	25	1987	11 15	1930 3	35 97.1	_
GM10-01a_202	254	264.9	174.2	1.52	800000	5.342	0.34	0.1677	0.0063	0.2232	0.0033	18.28	0.15	0.5911	0.012	0.7830088	3133	110	3002	23 30	3005.1	7.7 29	2993 4	48 99.6	١,٠
GM10-01a_203	135.6	206	113.9	1.81	180000	6.2	0.39	0.1375	0.0053	0.1674	0.0025	11.22	0.11	0.4849	0.0099	0.724213	2603	94	2529	26 25	2540.9	9.2 25	2548 4	43 100.3	
GM10-01a_204	198	634	272	2.33	930000	10.16	0.7	0.0846	0.0034	0.1266	0.0019	6.266	0.068	0.3573	0.0072	0.6827228	1640	63	2049	27 20	2012.6	9.5 19	3 6961	34 97.8	~
GM10-01a_206	72.9	153	57.7	2.65	120000	9.38	0.63	0.1485	0.0062	0.1877	0.0034	13.86	0.23	0.5349	0.012	0.6051167	2797	110	2718	31	2738	16 27	2767 4	49 101.1	
GM10-01a_207	217	355	238	1.49	640000	5.006	0.32	0.1073	0.0041	0.1298	0.0022	6.701	0.086	0.3745	0.0084	0.6609666	2060	74	2093	30	2072	11 20	2050 3	39 98.9	_
GM10-01a_209	145.6	40.5	113.9	0.36	16000	1.269	0.081	0.1489	0.0057	0.1893	0.0033	13.74	0.16	0.5253	0.011	0.5540467	2804	100	2735	30	2734	12 27	2721 47	7 99.5	10
Primary reference material5	ce materia	d5																							
91500 (n=34)	16.09	96.51	34.36	2.81	125919	125919 9.4114	0.722	0.05423	0.0031	0.07484	0.00222 1.8572	1.8572	0.0465	0.17965	0.00424	0.255882	1068.9	12.6	12.6 1056.9 10.7		1063.9	3.2 1065.4	5.4 5.0	0	
Secondary reference material(s)5	ance mate	rial(s)5																							
FC1 (n=15)	176.27	417.65	280.48	1.49	490475	490475 4.9564	0.332	0.03976	0.00156	0.06701	0.00134 1.2713	1.2713	0.0192	0.12838	0.00276	0.4430287	1099.8	10.3	1108.9	6.7 10	1094.1	2.1 1082.5	2.5 5.4	4	
R33 (n=13)	34.90	265.25	191.02	1.39	75280	75280 4.8899	0.35	0.02132	0.00093	0.05586	0.00143	0.5185	0.0112	0.06735	0.00146	0.302341	426.5	5.1	426.5 1	12.3 4	423.2	2.0 42	421.4 2.4	₩.	

U-Th-Pb concentrations referenced to either NIST 612 glass or 91500 zircon; concentration uncertainty approximately ± 20%

Average reproducibility of individual U-Pb dates from primary reference material is better than 0.7% (reduced separately as unknowns) and average accuracy of secondary reference material is 1.5% or better.

² Isotope ratios not corrected for common Pb.

³ Dates calculated with decay constants of Jaffey et al. (1971) and ²³⁸U/²³⁵U = 137.818 (Hiess et al. 2012) using Jolite v. 3.5 (Paton et al. 2011) and U-Pb Geochron 4 DRS (Paton et al. 2010).

Preferred dates used in plots are 206/238 dates less than 700Ma and 207/206 dates greater than 700 Ma.

 $^{^4}$ Discordance calculated as (1-($^{206}\mathrm{Pb}/^{238}\mathrm{U}$ age / $^{207}\mathrm{Pb}/^{235}\mathrm{U}$ age))*100.

⁵ Concentration data are means of all anlayses; dates and isotope ratios are weighted means of all analyses <2% discordant

Table A3. U-Pb geochronologic data for samples BL15-01, NB16-356, and NB16-358 run at the University of New Brunswick (analyst Deanne van Rooyen).

											ľ									l.,		I
			Measure	ured cc	d concentrations	tions					I	Isotopic ratios	ratios				Calc	Calculated ages (Ma)	ges (Ma		Ī	
Sample	⁹⁰ Zr (cps)	U (ppm)	Th (ppm)	Th/U	²⁰⁴ pb (cps)	±2σ	% error	$^{206}{\rm pb/}_{204}{\rm pb}^{3}_{204}{\rm pb}^{3}_{204}$	C_{4}	²⁰⁷ Pb/ ±2σ ²³⁵ U	, 206Pb/ , 238U	+2σ	θ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	²⁰⁷ Pb/ ²³⁵ U	2 ±2σ	²⁰⁶ Pb/ ±	±2σ	con
NB16-356A and NB16-356B Long Pond Bay Formation (UTM	B16-356B Lo	ng Pond	l Bay Fo	rmatic	ın (UT!	- 1	4199E,	674199E, 4947299N; Grid Zone 19T)	rid Za	one 19T)												
NB16-356B-01	174100000	4.9	0.8	6.4	4 20	14	70	1416 97.69	1	1.843 0.088	8 0.152	2 0.003	3 0.070	0.0889	0.0040	1376	82	1056	31	911	17	64.1
NB16-356B-02	174000000	8.9	2.7	3.3	3 470	42	6	140 87.29	3	1.720 0.250	0 0.163	3 0.004	4 0.686	0.0754	0.0085	1160	190	993	66	971	24	9.08
NB16-356B-03	106900000	6.2	7.1	0.0	9 58	18	31	267 92.97	, 1	1.547 0.072	2 0.097	7 0.002	2 0.436	0.1132	0.0045	1849	89	951	31	298	12	67.9
NB16-356B-04	168300000	5.0	3.9	1	3 122	26	21	159 88.69	2	0.820 0.340	0.096	6 0.004	4 0.874	0.0550	0.0230	1480	320	540	180	290	25 1	109.3
NB16-356B-05	175500000	1.8	1.3	1.4	1 2	12	009	3288 97.37	, 1	1.010 0.062	2 0.092	2 0.002	2 0.017	0.0796	0.0047	1150	120	701	32	292	17	9.08
NB16-356B-06	178700000	14.5	3.1	4.6	5 3	11	367	45233 98.17	, 1	3.375 0.084	4 0.238	8 0.004	4 0.699	0.1033	0.0013	1682	23	1497	20	1376	21	9.62
NB16-356B-08	188200000	16.5	0.9	19.4	4 11	17	155	7827 99.52	, 1	1.234 0.037	7 0.130	0 0.003	3 0.500	0.0699	0.0015	919	45	816	17	788	14	83.8
NB16-356B-09	165100000	11.8	0.2	72.6	5 71	28	39	603 96.91	1	1.239 0.060	0 0.105	5 0.003	3 0.281	0.0875	0.0036	1360	80	816	27	643	15	78.8
NB16-356B-10	152500000	15.1	1.0	15.0) 2550	110	4	40 55.47	, 3	1.610 0.250	0 0.122	2 0.004	4 0.644	0.0940	0.0100	1460	200	946	100	739	21	78.1
NB16-356B-11	169100000	8.0	3.5	2.3	3 73	23	32	409 96.10	1	1.300 0.150	0 0.102	2 0.002	2 0.450	0.0922	0.0095	1370	190	824	62	979	Ξ	75.9
NB16-356B-13	173700000	12.1	0.4	34.1	1 371	42	Ξ	143 87.20	3	0.890 0.130	0 0.102	2 0.002	2 0.503	0.0633	0.0085	920	200	644	29	628	12	5.76
NB16-356B-14	150500000	10.4	0.8	13.1	1 1546	80	5	38 53.98	3	1.060 0.470	0 0.101	1 0.004	4 0.756	0.0700	0.0210	1860	190	099	260	621	22	94.1
NB16-356B-15	120000000	4.6	1.6	2.9	9 232	31	13	103 79.09	3	2.140 0.570	0 0.151	1 0.007	7 0.863	0.0990	0.0230	1820	240	1240	120	906	39	42.8
NB16-356B-16	120700000	2.9	2.9	1.0) 629	73	12	28 56.70	3	0.800 1.400	0 0.111	1 0.012	2 0.858	-0.0200	0.1200	2470	540	1060	360	229	89	63.9
NB16-356B-17	185800000	1.6	0.7	2.4	4 605	89	Ξ	39 65.10	3	4.000 1.400	0 0.253	3 0.013	3 0.849	0.1080	0.0330	2080	330	1640	250	1454	9	59.2
NB16-356B-18	191500000	10.7	9.0	1.2	2 214	33	15	231 91.65	3	1.000 0.170	0 0.106	6 0.003	3 0.751	0.0690	0.0100	1150	190	674	92	648	15	96.1
NB16-356B-19	182800000	7.0	0.1	96.8	3 14	17	121	2093 99.17	, 1	1.004 0.036	6 0.108	8 0.002	2 0.178	0.0686	0.0021	873	63	705	18	629	Ξ	93.5
NB16-356B-20	192700000	8.3	2.0	4.1	1 59	24	41	710 97.45	1 1	1.520 0.110	0 0.128	8 0.004	4 0.895	0.0873	0.0036	1354	79	933	42	9//	23	54.4
NB16-356B-21	162500000	11.6	1.5	7.7	7 74	14	19	874 97.02	1	1.918 0.054	4 0.150	0 0.003	3 0.092	0.0926	0.0019	1470	39	1085	19	868	15	58.9
NB16-356B-22	171400000	20.6	0.0	23.4	4 399	35	6	257 92.74	1 3	1.085 0.072	2 0.119		2 0.585	0.0653	0.0036	834	86	736	37	725	13	98.5
NB16-356B-23	193700000	12.2	0.2	49.7	7 50	27	54	2484 98.29	1	3.660 0.093	3 0.252	2 0.006	6 0.436	0.1077	0.0019	1759	31	1562	20	1450	28	78.7
NB16-356B-24	174600000	2.5	2.2	1.1	1 333	30	6	48 65.10	3	0.990 0.740	0 0.117	7 0.006	6 0.841	0.0570	0.0360	1950	360	089	370	711	36 1	104.6
NB16-356B-25	183900000	7.1	0.0	150.4	11	14	127	2782 99.66	1	0.939 0.036	6 0.109	9 0.002	2 0.361	0.0631	0.0020	269	89	671	19	899	13	99.5
NB16-356B-26	164200000	1.3	0.7	1.8	3 -3	10	-333	4310 99.09	1	0.829 0.051	1 0.093	3 0.002	2 0.015	0.0642	0.0039	089	130	902	28	573	13	94.7
NB16-356B-27	167600000	2.5	2.1	1.2	6 7	10	111	943 98.40	1	0.879 0.039	9 0.091	1 0.002	2 0.069	0.0706	0.0029	006	90	637	21	559	10	87.7
NB16-356B-28	168000000	11.8	0.3	34.2	2 32	11	34	1416 98.70	1	0.988 0.026	6 0.102	2 0.002		0.0704	0.0013	928	39	269	13	623	10	89.5
NB16-356B-29	147500000	10.0	11.1	0.0	9 1843	97	5	70 78.18	3	5.770 0.520	0 0.316	800.0 9	8 0.567	0.1328	0.0075	2122	95	1917	83	1774	35	81.5
NB16-356B-30	157000000	2.7	2.1	1.	3 136	18	13	81 78.99	3	0.680 0.510	960'0 0	6 0.005	5 0.889	0.0340	0.0350	1920	300	009	270	289	53	98.2
NB16-356B-31	167000000	5.4	5.4	1.0	311	29	6	87 79.29	3	0.970 0.360	0 0.108	8 0.004	4 0.775	0.0620	0.0210	1380	280	089	170	662	70	97.4
NB16-356B-32	156900000	12.8	0.1	112.2	98 7	16	19	584 96.85	1	1.315 0.042	2 0.110	0 0.002	2 0.029	0.0868	0.0026	1331	29	850	18	029	10	78.9
NB16-356B-33	175900000	5.8	4.7	1.2	0 2	12	n.d.	23310 99.56	1	0.910 0.033	3 0.106	6 0.002	2 0.109	0.0629	0.0020	682	71	959	17	647	10	28.7
NB16-356B-34	161000000	4.2	1.2	3.4	1	11	1100	25750 99.54	1	1.731 0.051	1 0.170	0 0.003	3 0.227	0.0738	0.0017	1021	47	1018	19	1010	16	8.66
NB16-356B-35	175000000	13.0	0.0	13.8	8 1233	57	5	79 77.63	3	1.870 0.340	0 0.160	0 0.005	5 0.630	9980.0	0.0081	1360	170	1053	120	926	30	66.4
NB16-356B-36	168400000	14.9	5.1	2.9	9 504	41	8	274 92.24	1 3	3.420 0.170	0 0.236	900.0 9	6 0.629	0.1053	0.0028	1705	51	1503	40	1365	30	78.4
NB16-356B-37	163300000	13.4	0.5	28.2	2 -7	6	-126	58620 98.84	1 1	1.196 0.038	8 0.119	9 0.002	2 0.643	0.0722	0.0014	086	40	962	18	727	12	91.4
NB16-356B-38	162200000	1.7	1.2	1.5	4 9	10	111	666 99.53	1	0.841 0.054	4 0.099	9 0.002	2 0.181	0.0619	0.0038	290	130	612	30	809	12	99.3
NB16-356B-39	143700000	8.9	0.1	53.2	2 -3	15	-500	25060 99.12	1	0.975 0.044	4 0.106	6 0.002	2 0.380	0.0654	0.0026	762	87	689	23	648	Ξ	94.0
NB16-356B-40	139900000	10.9	1.0	11.1	1 73	15	21	573 96.93	1	1.372 0.051	1 0.114	4 0.002	2 0.375	0.0856	0.0026	1316	59	875	22	869	Ξ	7.67

귝
ĕ
=
=
Ξ
Ē
3
$\overline{}$
ĸ.
₹
7
=
-
굔

			Meas	ured co	Measured concentrations	ations					Iso	Isotopic ratios	tios				Calcı	Calculated ages (Ma)	ges (Ma			1
Sample	⁹⁰ Zr (cps)	U (mdd)	Th (ppm)	Th/U	²⁰⁴ Pb (cps)	±2σ	% error	²⁰⁶ pb/ %pb ³	o3 C4	²⁰⁷ Pb/ ±2σ ²³⁵ U	²⁰⁶ Pb/ ²³⁸ U	±2σ	٩	²⁰⁷ Pb/ ²⁰⁶ Pb	±2α	²⁰⁷ Pb/ ²⁰⁶ Pb	±2α	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ _±	±2σ	%
NB16-356B-41	178800000	2.4	1.1	0 2.5	5 26	17	65	763 98.55	55 1	2.840 0.130	0.217	900.0	0.594 (0.0961	0.0032	1538	19	1360	33	1267	29	80.0
NB16-356B-42	108600000	3.2	3.0	0 1.1	1 150	27	18	66 74.70	70 3	0.310 0.540	0.089	0.005	0.892	0.0150	0.0400	1650	410	390	320	546	31 1	140.0
NB16-356B-43	160600000	10.2	0.0	6 16.9	9 6	6	155	7521 99.32	12 1	1.064 0.027	0.114	0.002	0.370	0.0674	0.0012	853	36	735	13	694	=	94.4
NB16-356B-44	183500000	4.2	3.3	3 1	3 69	24	35	240 93.45	5 1	1.595 0.076	0.103	0.002	0.144 (0.1152	0.0050	1865	81	965	30	679	14	65.2
NB16-356B-45	158000000	14.2	1.9	9 7.4	4 970	130	13	69 76.00	00 3	0.930 0.160	0.104	0.002	0.712 (6.0679	0.0095	1220	170	658	78	637	11	8.96
NB16-356B-46	163200000	7.3	0.7	7 10.2	2 281	26	6	135 87.36	9	1.160 0.240	0.129	0.004	0.403 (0.0636	0.0084	1120	150	743	120	782	25	57.7
NB16-356B-47	127300000	8.5	8.9	,1.	0 245	26	11	110 83.80	30 3	0.750 0.160	0.094	0.002	0.767	0.0590	0.0110	1350	150	543	93	577	13 10	106.2
NB16-356B-48	172600000	5.6	2.5	5 2.2	2 4	12	300	6028 99.78	78 1	0.969 0.030	0.114	0.002	0.296	0.0622	0.0015	299	52	289	15	695	12 10	101.1
NB16-356B-49	180300000	28.5	9.2	2 3.1	1 92	24	26	1276 98.54	4 1	1.057 0.034	0.105	0.002	0.335	0.0736	0.0016	1021	45	731	17	645	6	88.2
NB16-356B-50	194700000	23.5	0.2	2 125.2	2 21	28	133	4843 99.47	:7 1	0.945 0.035	0.107	0.002	0.100	0.0661	0.0023	799	73	675	18	652	12	9.96
NB16-356B-51	132900000	10.0	3.3	3 3.1	1 77	32	42	761 97.50	0 1	2.984 0.100	0.212	0.005	0.133 (0.1050	0.0035	1708	09	1402	25	1239	24	68.2
NB16-356B-52	161800000	12.5	2.9	9 4.3	3 99	23	23	709 95.67	7 1	2.215 0.079	0.155	0.005	0.250	0.1056	0.0045	1693	9/	1182	24	929	56	51.5
NB16-356B-53	137600000	11.2	0.9	9 12.8	8 1023	70	^	66 71.38	8 3	1.770 0.440	0.138	0.004	0.740	0.0890	0.0150	1510	250	096	190	835	23	51.7
NB16-356B-54	179600000	16.9	6.7	7 2.5	5 116	16	14	1334 96.73	3 3	3.260 0.140	0.230	0.004	0.099.0	0.1041	0.0020	1693	36	1473	31	1333	22	75.9
NB16-356B-55	133200000	87.6	55.2	2 1.6	6 3260	200	9	77 76.05	5 3	0.688 0.120	0.077	0.002	0.553 (0.0650	0.0077	970	170	531	63	480	10	90.3
NB16-356B-56	175800000	19.8	0.5	5 40.2	2 87	17	20	1051 97.96	1 9	1.294 0.044	0.118	0.002	0.264	0.0799	0.0020	1182	20	841	20	719	11	85.5
NB16-356B-57	168400000	16.1	2.8	8 5.7	77 77	14	18	861 97.98	1 8	1.170 0.028	0.109	0.002	0.441 (0.0781	0.0011	1144	27	786	13	299	10	84.8
NB16-356B-58	173200000	8.3	0.1	1 91.8	8 13	11	85	2502 99.09	9 1	0.915 0.028	660.0	0.002	0.324 (8990.0	0.0016	814	49	658	15	611	10	92.8
NB16-356A-01	109900000	154.1	110.1	1 1.4	4 -7	11	-157	-5113 99.76	.6 1	4.682 0.110	0.3184 0.0053		0.407	0.1067	0.0024	1737	42	1764	19	1782	56	2.96
NB16-356A-02	93100000	506.4	31.0	0 16.3	3 9	20	222	10726 99.02	1 1	4.019 0.099	0.2763	0.0044	0.394	0.1048	0.0025	1708	44	1637	20	1573	22	8.16
NB16-356A-03	115400000	458.0	8.8	8 52.0	0 4	12	300	9100 99.73	3 1	0.907 0.026	0.1068	0.0019	0.197	0.0620	0.0017	299	28	655	14	654	11	8.66
NB16-356A-04	110000000	437.7	193.9	9 2.3	3 53	17	32	1496 99.16	1 9	3.290 0.130	0.2452	0.0055	0.927	0.0965	0.0025	1547	48	1470	30	1413	56	91.7
NB16-356A-05	104200000	459.0	184.6	6 2.5	5 -7	11	-157	-17800 99.75	5 1	6.450 0.180	0.3724	0.0086	0.916	0.1246	0.0025	2022	36	2041	23	2040	41	0.86
NB16-356A-06	110100000	510.0	1.9	9 264.2	2 2	12	009	20500 99.79	79 1	0.926 0.025	0.1098	0.0017	0.325 (0.0610	0.0016	627	57	664	13	671	10 101.1	01.1
NB16-356A-07	72000000	337.7	247.7	7 1.4	4 115	15	13	152 88.58	88 3	0.720 0.220	0.0953	0.0030	0.754 (0.0480	0.0170	1450	220	430	150	286	18 136.3	36.3
NB16-356A-08	107800000	55.9	42.8	8 1.	3 7	10	143	595 99.73	3 1	0.862 0.057	0.1033	0.0023	0.030	6090.0	0.0042	530	140	621	32	633	13 101.9	01.9
NB16-356A-09	107800000	123.1	83.0	0 1	5 -5	12	-240	-1990 99.67	7 1	0.912 0.038	0.1093	0.0021	0.278	0.0604	0.0025	226	88	654	20	699	12 1	102.2
NB16-356A-10	95400000	161.7	143.7	7 1.	1 -9	17	-189	-1278 98.87	1 1	0.956 0.053	0.1010		0.347 (0.0685	0.0038	850	110	829	28	620	16	91.4
NB16-356A-11	96400000	310.7	163.2	2 1.	9 19	15	79	2303 99.77	7 1	2.178 0.071	0.1996	0.0047	0.763 (0.0789	0.0020	1164	20	1172	23	1173	56	98.5
NB16-356A-12	109000000	140.1	118.1	1	2 1	11	1100	10480 99.72	72 1	0.862 0.037			0.087	0.0610	0.0028	280	26	627	21	631	11	100.6
NB16-356A-13	107800000	178.0	191.4	4 0.9	9 6	6	134	2094 99.57	7 1	0.868 0.033		0.1026 0.0018	0.012	0.0616	0.0025	620	68	632	18	630	11	9.66
NB16-356A-14	108000000	191.1	252.9	9 0.8	9 8	12	200	2375 99.65	55 1	0.840 0.030	0.1013	0.0017	0.060	0.0601	0.0022	585	81	617	16	622	10 10	100.8
NB16-356A-15	108900000	408.9	246.8	8 1.7	7 -3	10	-333	-19827 99.77	77 1	2.135 0.047	0.1974 0.0030		0.291	0.0783	0.0017	1152	46	1159	15	1161	16	8.86
NB16-356A-16	92300000	104.8	41.1	1 2.5	5 -4	13	-325	-2715 98.95	5 1	1.496 0.078	0.1473	0.0042	0.410	0.0738	0.0036	1022	95	923	32	885	24	86.2
NB16-356A-17	108400000	344.0	509.0	0 0.7	7 -7	10	-143	-3457 99.70	70 1	0.837 0.025	0.1006		0.194 (0.0604	0.0019	909	71	919	14	819	11 100.3	00.3
NB16-356A-18	129100000	9.995	862.0	0 0.7	7 99	18	18	465 96.20	30	0.790 0.110	0.0967	0.0019	0.510	0.0592	0.0080	800	180	262	26	595	11	100.0
NB16-356A-19	106100000	75.0	73.4	4 1.0	0 10	Ξ	110	1948 99.24	14 1	6.290 0.170	0.3634 0.0063		0.482	0.1268	0.0034	2050	46	2019	56	1998	30	96.3
NB16-356A-20	105800000	46.3	0.5	5 89.0	0 3	11	367	1330 99.90	00 1	1.024 0.064	0.1202 0.0032		0.140	0.0618	0.0040	290	130	705	32	731	19 10	103.7

101.0 89.2 10 100.4 93.2 99.0 8.66 98.9 95.7 16 103.0 83.2 91.5 8.66 93.0 99.0 81.9 89.2 11 91.0 13 103.0 97.9 97.9 82.8 11 100.7 8.96 97.6 92.6 99.5 con 85.4 14 108.5 96.7 98.3 99.7 98.4 10 16 ±2α 1559 1244 1605 657 1179 1351 ²⁰⁶Pb/ 661 981 632 Calculated ages (Ma) ±2α 207 Pb/ 642 628 624 235 U 110 49 9 89 ±2α 207 Pb/ 900 1225 1117 648 1880 1530 1217 1165 615 626 652 1757 697 176 888 937 1651 1353 1164 1591 0.0027 0.0012 0.0018 0.0033 0.0012 0.0028 0.0025 0.0018 0.0067 0.0028 0.0026 0.0029 0.0023 0.0015 0.0032 0.0020 0.0018 0.0032 0.0026 0.0018 0.0020 0.0024 0.0036 0.0022 0.0025 0.0026 0.0029 0.0075 0.0024 0.0025 0.0022 0.0024 0.0027 0.0023 0.0021 0.0051 0.0696 0.0988 0.0626 0.0622 0.0643 0.0813 0.1078 0.0628 0.0779 0.0624 0.0792 0.1168 0.0588 0.0596 0.0954 0.0797 0.0615 0.1021 0.0654 0.0806 0.0794 0.0903 0.1088 0.0602 0.0773 0.1122 0.0653 0.1907 0.0612 0.0605 0.0706 0.0813 0.0870 0.0651 0.0769 0.0711 0.0627 207 Pb/ 0.1042 0.0019 0.050 0.2269 0.0041 0.343 0.1014 0.0016 0.160 0.3662 0.0053 0.574 0.2737 0.0051 0.403 0.2333 0.0043 0.635 0.1010 0.0019 0.050 0.1150 0.0017 0.495 0.1268 0.0025 0.283 0.1081 0.0027 0.435 0.1124 0.0017 0.396 0.1020 0.0018 0.024 0.1173 0.0024 0.641 0.1065 0.0019 0.083 0.2130 0.0037 0.393 0.1183 0.0019 0.402 0.1030 0.0019 0.290 0.2828 0.0052 0.272 0.1315 0.0020 0.304 0.2074 0.0040 0.035 0.2006 0.0032 0.068 0.1297 0.0023 0.184 0.3166 0.0061 0.511 0.1014 0.0023 0.259 0.1020 0.0019 0.255 0.0994 0.0019 0.060 0.2883 0.0079 0.780 0.1121 0.0016 0.411 0.2008 0.0037 0.307 0.1644 0.0029 0.611 0.1074 0.0023 0.371 0.3256 0.0052 0.209 0.4979 0.0082 0.647 Isotopic ratios 206 Pb/ 0.044 0.027 0.110 0.044 0.041 0.050 0.025 0.030 0.966 0.019 0.869 0.031 1.789 0.046 5.950 0.410 0.961 0.110 0.120 1.019 0.036 0.898 0.055 4.250 0.160 2.144 0.077 0.883 0.038 3.585 0.096 2.363 0.063 1.295 0.047 0.863 0.036 2.698 0.071 1.179 0.026 2.183 0.062 2.960 0.180 1.159 0.035 1.990 0.073 ±2σ 1.218 0.870 1.027 0.841 0.991 $^{207}Pb/$ Ç 97.29 83.10 $%Pb^{3}$ 99.49 68.66 99.34 99.55 99.56 99.29 99.83 69.76 99.15 99.84 99.58 99.47 99.10 94.35 98.95 98.66 99.80 99.70 98.01 99.64 99.32 99.55 99.36 99.59 09.66 99.75 99.73 99.70 99.75 99.73 99.61 99.81 -1434 1899 7829 5820 1654 3605 -14140 10400 1262 .3533 888 -5775 -1265 59900 30620 -583 -535 969 6163 4890 n.d. 6700 1011 -3047 8864 528 3427 $^{206}Pb/$ $^{204}\mathrm{Pb}^2$ 0601 n.d. 157 -131 % 11 n.d. 1 10 16 14 12 13 10 ±2σ Measured concentrations $^{204}\mathrm{Pb}$ Th/U 50.9 3.4 76.9 24.4 12.0 10.9 241.4 128.7 29.2 233.0 10.5 678.1 116.4 121.8 102.9 611.0 139.5 30.1 202.6 53.0 10.6 70.7 39.4 (mdd) T 452.0 218.0 1491.0 517.0 122.9 139.6 414.9 242.5 645.0 519.0 194.9 304.3 778.3 251.7 08800000 1097.0 96.3 157.9 154.4 000008601 $^{90}\mathrm{Zr}\left(\mathrm{cps}\right)$ 90100000 109400000 125800000 108700000 107300000 125100000 93400000 107400000 121200000 107700000 07800000 108300000 000006801 110300000 108900000 000000601 10400000 000008801 109200000 000006801 107100000 107500000 105600000 000009801 108100000 106400000 107800000 000008901 000000801 125400000 000008801 108100000 000008901 88600000 107500000 NB16-356A-29b-1 NB16-356A-47b-NB16-356A-29 NB16-356A-22 NB16-356A-23 NB16-356A-24 NB16-356A-25 NB16-356A-26 NB16-356A-27 NB16-356A-28 NB16-356A-30 NB16-356A-31 NB16-356A-32 NB16-356A-33 NB16-356A-34 NB16-356A-35 NB16-356A-36 NB16-356A-37 NB16-356A-38 NB16-356A-39 NB16-356A-40 NB16-356A-41 NB16-356A-42 NB16-356A-43 NB16-356A-44 NB16-356A-45 NB16-356A-46 NB16-356A-47 NB16-356A-48 NB16-356A-49 NB16-356A-50 NB16-356A-51 NB16-356A-52 NB16-356A-53 NB16-356A-55 NB16-356A-57 NB16-356A-2 Sample

Table A3. Continued.

2
Ē
S
A3.
able
_

ed.

			Measu	rred c	Measured concentrations	ations							Iso	Isotopic ratios	atios				Calc	Calculated ages (Ma)	ges (Ma	~		
Sample	(cps) 2r (cps)	U (bpm)	Th (ppm)	Th/U	_Ј ²⁰⁴ Рb (срs)	±2σ	% error	$^{206}{ m Pb}/$ r $^{204}{ m Pb}^2$		%Pb³ C⁴	²⁰⁷ Pb/ ²³⁵ U	5/ ±2σ J	²⁰⁶ Pb/ ²³⁸ U	±2σ	θ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ [±]	±2σ	% con
NB16-356A-58	106300000	134.9	138.8	1.0	8 0.	1.	1 138		1259 99.	98.86	0.850	50 0.039	0.1035	0.0021	0.327	0.0595	0.0026	542	94	620	21	635	12 1	102.4
NB16-356A-59	121500000	161.0	87.6	1.8	6- 8:	14	4 -156	'	1500 99	99.49 1	0.955	55 0.045	0.1101	0.0025	0.073	0.0632	0.0032	670	110	829	23	673	14	99.3
NB16-356A-60	129700000	494.0	13.1	37.7	.7 16	5 20	0 125		2625 99.	99.49 1	0.964	54 0.037	0.1089	0.0021	0.145	0.0643	0.0025	737	98	684	19	999	12	97.4
NB16-356A-60a	90100000	244.3	189.4	Τ.	.3 21	. 19		90 27	2781 99.	99.65	5.880	30 0.170	0.3554	0.0068	0.398	0.1201	0.0034	1953	50	1957	25	1960	32	99.4
NB16-356A-61	132200000	678.0	14.5	46.8	8	, 22	2 440	11660		99.69	0.920	20 0.041	0.1080	0.0020	0.052	0.0611	0.0030	661	88	661	22	199	12 1	100.0
NB16-356A-62	104700000	118.1	111.3	Τ.	.1 8	1	1 138		1114 99	99.62	0.940	10 0.043	0.1082	0.0019	0.282	0.0627	0.0027	648	95	899	22	662	Ξ	99.2
NB16-356A-63	123900000	510.0	28.0	18.2	2 399	. 61	1 1	5 1	135 86	86.00 3	1.200	00 0.170	0.1194	0.0026	0.592	0.0708	0.0094	1140	170	787	75	727	15	92.4
NB16-356A-64	130300000	761.0	45.3	16.8	.8 22	17	7 7	77 31	3186 99.	99.23 1	1.087	37 0.035	0.1146	0.0026	0.455	0.0687	0.0020	886	09	746	17	669	15	93.7
NB16-356A-65	88700000	118.0	82.0	-	4 187	, 23	3 1	2 1	140 90	90.40 3	4.120	90 0.700	0 0.3030 0.0110	0.0110	0.673	0.0950	0.0160	1590	270	1590	150	1705	53	91.2
NB16-356A-66	106900000	67.0	42.3	Τ.	6 4	10	0 250		1225 99.	99.76	0.837	37 0.046	6 0.1016 0.0023	0.0023	0.080	0.0598	0.0034	520	120	611	26	624	13 1	102.1
NB16-356A-67	106800000	167.7	97.1	Τ.	7 -1	Π	1 -1100	00 -34600		99.67	3.978	78 0.087	0.2881	0.0046	0.306	0.0995	0.0022	1609	42	1628	18	1632	23	97.4
NB16-356A-68	109100000	234.6	234.3	1.	5- 0	٠,	9 -109	·	-2214 99	99.67	0.931	1 0.031	0.1106	0.0021	0.441	0.0608	0.0019	609	89	999	16	929	12 1	101.5
NB16-356A-69	107600000	317.7	338.7	0.9	0 6	10	0 n.d.		n.d. 99	99.65	0.861	51 0.023	0.1021	0.0016	0.276	0.0611	0.0017	989	61	632	13	627	10	99.2
NB16-356A-70	106200000	86.0	30.0	2.	9 12	10	0 83		1835 98	98.87	6.510	0.170	0.3599	0.0067	0.532	0.1305	0.0033	2097	4	2043	23	1981	32	94.5
NB16-356A-71	103900000	9.09	38.6	1.6	.6 13	10	0 77		349 99	99.15 1	0.975	75 0.053	0.1075	0.0025	0.137	0.0662	0.0038	730	120	889	28	829	15	92.6
NB16-356A-72	113400000	64.5	74.3	0.	9 -2	15	5 -750		-2510 99	99.35 1	0.934	34 0.069	0.1077	0.0039	0.189	0.0632	0.0049	640	160	664	36	629	23	99.2
NB16-356A-73	104900000	205.6	59.7	3.	5 5	12	2 240		3844 99.	99.51 1	1.233	3 0.043	0.1319	0.0024	0.525	0.0671	0.0020	839	89	812	19	286	14	0.96
NB16-356A-74	111900000	227.7	281.0	0.	.8 25	; 13	3 52		86 629	98.71 1	0.968	58 0.043	3 0.1010 0.0018	0.0018	0.025	0.0694	0.0032	698	95	684	22	620	10	9.06
NB16-356A-75	91800000	142.5	155.3	0.9	9 12	12	2 100		810 99	99.24 1	0.896	96 0.045	0.1029	0.0024	0.111	0.0638	0.0037	089	120	646	24	631	14	97.7
NB16-356A-76	109600000	113.5	93.4	ij	2 3	10	0 333		2970 99.	99.59	0.916	16 0.042	0.1067	0.0023	0.343	0.0620	0.0027	979	93	655	22	653	13	2.66
NB16-356A-77	93400000	222.0	62.0	3.6	6 4	11	5 375		11850 97.	97.89	5.440	10 0.210	0 0.3136 0.0081	0.0081	0.835	0.1252	0.0031	2028	4	1887	33	1757	40	85.4
NB16-356A-78	129300000	794.0	8.4	94.5	5 248	7.	2 2	9 2	294 93	93.80 2	0.980	30 0.130	0.1104	0.0019	0.438	0.0655	0.0068	880	150	269	26	675	Ξ	6.96
NB16-356A-79	106000000	255.0	115.2	2.2	2 8	_	163		7185 99.	99.92	4.656	660.0 99	0.3171	0.0048	0.403	0.1060	0.0023	1728	39	1758	18	1775	23	96.2
NB16-356A-80	127400000	232.6	141.9	1.6	6 -14	1 20	0 -143		-1204 99.	99.73 1	0.760	50 0.041	1 0.0930 0.0020	0.0020	0.177	0.0593	0.0033	550	120	572	24	573	12 1	100.2
NB16-356A-81	105400000	675.0	50.6	13.3	3 41		13 3	15	1505 99.	99.13 1	1.299	99 0.030	0.1303	0.0020	0.307	0.0718	0.0017	626	48	844	13	789	Ξ	80.1
NB16-356A-81b-1	104800000	143.2	39.7	3.6	0 9		12 n.d.		n.d. 99	99.68	2.453	3 0.064	0.2185	0.0037	0.308	0.0812	0.0021	1214	52	1256	19	1274	19	93.6
NB16-356A-82	109200000	131.7	73.1		1.8 -7	1.	1 -157	Ċ	-1376 99	99.58 1	0.835	35 0.033	0.0999	0.0019	0.177	0.0604	0.0024	578	86	613	18	614	11	100.1
NB16-356A-83	89700000	197.4	187.0	1.	1 -4	15	5 -375		3233 99	99.25 1	0.898	98 0.043	0.1014	0.0025	0.306	0.0640	0.0030	711	100	648	23	622	15	0.96
NB16-356A-84	104300000	54.6	41.3	-	.3 -11	10	0 -93		-359 99.	99.32	0.885	35 0.058	0.1007	0.0023	0.197	0.0636	0.0042	630	130	634	31	618	14	97.5
NB16-356A-84b-1	117200000	63.2	55.2	1.1	.1 15	14	4 93		329 99.	99.65 1	0.874	74 0.060	0.1049	0.0031	0.039	0.0607	0.0047	550	160	632	33	643	18 1	101.7
NB16-358A Ross Island Formation (UTM - 68061	dand Format	ion (UT	М - 680		, 49441	50N; C	3rid Z	9E, 4944150N; Grid Zone 19T)	<u> </u>															
NB16-358A-01	183900000	688.8	740.0	0.9	8 6	3 11	1 138	38 24225		99.85	4.521	21 0.13	3 0.3079	0.012	0.823	0.1062	0.0008	1734	14	1733	24	1730	28	6.66
NB16-358A-02	173700000	75.3	46.9	1.6	.6 3.1	9.3	3 300		2132 99.	99.68	0.812	12 0.05	5 0.0975	0.004	0.055	0.0606	0.0037	550	120	598	29	009	23 1	100.3
NB16-358A-03	171500000	227.8	193.3	1.2	2 14	14	4 100		1694 99.	99.74 1	1.006	0.04	4 0.1154	0.005	0.398	0.0632	0.0019	700	63	705	21	704.1	56	6.66
NB16-358A-04	165900000	90.3	27.3	3.	3 6	, 12	2 200		2708 99.	99.68	2.24	11.0 %	0.2064	0.008	0.494	0.0787	0.003	1158	70	1188	35	1209	45	94.7
NB16-358A-05	179700000	228.9	211.9	1.1	.1 15.8	9.6		61 12	1299 99.	99.65	0.823	23 0.03	3 0.0987	0.004	0.213	0.0605	0.0017	602	28	809	17	9.909	22	8.66
NB16-358A-06	162900000	198.2	230.6	0.0	9 2	=======================================	1 550		8480 99.	99.76	0.778	78 0.03	3 0.0969	0.004	0.306	0.0583	0.0018	524	70	583	19	596.3	22	102.3
NB16-358A-07	193000000	409.8	8.1	50.7	7	, 13	3 186		5901 99.	99.72 1	0.898	8 0.03	3 0.106	0.004	0.404	0.0617	0.0014	653	49	920	17	649.5	23	6.66

Continued.	
Table A3.	

			Measured		concentrations	ations						Ĭ	Isotopic ratios	c ratios				Calc	Calculated ages (Ma)	es (Ma			
Sample	⁹⁰ Zr (cps)	U (bpm)	Th (ppm)	Th/U	²⁰⁴ Pb (cps)	±2σ	% error	$^{206}\mathrm{pb}/$	%Pb³ C⁴	²⁰⁷ Pb/ ²³⁵ U	, ±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	ν ρ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	²⁰⁷ Pb/ :	2 ±2σ	²⁰⁶ Pb/ ±	±2α	con
NB16-358A-08	181000000	456.2	458.4	1.0) 13	11	85	3385	1 69.66	0.891	1 0.03	3 0.1043	3 0.004	04 0.289	0.0623	0.0014	673	51	646	17	639.5	23	0.66
NB16-358A-09	18750000	730.0	120.4	6.1	3	10	333	91333	99.86	7.75	5 0.26	6 0.4073	3 0.016	16 0.944	0.1384	0.0013	2206	16	2199	30	2202	73	9.66
NB16-358A-10	162700000	560.0	288.0	1.9	3	12	400	34100	99.96	2.302	2 0.07	7 0.2122	2 0.008	08 0.286	0.0791	0.0012	1171	29	1212	21 1	1240.4	42	93.8
NB16-358A-11	176800000	214.0	118.1	1.8	3 12	13	108	1662	99.62	0.85	5 0.04	4 0.1017	7 0.004	04 0.231	0.061	0.002	614	69	623	19	624.5	23 1	100.2
NB16-358A-12	213100000	415.0	199.5	2.	1 28	18	64	4221	99.69	4.119	9 0.13	3 0.292	2 0.012	12 0.591	0.1029	0.0017	1675	30	1657	26	1651	29	0.86
NB16-358A-13	187500000	153.2	123.1	1.	2 20	11	55	969	99.51	0.786	6 0.04	4 0.0946	6 0.004	04 0.202	0.0607	0.0022	297	81	589	19	582.5	21	6.86
NB16-358A-14	175000000	366.2	356.7	1.0	9.2	8.1	88	12576	99.79	5.834	4 0.17	7 0.3541	1 0.013	13 0.699	0.1201	0.0011	1956	16	1950	25	1954	64	99.5
NB16-358A-15	180000000	378.5	402.5	0.0) 14	16	114	2100	99.55 1	0.678	8 0.03	3 0.0841	1 0.004	04 0.468	0.0594	0.002	564	72	529	18	521	22	98.5
NB16-358A-16	178100000	204.8	170.7	1	2 -0.4	8.6	-2450	-93350	99.66	2.16	6 0.07	7 0.1984	4 0.008	08 0.403	0.0793	0.0015	1170	37	1166	23	1167	41	8.66
NB16-358A-17	195100000	437.1	132.2	3	3 2	13	650	96500	98.91	5.159	9 0.15	5 0.3166	6 0.012	12 0.793	0.1188	0.0008	1937	13	1845.4	24	1773	29	6.68
NB16-358A-18	182000000	225.5	278.7	0.8	3	14	200	2883	1 29.66	0.789	9 0.04	4 0.0952	2 0.004	04 0.465	0.0603	0.0021	296	75	589	20	586.4	22	9.66
NB16-358A-19	169900000	658.0	637.0	1.0) 15.8	8.8	26	3595	99.72 1	0.824	4 0.03	3 0.098	8 0.004	04 0.353	0.0615	0.001	653	34	610.7	15	602.4	22	98.6
NB16-358A-20	170600000	183.6	297.0	9.0	5 16	10	63	626	99.47	0.797	7 0.03	3 0.0935	5 0.004	04 0.042	0.0621	0.0023	643	80	593	70	576.2	21	97.2
NB16-358A-21	158600000	163.9	41.3	4.0) 25	14	26	069	99.53 1	1.03	3 0.05	5 0.1167	7 0.005	05 0.253	0.064	0.0024	742	74	717	24	711	27	99.2
NB16-358A-22	179200000	87.8	36.2	2.:	3 2.1	6	429	2036	99.72 1	0.409	9 0.03	3 0.0539	9 0.002	02 0.373	0.0548	0.004	330	150	343	24	338.4	13	98.7
NB16-358A-23	175000000	68.1	142.8	0.5	5 10	10	100	296	99.55 1	0.79	90.0	6 0.0932	2 0.004	04 0.258	0.0614	0.004	580	140	584	33	574.5	22	98.4
NB16-358A-24	18250000	348.4	136.5	2.6	5 4.6	9.1	198	27893	1 19.66	896.9	8 0.2	2 0.3821	1 0.014	14 0.699	0.132	0.0012	2123	15	2106	25	2086	29	98.3
NB16-358A-25	141300000	129.2	72.8	1.8	3 19	12	63	312	93.47 1	0.807	7 0.06	6 0.0559	9 0.003	03 0.261	0.1046	0.0075	1670	130	295	36	350.4	16	58.9
BL15-001 Balls Lake Formation (UTM - 266288E,	ke Formation	ı (UTM	- 26628		5011710N;	V; Grid	Grid Zone 20T)	20T)															
BL15-01-001	280200000	481.1	97.8	0.2	4-	11	275	-9108	99.75 1	0.467	7 0.01	1 0.0625	5 5E-04	04 0.191	0.0535	0.0011	340	47	388.6	^	391	3 100.6	9.00
BL15-01-002	271500000	305.0	141.7	0.5	5 10	12	120	6250	99.83	1.751	1 0.02	2 0.1725	5 0.001	0.371	0.0729	0.0008	1008	23	1026.9	7.6	1025.7	7.1	6.66
BL15-01-003	273100000	256.0	227.0	0.9	-7-	13	186	-4671	99.70 1	0.917	7 0.02	2 0.1088	8 0.001	01 0.305	0.0611	0.0013	643	4	662	10	665.4	6.5 10	100.5
BL15-01-004	256800000	61.3	50.3	0.8	3 -15	21	140	-987	99.49 1	2.362	2 0.1	1 0.2086	6 0.004	04 0.225	0.0825	0.0039	1231	92	1228	59	1225	21	8.66
BL15-01-005	289200000	607.0	57.7	0.1	1 -21	12	57	-2338	99.76	0.499	9 0.01	1 0.0651	1 6E-04	04 0.226		0.0012	435	44	410.8	8.9	406.8	3.6	0.66
BL15-01-006	275600000	567.2	375.8	0	7 -4	11	275	-11150	99.72 1	0.5	5 0.01	1 0.0659	9 5E-04	04 0.021	0.0549	0.001	402	40	411.4	9.6	411.1	3.2	6.66
BL15-01-007	305600000	258.2	304.9	1.	2 -10	23	230	-2068	99.52 1	0.508	8 0.03	3 0.0657	7 8E-04	04 0.168	0	0.0028	420	110	416	18	410.3	4.8	98.6
BL15-01-008	258600000	688.0	222.2	0.3	3 2	15	750	26325	99.76	0.501						0.001	411	44	412	6.2	412.4		100.1
BL15-01-009	268700000	358.1	121.7	0.3	3 -15	17	113	-1861	99.61	0.505	5 0.02	2 0.0655		03 0.226		0.0016	453	62	414.7	8.6	408.9	5.7	98.6
BL15-01-010	311900000	1054.6	20.2	0.0) 1	21	2100	149600	99.90 1	0.983	3 0.02	2 0.1132	2 0.002	0.661	0.0627	0.0008	269	28	694.8	8.4	691.3	8.9	99.5
BL15-01-011	282400000		_	0.7	7 1	18	_	20250	99.55 1	0.716	6 0.02	2 0.088				0.002	554	71	549	14	543.8	6.4	99.1
BL15-01-012	255800000	145.6	77.4	0.5	5 -13	20	154	-2195	99.82	1.676	90.0 9	6 0.1693	3 0.002	02 0.185	0.072	0.0022	991	28	1002	70	1008	13 10	100.6
BL15-01-013	248200000	255.6	122.9	0.5	5 -15	18	120	-4373	99.82	2.652	2 0.05	5 0.2251	1 0.002	02 0.224		0.0016	1311	35	1314	14	1309	12	9.66
BL15-01-014	272600000	275.9	103.1	0.4	1 -10	13	130	-8130	99.83 1	3.061	1 0.03	3 0.2463	3 0.002	0.262	0.0898	0.001	1422	21	1423.1	8.2	1419	=	2.66
BL15-01-015	281500000	303.7	273.0	0.9) 11	13	118	2285	99.66	0.526	6 0.01	1 0.0683	3 7E-04	0.081	0.0558	0.0013	429	52	428.8	7.9	426	4.2	99.3
BL15-01-016	275500000	92.3	42.0	0.5	5 18	20	111	563 9	99.75 2	0.72	2 0.02	2 0.0904	4 0.002	02 0.764	0.0579	0.0006	525	23	550	8.7	557.9	10 101.4	1.4
BL15-01-017	244700000	122.0	99.0	0.8	3 11	22	200	834	99.77 1	0.508	8 0.03	3 0.0659	9 0.001	0.179	0.0554	0.0036	390	140	415	22	411.5	8.8	99.2
BL15-01-018	250600000	214.4	166.9	0.8	3 -14	16	114	-1823	99.64	0.888	8 0.02	2 0.1051		0.003	0.0611	0.0018	648	64	646	13	644	6.9	2.66
BL15-01-019	272200000	306.8	90.5	0.3	3 -2	12	009	-30480	99.79 1	1.696	6 0.02	2 0.168	8 0.001	0.221	0.0728	0.001	1006	28	1007.2	8.5	1001.2	7.6	99.4

nued.	
Conti	
A3.	
Table	

			Measured		concentrations	ions							Isotopic ratios	ratios				Calc	Calculated ages (Ma)	nges (M	a)		
Sample	⁹⁰ Zr (cps)	U (mdd)	Th (ppm)	Th/U	²⁰⁴ pb (cps)	±2σ	% 2 error 2	²⁰⁶ Pb/ %	%Pb³ C⁴	²⁰⁷ Pb/ ²³⁵ U	b/ ±2σ U	²⁰⁶ Pb/ r ²³⁸ U	+2σ	d .	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	²⁰⁷ Pb/ ²³⁵ U	+2α	²⁰⁶ pb/ ²³⁸ U	±2σ	% con
BL15-01-020	269800000	110.1	29.6	0.3	5	13	260	5160 9	97.21 1	3.590	90 0.410	0 0.218	8 0.019	9 0.984	0.1106	0.0051	1768	06	1420	110	1250	100	88.0
BL15-01-021	287000000	610.7	428.0	0.7	4	16	400	14010	99.84	0.594	94 0.01	1 0.0764	4 6E-04	0.364	0.0565	0.001	468	38	473	7.1	474.3	3.6	100.3
BL15-01-022	256600000	37.3	16.2	0.4	-3	15	200	-2453 9	99.54 1	1.701	0.00	9 0.1688	8 0.003	3 0.394	0.0729	0.0035	1009	90	1009	32	1005	17	9.66
BL15-01-023	260100000	522.0	289.4	9.0	Ξ	15	136	3543 9	99.74	0.	0.49 0.01	1 0.0646	6 6E-04	0.176	5 0.0551	0.0011	405	47	404.6	8.9	403.3	3.8	2.66
BL15-01-024	277500000	183.9	101.3	9.0	9	11	183	3205 9	99.51	0.717	17 0.02	2 0.0885	5 0.001	0.129	0.0588	0.0017	267	64	550	12	547.3	6.4	99.5
BL15-01-025	265600000	376.5	155.9	0.4	11	21	191	2682	99.67	0.507	0.00	1 0.0666	6 8E-04	0.026	0.0555	0.0015	418	61	417.4	7.9	415.4	4.8	99.5
BL15-01-026	282800000	300.0	56.5	0.2	11	12	109	3382 9	99.54	0.899	99 0.02	2 0.1027	7 0.001	0.43	0.0634	0.0013	725	45	650	10	630.3	9.9	97.0
BL15-01-027	274400000	282.6	83.7	0.3	-	13	1300 1	138140 9	95.30	10.32	32 0.110	0 0.415	5 0.004	0.801	0.1812	0.0012	2664	11	2466	10	2236	19	200.7
BL15-01-029	274400000	553.4	96.4	0.2	-13	12	92	-3397	99.81	0.504	04 0.01	1 0.0667	7 5E-04	0.162	0.0549	0.0009	406	36	414	5.4	416	3.1	100.5
BL15-01-030	271800000	603.5	140.2	0.2	6	19	211	5149	99.64	0.488	88 0.01	1 0.0637	7 7E-04	04 0.182	0.056	0.0014	450	55	403.4	8.6	397.8	4.4	98.6
BL15-01-031	273600000	231.0	36.0	0.2	5	14	280	18100	98.46	5.882	82 0.07	7 0.3332	2 0.003	3 0.605	5 0.1279	0.0011	2068	15	1958.7	8.6	1854	15	94.7
BL15-01-032	275800000	109.9	118.6	1.1	2	23	1150	21840 9	99.79	5.196	60.0 96	9 0.332	2 0.003	3 0.103	3 0.1136	0.002	1866	32	1851	14	1850	15	6.66
BL15-01-033	265600000	68.1	23.7	0.3	-3	15	200	-6427	99.45	2.992	92 0.06	6 0.2423	3 0.004	04 0.181	0.0903	0.0021	1419	45	1403	16	1398	18	9.66
BL15-01-034	273800000	331.3	85.4	0.3	-4	12	300	-24200 9	99.56	3.199	99 0.04	4 0.2476	6 0.002	0.636	5 0.0937	0.0000	1502	18	1455.9	9.6	1425.8	12	6.76
BL15-01-035	273000000	1017.1	555.3	0.5	-14	11	42	-5693	99.80	0.51	51 0.01	1 0.0667	7 5E-04	0.265	5 0.0556	0.0007	440	29	418.4	4.5	415.9	2.8	99.4
BL15-01-036	284300000	222.3	88.7	0.4	-2	15	750	-8775	99.59	0.504	04 0.01	1 0.0654	4 8E-04	0.133	0.0559	0.0017	436	99	413.6	9.3	408.4	4.7	28.7
BL15-01-037	284400000	131.6	108.6	8.0	10	13	130	1344 9	99.62	0.665	65 0.02	2 0.0835	5 0.001	0.092	0.0578	0.0017	520	99	518	12	516.9	6.3	8.66
BL15-01-038	270900000	175.8	83.9	0.5	2	12	009	7295 9	99.82	0	0.54 0.02	2 0.0698	8 8E-04	0.022	0.0557	0.0017	426	67	437	10	434.6	5	99.5
BL15-01-039	270700000	0.09	52.1	6.0	4	20	200	5103 9	99.58	3.	3.99 0.13	3 0.2881	1 0.005	5 0.303	0.1006	0.0028	1644	26	1634	26	1632	23	6.66
BL15-01-040	271700000	174.6	142.0	8.0	-5	13	260	-2786 9	99.75 1	0.515	15 0.02	2 0.0673	3 7E-04	0.152	0.0557	0.0018	422	69	422	11	419.8	4.3	99.5
BL15-01-041	236500000	116.8	92.7	0.8	12	18	150	1063 9	99.56	0.859	59 0.04	4 0.1017	7 0.001	0.255	0.0608	0.0026	630	92	627	19	624.2	8	9.66
BL15-01-042	262400000	353.4	224.5	9.0	∞	13	163	3316 9	99.71	0.498	98 0.02	2 0.0651	1 7E-04	14 0.071	0.0556	0.002	418	75	409	11	406.4	4.3	99.4
BL15-01-043	309500000	305.6	44.0	0.1	9-	23	383	-4287 9	99.68	0.506	06 0.02	2 0.0657	7 9E-04	0.324	0.0555	0.002	413	79	415	12	410.2	5.3	8.86
BL15-01-044	300200000	0.909	28.2	0.0	-2	15	750 -	-39600	99.71	0.922	22 0.03	3 0.1078	8 0.003	3 0.782	0.0628	0.0013	721	47	662	17	099	15	2.66
BL15-01-045	274600000	302.2	132.9	0.4	5	12	240	4742 9	99.73	0.507	07 0.01	1 0.0666	6 6E-04	0.064	0.0552	0.0012	414	50	417	7.5	415.7	3.6	2.66
BL15-01-046	279800000	234.6	81.5	0.3	-7	Ξ	157	-4611 9	99.76	0.996	96 0.02	0.1142	2 0.001	0.234	0.0633	0.0012	718	39	702	10	697.2	5.9	99.3
BL15-01-047	274200000	337.9	197.4	9.0	4-	10	250	-6645 9	99.73	0.508	0.00		9 6E-04	0.146	0.0549	0.0012	396	49	416.4	7.7	417.5	3.6	100.3
BL15-01-048	279500000	105.0	57.7	0.5	9	15	250	2002	99.48 1	_	0.8 0.03	3 0.0966	6 0.001	0.098	0.0603	0.0027	268	86	298	18	594.2	^	99.4
BL15-01-049	275900000	473.9	115.7	0.2	11	15	136	12900 9	98.66	3.	3.21 0.04	4 0.2539	9 0.002	0.714	0.0914	0.0007	1456	14	1458.5	8.7	1458.3	=	100.0
BL15-01-050	265100000	590.5	694.0	1.2	-18	12	29	-2511 9	99.79	0.501	0.001	1 0.0663	3 6E-04	0.156	0.0546	0.0000	393	38	412	5.7	413.8	3.7	100.4
BL15-01-051	296000000	52.1	71.0	1.4	-3	14	467	-1820 9	99.67	0.	0.71 0.05	5 0.0883	3 0.002	0.017	0.0583	0.0041	510	150	550	28	545	13	99.1
BL15-01-052	244300000	125.5	63.5	0.5	7	27	2700 -	-11740 9	99.74	0.646	46 0.04	4 0.0821	1 0.002	0.042	0.0567	0.004	480	160	516	26	509	11	98.6
BL15-01-053	275200000	185.7	29.8	0.2	5	13	260	3958	99.67	0.727	27 0.02	2 0.0892	2 9E-04	0.139	0.0589	0.0014	576	51	555.1	6.6	550.9	5.1	99.2
BL15-01-054	269100000	264.5	163.6	9.0	12	13	108	1718 9	99.64	0.508	08 0.01	1 0.067	7 7E-04	0.131	0.0547	0.0015	391	62	416.4	9.2	417.8	4.1	100.3
BL15-01-055	280100000	993.0	116.4	0.1	4	13	325	19850 9	99.84	0.515	15 0.01	1 0.0672	'2 6E-04	0.386	0.0552	0.0007	417	27	421.4	4.5	419.4	3.4	99.5
BL15-01-056	256300000	121.8	6.76	0.8	20	16	80	454 9	99.67 2	0.503	03 0.01	1 0.0678	8 0.001	0.856	0.0543	900000	380	28	413	9.3	422.9	8.1	102.4
BL15-01-057	265400000	803.8	422.9	0.5	-2	13	- 059	-32675 9	1 08.66	0.	0.54 0.01	1 0.0698	8 5E-04	0.027	0.0556	0.0000	439	37	438.4	5.5	435	3.2	99.2
BL15-01-058	258600000	495.0	62.8	0.1	% -	17	213	-4493 9	99.68	0.482	82 0.01	1 0.0633	3 7E-04	0.212	0.0548	0.0014	420	26	400	∞	395.6	4.1	6.86
BL15-01-059	279400000	140.0	125.0	0.9	3	13	433	3270 9	99.71 1	0.441	41 0.02	0.059	9 9E-04	0.011	0.0543	0.0023	370	88	370	12	369.2	5.5	8.66

=
Ξ.
Ξ
Ξ
5
O
٠.
3
⋖
<u>=</u>
9
ಡ

eq.

			Measured concentrations	ed con	centrat	suoi.							Isotopic ratios	ratios				Calc	Calculated ages (Ma)	Ma			
Sample	⁹⁰ Zr (cns)		Th	Th/tJ	²⁰⁴ Pb	+2α	%		%ph ³ C ⁴		b/ +2σ	²⁰⁶ Pb	+2σ	c	²⁰⁷ Pb/	+2α	²⁰⁷ Pb/	+2σ	²⁰⁷ Pb/	+2α	Pb/	+2α	%
Sampre		(mdd)	(mdd)	O /i	(cps)		error 2	$^{204}\mathrm{Pb}^2$ %.				238 U			$^{206}\mathrm{Pb}$	ı	$^{206}\mathrm{Pb}$	07-	235 U		²³⁸ U		con
BL15-01-060	281600000	409.3	261.9	9.0	13	14	108	2411 99	99.44 1	0.508	08 0.01	1 0.0628	8 6E-04	4 0.012	0.0577	0.0013	526	51	417.5	7.5	392.4	3.6	94.0
BL15-01-061	258800000	565.0	498.0	0.9	14	17	121	2886 99	99.76	0.4	.473 0.01	1 0.0626	6 6E-04	4 0.265	0.0547	0.0009	394	39	392.8	5.8	391.1	3.6	9.66
BL15-01-062	281000000	51.1	22.8	0.4	-11	14	127	-930	99.41 1	1.711	11 0.06	6 0.1697	7 0.002	2 0.084	0.0731	0.0027	1012	74	1010	23	1010	13 1	100.0
BL15-01-063	296200000	267.3	83.5	0.3	-1	16	1600	-21440 99	99.57 1	0.518	18 0.02	2 0.067	7 8E-04	4 0.139	0.0566	0.002	452	78	423	13	418.2	4.9	6.86
BL15-01-064	290400000	134.4	80.5	9.0	12	14	1117	1321 99	99.50	0.807	07 0.03	3 0.0974	4 0.001	1 0.158	0.0603	0.002	902	9/	299	16	299	7.6	100.0
BL15-01-065	280400000	1351.8	333.5	0.2	17	13	9/	5541 99	99.64 2	0.441		0 0.0595	5 4E-04	4 0.739	0.0538	0.0002	362.9	6.5	370.7	2.3	372.6	2.7	100.5
BL15-01-066	274600000	75.6	30.7	0.4	1	14	1400	15390 99	99.58	1.759	59 0.04	4 0.1727	7 0.002	2 0.193	0.0732	0.0019	1012	20	1031	17	1028	17	2.66
BL15-01-067	296500000	944.0	784.0	0.8	9	15	250	12750 99	99.86	0.509	10.0 60	1 0.0666	6 6E-04	4 0.308	0.0552	0.0009	414	38	417.3	5.8	415.5	3.5	9.66
BL15-01-068	271100000	162.1	31.5	0.2	1	11	1100	12430 99	99.62	0.502	02 0.02	2 0.0659	9 7E-04	4 0.044	0.0545	0.0017	380	71	412	10	411.2	4.3	8.66
BL15-01-069	277500000	243.6	182.7	0.8	11	14	127	96 6161	99.71	0.568	68 0.01	1 0.0737	7 8E-04	4 0.306	0.0557	0.0012	428	20	456.2	8.3	458.8	4.8	100.6
BL15-01-070	295100000	79.8	55.3	0.7	∞	14	175	3144 99	99.20	3.541	41 0.07	7 0.2595	5 0.004	4 0.276	0.0995	0.002	1613	35	1539	16	1487	18	9.96
BL15-01-071	287200000	725.6	152.3	0.2	12	19	158	4673 99	1 69.66	0.507	0.01	1 0.0661	1 6E-04	4 0.083	0.0562	0.0012	453	49	416.3	7.4	412.5	3.7	99.1
BL15-01-072	273600000	218.3	248.7	1.1	5	11	220	3420 99	99.74 1	0.513	13 0.02	2 0.0671	1 7E-04	4 0.004	0.0556	0.0018	419	72	419	10	418.9	4.1	100.0
BL15-01-073	275400000	111.5	98.8	6.0	-7	11	157	-3220 99	99.63	1.766	66 0.05	5 0.1732	2 0.002	2 0.112	0.0735	0.002	1026	54	1034	16 1	1029.5	6.6	9.66
BL15-01-074	250400000	195.2	209.8	1.1	1	12	1200	19770	99.55 1	0.729	29 0.02	2 0.0895	5 0.001	1 0.104	0.0587	0.002	542	78	557	14	552.3	6.5	99.2
BL15-01-075	264400000	113.0	44.7	0.4	21	19	06	578 99	99.96 2	0.727	27 0.05	5 0.093	3 0.005	5 0.906	0.0573	0.0017	499	29	553	76	573	27 1	103.6
BL15-01-076	277000000	321.3	227.7	0.7	-7	14	200	-3403 99	99.76	0.467	67 0.01	1 0.0623	3 8E-04	4 0.247	0.0544	0.0015	375	09	389	8.8	389.8	4.5 1	100.2
BL15-01-077	308800000	272.5	80.9	0.3	4-	19	475	-5575 99	99.77 1	0.514	14 0.02	2 0.067	7 0.001	1 0.07	0.056	0.0027	430	110	420	16	418	6.1	99.5
BL15-01-078	254600000	921.0	147.7	0.2	23	21	91	2930 99	99.83 2	0.466	66 0.01	1 0.0632	2 7E-04	4 0.74	0.0535	0.0006	348	25	388.2	4.6	395.3	4	8.101
BL15-01-079	277400000	111.9	67.0	9.0	4	14	350	2990 99	99.47 1	0.737	37 0.02	2 0.0899	9 0.001	1 0.199	0.0598	0.002	581	74	559	14	554.8	8.2	99.2
BL15-01-080	259600000	45.3	34.1	0.8	10	15	150	573 99	99.45 1	0.945	45 0.04	4 0.1114	4 0.002	2 0.196	0.0629	0.003	720	100	681	23	681	12 100.0	0.00
BL15-01-081	273500000	961.0	111.9	0.1	9-	13	217	-12317 99	99.78	0.502	02 0.01	1 0.0659	9 5E-04	4 0.134	0.0556	0.0007	435	30	412.7	3.7	411.2	5.9	9.66
BL15-01-082	271700000	151.3	178.0	1.2	-2	19	950	-8710 99	99.50 1	0.829	29 0.03	3 0.0997	7 0.002	2 0.089	0.0607	0.0027	631	88	611	19	612.5	9.6 100.2	20.2
BL15-01-083	269200000	403.0	265.0	0.7	11	13	118	5436 98	98.85 1	1.453	53 0.05	5 0.1384	4 0.003	3 0.912	0.0764	0.0013	1105	34	910	22	835	19	91.8
BL15-01-084	282300000	58.0	55.1	1.0	1	15	1500	6110 96	99.58 1	0.734	34 0.05	5 0.0899	9 0.003	3 0.106		0.0043	260	150	555	28	555	15 1	100.0
BL15-01-085	280700000	198.7	46.0	0.2	3	13	433	4990 99	99.69	0.476	76 0.01	1 0.0631	1 7E-04	4 0.186	0.0552	0.0017	394	67	395	10	394.6	4.4	6.66
BL15-01-086	261200000	348.0	9.99	0.2	18	15	83	3818 99	99.46 2	1.681	81 0.02	2 0.1684		2 0.943	0	0.0004	1003	6.7	1000.7	8.4	1003.4	9.2	100.3
BL15-01-087	282000000	104.5	23.2	0.2	6	14	156	5240 99	99.80	6.691	91 0.09	9 0.3799	9 0.004	4 0.424	0.128	0.0017	2076	23	2072	11	2075	18 1	100.1
BL15-01-088	272000000	81.3	46.0	9.0	rC	14	280	4836 98	98.55 1	3.763	63 0.08	8 0.2608	8 0.004			0.0014	1727	24	1589	16	1493	70	94.0
BL15-01-089	286400000	138.3	94.2	0.7	4-	15	375	-2720 99	99.68	0.518	18 0.02	2 0.067	7 0.001	1 0.098	0.0555	0.0025	440	93	422	15	417.8	9	0.66
BL15-01-090	280200000	95.9	30.3	0.3	4	15	375	2598 99	99.44	0.769	69 0.03	3 0.0933	3 0.001	1 0.292	0.0601	0.0023	209	98	577	17	574.9	7.6	9.66
BL15-01-091	284700000	277.8	243.0	0.9	-3	14	467	-10770	99.76	0.827	27 0.02	2 0.0991	1 0.001	1 0.145	0.0608	0.0015	621	52	611	10	609.3	6.9	2.66
BL15-01-092	268300000	176.8	21.3	0.1	∞	14	175	1615 99	99.77 1	0.491	91 0.02	2 0.0646	6 8E-04	4 0.004	0.0551	0.0019	395	20	406	11	403.5	4.8	99.4
BL15-01-093	293900000	376.0	223.0	9.0	-11	12	109	-2713 99	99.56	0.513	13 0.02	2 0.0671	1 7E-04	4 0.162	0.0561	0.0018	453	20	420	10	418.7	4.1	2.66
BL15-01-094	242200000	91.7	55.8	9.0	-	21	2100	6 0986	99.46	0.819	19 0.05	5 0.0979	9 0.002	2 0.149	0.0609	0.0033	009	120	605	56	605	Ξ	99.5
BL15-01-095	275400000	201.4	72.5	0.4	-13	12	92	-1631 99	99.65 1	0.747	47 0.02	2 0.091	1 8E-04	4 0.038	0.0595	0.0016	287	29	999	11	561.6	4.8	99.2
BL15-01-096	278900000	291.2	52.4	0.2	4	11	275	5308 99	99.57 1	0.487	87 0.01	1 0.0633	3 6E-04	4 0.2	0.0564	0.0014	461	53	402.4	7.9	395.8	3.9	98.4
BL15-01-097	294900000	97.1	54.5	9.0	8	21	263	1136 99	99.55 1	0.615	15 0.03	3 0.079	9 0.001	1 0.104	0.0569	0.0028	480	110	488	17	490.2	8.2	100.5
BL15-01-098	296600000	206.1	136.3	0.7	-2	18	- 006	-11025 99	99.60 1	0.719	19 0.03	3 0.0902	2 0.001	1 0.013	0.0589	0.0023	541	82	552	16	556.7	7.7	100.9

Table A3. Continued.

			Measured		concentrations	ions							Isot	Isotopic ratios	ios				Calcı	Calculated ages (Ma)	es (Ma	(1		
Sample	$^{90}\mathrm{Zr}\left(\mathrm{cps}\right)$ U Th (ppm)	U (ppm)		Th/U	²⁰⁴ pb (cps)	±2σ	% error	²⁰⁶ Pb/ ²⁰⁴ Pb ²	%Pb³	C ₄	²⁰⁷ Pb/ ±	2α ±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	д	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	%
BL15-01-099	278300000 210.5	210.5	101.9	0.5	6	14	156	1773	29.66	I _	0.5	0.01	0.0654	8E-04 (0.356	0.056	0.0015	437	63	412	10	408.5	4.6	99.2
BL15-01-100	279600000 296.0	296.0	184.7	9.0	-2	12	009	-11115	99.80	_	0.489	0.01	0.0647	7E-04 (0.081	0.0556	0.0015	424	09	403.5	6	404.5	3.9 100.2	00.2
BL15-01-101	265700000 222.1	222.1	100.8	0.5	5-	14	280	-13300	99.72	_	3.31	0.04 0	0.2585	0.002	0.198	0.0935	0.0013	1501	25	1484	6.6	1482	12	6.66
BL15-01-102	274700000 132.6	132.6	6.79	0.5	-2	12	009	-4900	99.71	_	0.49	0.02	0.0639	8E-04 (0.013	0.0561	0.002	425	7	403	11	399.5	4.6	99.1
BL15-01-103	293700000	493.0	280.0	9.0	П	19	1900	56500	82.66	_	0.8	0.01	0.0964	0.001	0.234	0.0605	0.0011	620	39	596.5	7.4	593	9	99.4
BL15-01-104	273300000	120.7	151.9	1.3	-5	11	220	-2620	99.38	-	0.767	0.03	0.0927	0.001	0.038	0.0604	0.0023	604	81	276	15	571.6	7.4	99.2
BL15-01-105	278600000	388.8	167.5	0.4	3	13	433	10080	99.59	_	0.515 (0.01	0.0668	7E-04 (0.073	0.0564	0.0013	467	53	421.9	6.9	416.5	3.9	7.86
BL15-01-106	272500000	300.5	116.4	0.4	4	13	325	5673	99.65	_	0.492	0.01	0.065	6E-04 (0.138	0.0553	0.0014	411	54	406.7	7.3	405.9	3.7	8.66
BL15-01-107	292100000	243.8	39.2	0.2	-3	11	367	-6263	99.54	-	0.509	0.01	0.0655	8E-04 2	2E-04	0.057	0.0018	487	89	416.7	9.2	408.9	4.9	98.1
BL15-01-108	281500000	244.1	93.1	0.4	∞	10	125	2331	82.66	-	0.493 (0.01	0.0647	6E-04	60.0	0.0553	0.0015	426	63	408.3	9.4	403.9	3.9	6.86
BL15-01-109	269800000	408.0	21.3	0.1	ø-	13	163	-3800	92'66	-	0.495	0.01	0.0655	5E-04 (0.081	0.0546	0.001	405	47	407.4	6.9	408.8	3.3	3.3 100.3
BL15-01-110	278400000	219.6	53.4	0.2	Ξ	12	109	2267	99.45	-	0.831	0.04 0	0.0957	0.003	0.795	0.0627	0.0016	695	53	609	20	289	18	2.96
BL15-01-111	278200000 182.5	182.5	11.3	0.1	4-	11	275	-19275	99.45	-	6.304 (0.06	0.3602	0.003	0.462	0.1272	0.001	2058	14	2019.9	9.7	1983	14	98.2
BL15-01-112	274900000 174.7	174.7	85.1	0.5	-3	13	433	-6423	99.64	-	0.793 (0.02 0	9960.0	0.002	0.382	0.0595	0.0016	290	09	591	13	594.4	9.2	9.2 100.6
BL15-01-113	268900000	148.0	20.2	0.1	12	13	108	2427	99.38	_	1.868	0.03 0	0.1739	0.002	0.222	0.0778	0.0014	1136	36	1068	12	1033.3	9.1	8.96
BL15-01-114	272000000	173.0	105.4	9.0	^	14	200	2519	99.65	-	0.724 (0.02 0	0.0892	0.001	0.132	0.0589	0.0014	562	49	553.1	9.4	550.7	9	9.66
BL15-01-115	273400000	226.4	108.3	0.5	7	14	700	37300	78.66		3.975 (0.05	0.2882	0.002	0.339	0.1001	0.0011	1623	20	1629.1	6	1632.5	11	100.2
BL15-01-116	267500000	285.0	260.0	6.0	-2	13	650	-10860	69.66	_	0.51	0.01	0.0669	7E-04 (0.184	0.0553	0.0013	418	54	418.7	8.8	417.1	4.3	9.66
BL15-01-117	282400000	31.2	26.3	0.8	3	12	400	2133	99.01	_	.975	0.09	0.1794	0.003	0.216	0.0795	0.0037	1150	95	1107	33	1066	19	96.3
																								Ī

¹ after Hg correction

² in counts per second

⁴ Correction factor: 1 = threshold ²⁰⁴Pb cps for no correction (80 cps); 2 = threshold % for ²⁰⁴Pb-based correction (21 %error); 3 = threshold % for ²⁰⁸Pb-basedcorrection (98.5 % radiogenic Pb)

Table A4. U-Pb geochronologic data for zircon reference materials analyzed at the University of New Brunswick.

			Mea	Measured concentrations	oncent	trations					Isotop	Isotopic ratios				Calc	Calculated ages (Ma)	ges (Ma			
Sample	⁹⁰ Zr (cps)	U (bpm)	Th (mdd)	²⁰ Th/U	²⁰⁴ Pb :	+2α (% error	²⁰⁶ Pb/ %Pb ³	$C^4 = \frac{^{207}\text{Pb/}}{^{235}\text{U}}$	$^{206}_{\text{Pb}}$ b/ $^{238}_{\text{U}}$		±2α ρ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	²⁰⁷ Pb/ ²³⁵ U	2 ±2σ	²⁰⁶ Pb/ ±	±2σ	%
FC-1 - 1	276300000	191.4	85.98	0.45	2	12	0.009	21255 99.70	1 1.960 0	0.029 0.186		0.002 0.043	3 0.0761	0.0013	1092	33	1102	10	1100	6	8.66
FC-1 - 2	267900000	249.6	154.3	0.62	4-	13	325.0	-13650 99.72	1 1.954 0	0.029 0.186		0.002 0.069	9 0.0763	0.0011	1101	30	1099	10	1097	∞	8.66
FC-1 - 5	273600000	270	152.4	0.56	-11	13	118.2	-5371 99.78	1 1.942 0	0.025 0.185		0.001 0.179	9 0.0762	0.0010	1100	26	1095	6	1095	8 100.0	0.00
FC-1 - 6	277600000	400	227.6	0.57	9	13	216.7	14798 99.88	1 1.950 0	0.021 0.186		0.001 0.386	09200 9	0.0007	1092	19	1099	^	1102	7 100.3	0.3
FC-1 - 8	280100000	193.24	89.22	0.46	5	12	240.0	8470 99.72	1 1.967 0	0.031 0.185		0.002 0.372	2 0.0769	0.0011	1114	28	1104	11	1095	6	99.2
FC-1 - 9	276700000	241.3	144.07	09.0	10	12	120.0	5308 99.79	1 1.950 0	0.026 0.186		0.001 0.287	7 0.0763	0.0010	1101	26	1101	6	1097	8	2.66
FC-1 - 10	275400000	197.1	126.3	0.64	8	13	162.5	5394 99.79	1 1.948 0	0.024 0.186		0.002 0.303	3 0.0761	0.0010	1096	26	1098	8	1097	9 100.0	0.00
FC-1 - 12	288100000	204.86	102.77	0.50	-5	15	300.0	-9038 99.73	1 1.950 0	0.028 0.186		0.002 0.050	0 0.0759	0.0012	1092	31	1098	10	1098	9 100.0	0.00
FC-1 - 13	267800000	122.1	42.27	0.35	9	11	183.3	4345 99.68	1 1.954 0	0.036 0.187		0.002 0.148	8 0.0762	0.0015	1102	38	1100	13	1103	10 100.2	0.7
FC-1 - 14	294500000	205.7	103.56	0.50	2	16	800.0	22880 99.73	1 1.957 0	0.034 0.185		0.002 0.164	4 0.0771	0.0014	1128	33	1100	12	1097	6	2.66
FC-1 - 15	277900000	313.8	189	0.60	9	12	200.0	11420 99.83	1 1.940 0	0.024 0.186		0.001 0.442	2 0.0759	0.0008	1089	22	1095	∞	1101	8 100.5	90.5
FC-1 - 16	264700000	285.9	162.68	0.57	-5	14	280.0	-12270 99.82	1 1.960 0	0.022 0.187		0.002 0.242	2 0.0759	0.0009	1093	25	1101	8	1105	9 100.3	0.3
FC-1 - 17	273500000	211.5	135.02	0.64	^	14	200.0	6489 99.75	1 1.957 0	0.031 0.186		0.002 0.170	0 0.0762	0.0012	1102	30	1101	Ξ	1098	∞	2.66
FC-1 - 18	283700000	230.9	83.8	0.36	8-	14	175.0	-6246 99.79	1 1.946 0	0.025 0.185		0.001 0.184	4 0.0763	0.0010	1099	27	1098	8	1094	∞	2.66
Plesovice - 1	255700000	856	73.9	73.9 0.086	-	15	1500.0	52600.00 99.71	1 0.393	0.01 0.0528		0.0004 0.019	9 0.0531	0.0011	332	47	336.5	5.9	331.4	2.6	98.5
Plesovice - 10	268200000	901.4	95.26	0.106	13	12	92.3	4234.62 99.76	1 0.398	0.01 0.0536		0.0004 0.082	2 0.0536	0.0000	346	36	339.6	4.5	336.7	2.5	99.1
Plesovice - 2	262800000	627.3	65	0.104	5	14	280.0	7752.00 99.72	1 0.394	0.01 0.053		0.0005 0.034	4 0.0537	0.001	352	43	336.9	5.1	333	2.8	8.8
Plesovice - 3	258600000	805	68.2	0.085	8	12	150.0	6050.00 99.81	1 0.389	0.01 0.0538		0.0005 0.035	5 0.0526	0.001	303	45	333	5.3	337.6	3	101
Plesovice - 4	274300000	605.7	56.71	0.094	2	14	700.0	18825.00 99.72	1 0.391	0.01 0.0529		0.0004 0.034	4 0.0535	0.0011	353	44	334.7	5.3	332	2.7	99.2
Plesovice - 5	273200000	968	100.57	0.112	-5	12	240.0	-11154.00 99.78	1 0.393	0.01 0.0532		0.0004 0.244	4 0.0534	0.0008	340	34	336.6	4.4	334.3	2.4	99.3
Plesovice - 6	263900000	585.2	51.42	0.088	9-	14	233.3	-5990.00 99.80	1 0.389	0.01 0.0533		0.0005 0.201	1 0.0527	0.0011	305	46	333.3	9	334.9	2.8	100
Plesovice - 7	271700000	8.689	64.09	0.093	8	12	150.0	5282.50 99.80	1 0.39	0.01 0.0531		0.0004 0.142	2 0.0533	0.0008	340	34	334.3	4.4	333.7	2.5	8.66
Plesovice - 8	272100000	2195.3	268.5	0.122	-	12	1200.0	136000.00 99.84	1 0.397	0 0.0535		0.0004 0.184	4 0.0538	0.0006	368	23	339.4	3	336.2	2.3	99.1
Plesovice - 9	273000000	470.2	38.11	0.081	-12	11	91.7	-2392.50 99.72	1 0.393	0.01 0.053		0.0005 0.066	6 0.0537	0.0012	353	20	336.3	5.7	333.1	3	66
FC-1 - 1	114800000	144	84.24	1.71	^	11	157.1	2873 99.55	1 1.945 0	0.054 0.1854		0.0033 0.200	0 0.0751	0.0022	1062	57	1094	19	1096	18	94.7
FC-1 - 2	121500000	134.2	86.64	1.55	10	12	120.0	2000 99.66	1 1.921 0	0.056 0.1867		0.0032 0.272	2 0.0741	0.0022	1028	29	1085	19	1103	17	90.4
FC-1 - 3	122200000	238.6	107.4	2.22	-5	11	-220.0	-7160 99.60	1 1.978 0	0.048 0.1859		0.0029 0.257	7 0.0770	0.0019	1111	50	1106	17	1099	16	9.66
FC-1 - 4	127500000	173	65.1	2.66	5	12	240.0	5186 99.57	1 1.961 0	0.057 0.1850		0.0035 0.218	8 0.0772	0.0024	1113	61	1100	20	1094	19	98.4
FC-1 - 5	118500000	362	243.5	1.49	^	11	157.1	7657 99.76	1 1.929 0	0.044 0.1850		0.0028 0.310	0 0.0756	0.0017	1078	47	1090	15	1094	15	0.86
FC-1 - 6	118400000	204.1	95.3	2.14	8	11	137.5	3863 99.74	1 1.982 0	0.052 0.1885		0.0030 0.396	6 0.0761	0.0019	1086	52	1107	18	1113	16	96.5
FC-1 - 7	117100000	348.9	195.1	1.79	-3	10	-333.3	-17090 99.70		0.046 0.1855		0.0028 0.406		0.0017	1107	46	1102	16	1097	15	99.4
FC-1 - 8	114100000	325.3	198	1.64	15	11	73.3	3106 99.72	1 1.975 0	0.043 0.1860		0.0027 0.367	7 0.0776	0.0017	1131	43	1108	14	1100	15	96.5
FC-1 - 9	112800000	318.7	196.5	1.62	-20	11	-55.0		1 1.919 0			0.0029 0.518			1069	47	1086	16	1096	16	97.1
FC-1 - 10	113600000	283.8	178.1	1.59	-5	11	-220.0	-8070 99.74	1 1.939 0	0.044 0.1856		0.0027 0.285	5 0.0759	0.0018	1085	46	1094	15	1097	15	98.5
FC-1 - 11	113300000	300.7	195.3	1.54	2	10	471.4	20424 99.83	1 1.941 0	0.045 0.1864		0.0028 0.378	8 0.0753	0.0017	1068	47	1094	16	1102	15	8:56
FC-1 - 12	111800000	248.1	136.5	1.82	10	10	0.86	3466 99.67	1 1.957 0	0.044 0.1861		0.0028 0.199	9 0.0763	0.0018	1095	48	1100	15	1100	15	99.1
FC-1 - 13	114600000	276.2	181.9	1.52	13	10	76.9	3068 99.70	1 1.963 0	0.051 0.1860		0.0030 0.473	3 0.0765	0.0019	1100	49	1101	17	1100	16	9.66
FC-1 - 14	112200000	320.1	212.2	1.51	20	10	50.0	2250 99.66	1 1.956 0	0.046 0.1855		0.0028 0.182	2 0.0770	0.0019	1113	49	1099	16	1097	15	98.2

inued.
. Cont
le A4
æ

	con	0.66	0.66	97.0	96.5	9.66	5 101.2	99.4	5 100.0	100.2	99.3	100.9	99.2	6 100.2	5 101.4	98.2	101.8	98.2	98.4	8.66	99.1	9.66	95.7	2.66	98.4	8.66	99.3	2.96	2.66	86	99.4	9.86	97.3	97.1	99.2	96.3	101	101
	+2α	16	15	16	15	15	5 1	5	5 1	5 1	5	6 1	5	6 1	5 1	9	6 1	38	38	38	37	38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	12	12
(1	²⁰⁶ Pb/ : ²³⁸ U	1102	1094	1104	1101	1096	348	339	326	336	339	340	341	340	342	338	342	1099.8	1097.1	1101.2	1097.8	1098.3	1101.3	1096.9	1100.1	1099.5	1097.3	1104	1095.7	1101.4	9.7601	1098.7	1103.1	1092.8	1101.9	1097.9	333.4	333.3
es (Ma	έτ2σ	16	18	15	15	13	6	10	10	^	6	12	∞	6	6	13	12	21	22	19	20	20	20	21	22	20	21	22	20	19	20	21	20	20	20	21	8.6	10
Calculated ages (Ma)	²⁰⁷ Pb/ :	1096	1097	1100	1097	1098	344	341	326	335	342	337	343	339	337	344	336	1099	1090	1102.9	1092.4	1100	1098	1099.2	1096	1100	1095	1104	1096.1	1099.5	1097	1098	1105	1092	1100.6	1099	331.7	330.5
Calcı	±2α	52	53	47	45	40	89	75	81	28	71	84	09	99	69	110	88	34	41	21	24	28	31	28	40	30	29	40	29	59	33	31	34	59	29	37	53	28
	²⁰⁷ Pb/ ²⁰⁶ Pb	1001	1106	1082	1075	1096	279	332	321	325	352	306	346	332	304	371	290	1089	1082	1102	1087	1104	1071	1101	1088	1100	1092	1082	1095	1087	1094	1090	1086	11113	1096	1074	304	295
	±2σ	0.0020	0.0020	0.0017	0.0017	0.0015	0.0016	0.0019	0.0020	0.0014	0.0018	0.0021	0.0014	0.0016	0.0017	0.0026	0.0021	0.0013	0.0015	0.0008	0.0009	0.0011	0.0011	0.0011	0.0015	0.0011	0.0011	0.0015	0.0011	0.0012	0.0013	0.0012	0.0013	0.0011	0.0011	0.0014	0.0013	0.0014
	²⁰⁷ Pb/ ²⁰⁶ Pb	0.0763	0.0769	0.0758	0.0755	0.0762	0.0522	0.0536	0.0533	0.0532	0.0540	0.0530	0.0537	0.0535	0.0528	0.0546	0.0524	0.0761	9200	0.0764	0.0759	0.0766	0.0754	0.0764		0.0764		0.0759	0.0762	0.0757	0.0762	9200	0.0758	0.0769	0.0763	0.0756	0.0528	0.0526
s	2 ρ 2	0.131	0.265 (0.165 (0.357 (0.427 (0.220	0.223	0.128	0.085	0.177 (0.161 (0.178 (0.295 (0.148	0.054 (0.146	0.283	0.272	0.474 (0.486 (0.375 (0.189 (0.235 (0.442 (0.447 (0.306	0.239 (0.101	0.166	0.202	0.274 (0.442 (0.248 (0.276	0.011	0.022 (
Isotopic ratios	±2σ	0.0029 0.	0.0028 0.	0.0029 0.	0.0028 0.	0.0027 0.	0.00009 0.	0.00009 0.	0.00009 0.	0.00008	0.0008 0.	0.00009 0.	0.00008 0.	0.0000	0.0000	0.0010 0.	0.0010 0.	0.007 0.	0.007 0.	0.0069 0.	0.0069 0.	0.0069 0.	0.0069 0.	0.0069 0.		0.0069 0.		0.0071 0.	0.0069 0.	0.0069 0.	0.0069 0.	0.0069 0.	0.007 0.	0.007 0.	0.007 0.	0.007 0.	0.002 0.	0.002 0.
Isotop																																						
	²⁰⁶ Pb/ ²³⁸ U	0.1865	0.1849	0.1868	0.1863	0.1854	0.0554	0.0540	0.0518	0.0535	0.0541	0.0542	0.0542	0.0541	0.0544	0.0538	0.0545	0.186	0.1856	0.1863	0.1857	0.1858	0.1863	0.1855	0.1861	0.186		0.1868	0.1853	0.1863	0.1856	0.1858	0.1867	0.1848	0.1864	0.1857	0.0531	0.0531
	±2σ	0.047	0.051	0.042	0.044	0.039	0.012	0.014	0.014	0.010	0.013	0.016	0.010	0.012	0.012	0.018	0.016	0.06	0.06	0.00	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.07	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.01	0.01
	$^{207}\mathrm{Pb}/$	1.948	1.953	1.959	1.949	1.950	0.402	0.400	0.379	0.391	0.401	0.395	0.403	0.395	0.395	0.405	0.393	1.957	1.933	1.965	1.935	1.958	1.952	1.951	1.95	1.959	1.944	1.965	1.946	1.956	1.949	1.952	1.966	1.935	1.959	1.949	0.387	0.385
	C_{Φ}		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-
	%Pb³	99.66	99.59	92.66	99.80	99.83	99.94	99.78	99.85	99.80	99.78	99.90	99.74	82.66	99.92	99.72	99.95	69.66	99.72	99.81	98.66	92.66	99.77	99.74	99.70	99.77	99.78	99.71	99.74	99.81	99.73	99.70	99.78	92.66	99.75	69.66	99.84	99.85
	²⁰⁶ Pb/ ²⁰⁴ Pb ²	-29670	-7075	5654	3760	19760	-4955	8125	2690	-7284	-1643	1654	2343	3370	6335	3095	4253	4655.13	5381.82	189666.67	26068.97	17420.00	8814.75	-36500.00	31230.00	12948.78	6383.13	4369.81	5750.00	8954.39	3126.83	8090.91	3717.27	8552.24	5262.50	4641.38	1814.75	1789.47
	% error	-1100.0	-300.0	142.9	91.7	220.0	-275.0	550.0	183.3	-220.0	-100.0	122.2	85.7	150.0	275.0	145.5	216.7	119.2	125.8	1566.7	306.9	364.0	160.7	-514.3	1000.0	222.0	106.0	179.2	100.0	147.4	77.2	165.5	100.0	135.8	108.8	134.5	53.6	57.9
tions	±2α %	11	12	10	11	11	11	11	11	11	12	==	12	12	11	16	13	9.3	8.3	9.4	8.9	9.1	8.6	7.2	10	9.1	8.8	9.5	10	8.4	9.5	9.1	11	9.1	8.7	7.8	8.6	11
centra		-1	4-	^	12	5	4-	7	9	-5	12	6	14	∞	4	11	9	2.8	9.9	9.0	5.9	2.5	5.1	1.4	1	4.1	3.3	5.3	10	5.7	2.3	5.5	11	6.7	∞	5.8	18.3	19
Measured concentrations	Th/U (cps)	1.94	1.61	1.60	1.70	1.45	11.95	10.98	12.58	9.11	11.42 -	12.54	9.49	10.51	10.97	6.62	10.81	1.683	2.163	2.116 (1.663	1.785	1.729	2.274	1.975	, 219.1	909.1	1.34	1.613	1.604	2.016 1.	1.814	1.767	1.834	1.646	2.049	10.72	10.72
Measu		109	128.9	178.4	190.3	504.2	40.6 11	37.07 10	31.31 12	6.66	44.29 11	30.01 12	88.8	67.2 10	59.51 10	131.3 (59.9 10	136.5 1.	100.7 2.	328 2.	282.6 1.	151.8 1.	192.9 1.	144.2 2.		214.6 1.		110.2	240 1.	203.5 1.	124.5 2.	155.1 1.	148.3 1.	210.7 1.	162.8 1.	85.6 2.	68.2 10	68.1 10
	Th (ppm)																								7 102.15													
	U (ppm)	211.4	207.2	285.3	324	733.2	485	407.1	393.8	909.7	505.8	376.3	842.9	706.6	652.6	869.6	647.7	229.7	217.8	694	469.9	270.9	333.6	327.9	201.7	346	348.6	147.7	387	326.4	251	281.3	262.1	386.5	268	175.4	730.8	730.3
	⁹⁰ Zr (cps)	111500000	109500000	109800000	110900000	108400000	112300000	112200000	118200000	110800000	107100000	111900000	106100000	104100000	107400000	115200000	117200000	172400000	173600000	164700000	165700000	166000000	164700000	162100000	160500000	158700000	157400000	159300000	155600000	158400000	155700000	158300000	155900000	152900000	157700000	154700000	172700000	177600000
	Sample	FC-1 - 15	FC-1 - 16	FC-1 - 17	FC-1 - 18	FC-1 - 19	Plesovice - 1	Plesovice - 2	Plesovice - 3	Plesovice - 4	Plesovice - 5	Plesovice - 6	Plesovice - 7	Plesovice - 8	Plesovice - 9	Plesovice - 10	Plesovice - 11	FC-1 - 1	FC-1 - 2	FC-1 - 4	FC-1 - 5	FC-1 - 6	FC-1 - 7	FC-1 - 8	FC-1 - 9	FC-1 - 10	FC-1 - 11	FC-1 - 12	FC-1 - 13	FC-1 - 14	FC-1 - 15	FC-1 - 16	FC-1 - 17	FC-1 - 18	FC-1 - 19	FC-1 - 20	Plesovice - 1	Plesovice - 1

			Mea	Measured concentrations	oncent	rations						Is	Isotopic ratios	ratios				Cal	Calculated ages (Ma)	m) səgu	a)		
Sample ^{90}Z	⁹⁰ Zr (cps)	U (bpm)	Th (mdd)	Th/U (²⁰⁴ Pb :	±2σ 9	% error	²⁰⁶ Pb/ %I	%Pb³ C⁴	²⁰⁷ Pb/ 235U	/ ±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	Ь	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	%
Plesovice - 2 170	170900000	604.5	54.1	11.17	7.1	6	126.8	3921.13 99	99.71	1 0.403	3 0.02	2 0.0539	0.002	0.024	1 0.0545	0.0015	373	59	343.4	11	338.2	12	5.86
Plesovice - 2 180	180300000	604.5	54.1	11.17	^	Ξ	157.1	4150.00 99	18.66	1 0.398	8 0.02	2 0.054	0.002	0.089	9 0.0537	0.0016	340	65	339.6	11	339	12	8.66
Plesovice - 3 157	157400000	617.9	54.16	11.41	15	12	80.0	1874.67 99	26.66	1 0.383	3 0.01	1 0.0529	0.002	0.356	5 0.0525	0.0012	297	53	328.4	10	332.3	12	101
Plesovice - 3 170	170500000	619	54.41	11.38	13	Ξ	84.6	2261.54 99	06.66	1 0.382	2 0.01	1 0.0528	0.002	0.182	2 0.0526	0.0011	300	47	328.3	9.5	331.7	12	101
Plesovice - 4 167	167500000	665.7	59.31	11.22	3.2	9.1	284.4	9575.00 99	82.66	1 0.376	6 0.01	1 0.0513	0.0019	9 0.082	2 0.0531	0.0013	317	52	323.3	9.6	322.3	12	2.66
Plesovice - 4 167	167800000	665.7	59.3	11.23	3.3	6	272.7	9287.88 99	92.66	1 0.375	5 0.01	1 0.0513	0.0019	9 0.1	0.053	0.0013	314	52	323.1	9.6	322.4	12	8.66
Plesovice - 5 164	164000000	585	51	11.47	4.5	8.6	217.8	6044.44 99	. 18.66	1 0.392	2 0.01	1 0.0532	0.002	0.236	5 0.0536	0.0014	342	26	335.3	11	334.2	12	2.66
Plesovice - 5 164	164100000	287	51.3	11.44	10.5	9.4	89.5	2571.43 99	92.66	1 0.393	3 0.01	1 0.0529	0.002	2 0.165	5 0.0541	0.0013	360	51	336.1	10	332.3	12	6.86
Plesovice - 6 161	161400000	559	48.7	11.48	8	10	125.0	3161.25 99	69.85	1 0.39	9 0.01	1 0.0536	0.002	0.338	3 0.053	0.0013	314	54	333.8	10	336.4	12	101
Plesovice - 6 161	161400000	529	48.7	11.48	∞	10	125.0	3161.25 99	99.85	1 0.39	9 0.01	1 0.0536	0.002	0.338	3 0.053	0.0013	314	54	333.8	10	336.4	12	101
Plesovice - 7 163	163400000	613.4	52.96	11.58	6.7	6	134.3	4153.73 99	99.65	1 0.397	7 0.01	1 0.0525	0.0019	9 0.046	5 0.0544	0.0014	367	57	338.8	10	329.8	12	97.3
Plesovice - 7 178	178000000	613.6	52.93	11.59	11	Ξ	100.0	2634.55 99	99.66	1 0.394	4 0.02	2 0.0526	0.002	0.08	3 0.054	0.0016	350	65	336.7	11	330.2	12	98.1
Plesovice - 8 161	161500000	658.4	59.57	11.05	0.1	9.5	9500.0	293600.00 99	99.81	1 0.391	1 0.01	1 0.0533	0.002	2 0.017	7 0.0534	0.0014	327	26	334.4	10	334.5	12	100
Plesovice - 8 161	161500000	658.4	59.57	11.05	0.1	9.5	9500.0	293600.00 99	18.66	1 0.391	1 0.01	1 0.0533	0.002	0.017	7 0.0534	0.0014	327	26	334.4	10	334.5	12	100
Plesovice - 9 162	162500000	791.8	77.53	10.21	1.4	9.2	657.1	25464.29 99	16.66	1 0.386	6 0.01	1 0.0534	0.002	0.125	5 0.0525	0.0011	295	46	330.7	9.4	335.2	12	101
Plesovice - 9 162	162500000	791.8	77.53	10.21	1.4	9.2	657.1	25464.29 99	16.66	1 0.386	6 0.01	1 0.0534	0.002	0.125	5 0.0525	0.0011	295	46	330.7	9.4	335.2	12	101
Plesovice - 10 160	160700000	1185.1	159.2	7.444	11.4	9.3	81.6	4631.58 99	99.81	1 0.391	1 0.01	1 0.0533	0.002	0.138	3 0.0533	0.0009	333	38	334.5	8.8	334.6	12	100
Plesovice - 10 160	160700000	1185.1	159.2	7.444	11.4	9.3	81.6	4631.58 99	18.66	1 0.391	1 0.01	1 0.0533	0.002	0.138	3 0.0533	0.0009	333	38	334.5	8.8	334.6	12	100
Plesovice - 11 158	158600000	618.1	53.99	11.45	3.2	8.6	268.8	8459.38 99	99.81	1 0.391	1 0.01	1 0.0531	0.002	0.149	9 0.0535	0.0013	333	54	334.8	10	333.8	12	2.66
Plesovice - 11 158	158600000	618.1	53.99	11.45	3.2	8.6	268.8		18.66	1 0.391	1 0.01	1 0.0531	0.002	0.149	9 0.0535	0.0013	333	54	334.8	10	333.8	12	2.66
Plesovice - 12 159	159500000	747.9	71.37	10.48	9.0	6.6	1650.0		99.73	1 0.39	9 0.01		0	9 0.194	1 0.0535		337	47	333.6	9.5	328.6	12	98.5
Plesovice - 12 173	173300000	748.6	71.46	10.48	-3	12	-400.0	-11450.00 99	99.73	1 0.389	9 0.02	2 0.0524	0.002	0.179	9 0.0535	0.0014	334	59	333.5	11	329.5	12	8.86
Plesovice - 13 153	153800000	473.6	38.91	12.17	15.6	6.6	63.5	1328.21 99	99.93	1 0.392	2 0.02	2 0.054	0.002	0.108	3 0.0528	0.0015	301	62	335.3	11	339.2	12	101
Plesovice - 13 155	155500000	473.6	38.93	12.17	15.8	9.5	60.1	1312.66 99	66.66	1 0.392	2 0.02	2 0.054	0.002	0.126	5 0.0528	0.0015	303	61	335.2	11	338.9	12	101
Plesovice - 14 166	166500000	412.2	37.35	11.04	^	13	185.7	2681.43 99	99.71	1 0.395	5 0.02		0.002	0.154	1 0.0543		364	87	337	13	331.2	12	98.3
	157600000	412.2	37.29	11.05	8.7	9.1	104.6	2086.21 99	99.57	1 0.403	3 0.02	0	0.002	0.093			404	99	342.9	11	330.9	12	96.5
Plesovice - 15 156	156100000	610.3	54.76	11.14	17.1	8.4	49.1	1560.23 99	. 78.66	1 0.388	8 0.01		0.002	0.247	7 0.0532	0.0012	321	49	332.3	8.6	333.1	12	100
Plesovice - 15 156	156100000	610.3	54.76	11.14	17.1	8.4	49.1	1560.23 99	99.82	1 0.388	8 0.01		0.002	0.247	7 0.0532		321	49	332.3	8.6	333.1	12	100
Plesovice - 16 155	155600000	612.7	55.4	11.06	6.4	9.2	143.8	4201.56 99	99.71	1 0.395	5 0.02	2 0.0529	0.002	0.261	0.054	0.0014	352	55	337.6	11	332.4	12	98.5
Plesovice - 16 155	155600000	612.7	55.4	11.06	6.4	9.2	143.8	4201.56 99	99.71	1 0.395	5 0.02	2 0.0529	0.002	0.261	0.054	0.0014	352	55	337.6	11	332.4	12	98.5
Plesovice - 17 156	156500000	972.6	105.7	9.202	7.2	8.9	123.6	6025.00 99	99.75	1 0.393	3 0.01	1 0.0532	0.002	0.174	1 0.0533	0.001	329	44	336.3	9.3	333.9	12	99.3
Plesovice - 17 156	156500000	972.6	105.7	9.202	7.2	8.9	123.6	6025.00 99	99.75	1 0.393	3 0.01	1 0.0532	0.002	0.174	1 0.0533	0.001	329	44	336.3	9.3	333.9	12	99.3
Plesovice - 18 152	152800000	518.7	43.51	11.92	7.9	8.2	103.8	2849.37 99	69.85	1 0.395	5 0.02	2 0.0548	0.0021	1 0.221	0.0531	0.0014	317	59	337.2	11	344.1	13	102
Plesovice - 18 163	163200000	518.7	43.51	11.92	6	10	111.1	2608.89 99	18.66	1 0.397	7 0.02	2 0.0546	0.0021	0.27	7 0.0537	0.0017	342	69	338.6	12	342.5	13	101
Plesovice - 19 158	158000000	412.1	33.25	12.39	∞	10	125.0	2281.25 ##	#####	1 0.379	9 0.02	2 0.0538	0.002	0.114	4 0.0513	0.0016	242	99	325.9	Ξ	337.5	12	104
Plesovice - 19 153	153100000	412.1	33.25	12.39	6	9.1	101.1	## 68.8861	#####	1 0.381	1 0.02	2 0.0537	0.002	0.094	4 0.0515	0.0015	250	62	326.8	11	337.2	12	103
Plesovice - 20 153	153300000	929	62.46	10.82	0.1	7.7	7700.0	288900.00 99	06.66	1 0.38	8 0.01	1 0.0524	0.002	0.004	4 0.0525	0.0012	292	52	326.7	9.6	329.1	12	101
Plesovice - 20 155	155800000	676.3	62.48	10.82	6.0	8.3	922.2	32466.67 99	68.66	1 0.378	8 0.01	1 0.0521	0.0019	9 0.081	0.0524	0.0014	291	57	325	10	327.5	12	101

Table A4. Continued.

			Me	Measured concentrations	concen	tration	15					Isa	Isotopic ratios	tios				Calc	Calculated ages (Ma)	ges (Ma	(F)		
Sample	⁹⁰ Zr (cps)	U (bpm)	Th (ppm)	Th/U	²⁰⁴ pb (cps)	±2σ	% error	²⁰⁶ Pb/ 9	%Pb³ C	C^4 207	²⁰⁷ Pb/ ±2σ ²³⁵ U	. ²⁰⁶ Pb/ . ²³⁸ U	±2σ	Ь	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ 238U	±2σ	% con
FC-1 - 2	178400000	4.483	2.003	2.24	0	10	-4800.0	32790	99.59	1 1	1.965 0.054	4 0.186	0.003	0.010	0.0771	0.0017	1118	45	1102	18	1100	16	6.26
FC-1 - 3	171900000	7.397	3.232	2.29	0	10	n.d.	53200	99.75	1 1	1.948 0.050	0 0.186	0.003	0.329	0.0759	0.0012	1084	32	1096	17	1100	15	6.76
FC-1 - 4	167500000	8.475	4.63	1.83	-5	6	-193.6	60100	99.74	1 1	1.977 0.047	7 0.186	0.003	0.325	0.0767	0.0010	1108	27	1107	16	1101	15	6.66
FC-1 - 5	176400000	7.253	4.377	1.66	0	12	n.d.	52590	98.66	1 1	1.920 0.047	7 0.185	0.003	0.434	0.0757	0.0011	1082	29	1087	16	1091	16	99.1
FC-1 - 6	177500000	3.386	1.572	2.15	-7	11	-157.1	24700	69.66	1 1	1.920 0.060	0 0.187	0.004	0.174	0.0753	0.0020	1061	54	1086	21	1102	19	8.56
FC-1 - 7	165300000	6.101	3.499	1.74	9	11	183.3	7118	99.75	1 1	1.948 0.048	8 0.186	0.003	0.251	0.0754	0.0011	1076	32	1096	17	1099	16	2.96
FC-1 - 8	179600000	10.06	6.01	1.67	15	15	100.0	4926	99.83	1 1	1.971 0.048	8 0.188	0.003	0.300	0.0766	0.0013	1109	33	1105	17	1109	17	99.5
FC-1 - 10	159800000	4.329	1.805	2.40	-5	10	-200.0	28890	09.66	1 1	1.948 0.055	5 0.185	0.003	0.249	0.0762	0.0016	1089	42	1095	19	1093	16	28.7
FC-1 - 12	162500000	2.998	1.302	2.30	5	10	200.0	4014	99.57	1 1	1.931 0.059	9 0.183	0.003	0.227	0.0765	0.0017	1093	46	1089	20	1085	17	8.66
FC-1 - 13	154700000	8.257	5.192	1.59	3	10	396.0	21836	99.71	1 1	1.973 0.050	0 0.188	0.003	0.119	0.0763	0.0013	1094	34	1105	17	1109	16	98.2
FC-1 - 14	149400000	5.299	3.247	1.63	3	10	293.9	10273	69.63	1 1	1.954 0.055	5 0.187	0.003	0.095	0.0761	0.0017	1083	45	1097	19	1103	17	97.5
FC-1 - 15	150200000	3.489	1.752	1.99	4	12	300.0	5648	99.55	1 1	1.982 0.070	0 0.185	0.004	0.138	0.0772	0.0023	1116	09	1106	24	1096	19	0.66
FC-1 - 16	146400000	11.28	7.37	1.53	-2	6	-430.0	70100	99.83	1 1	1.932 0.045	5 0.185	0.003	0.452	0.0757	0.0010	1083	26	1093	15	1095	16	98.6
FC-1 - 17	147300000	86.9	3.56	1.96	2	10	500.0	22500	99.73	1 1	1.965 0.048	8 0.187	0.003	0.382	0.0767	0.0012	1107	31	1104	17	1105	17	5.66
FC-1 - 18	132700000	90.9	2.841	2.13	∞	13	162.5	4529	99.64	1 1	1.946 0.066	6 0.184	0.003	0.139	0.0756	0.0022	1075	26	1095	22	1090	18	9.96
FC-1 - 19	149000000	2.762	1.022	2.70	2	10	633.3	11847	99.40	1 1	1.953 0.065	5 0.184	0.003	0.129	0.0770	0.0022	1099	57	1096	22	1089	18	6.66
FC-1 - 20	146000000	5.356	3.211	1.67	-2	11	-550.0	34300	99.71	1 1	1.970 0.052	2 0.188	0.003	0.390	0.0763	0.0014	1093	36	1105	19	1108	16	98.2
FC-1 - 21	148700000	2.796	1.108	2.52	-3	10	-306.3	17890	99.59	1 1	1.927 0.061	1 0.185	0.003	0.239	0.0754	0.0020	1067	20	1087	21	1094	18	96.4
Plesovice - 1	167900000	23.35	1.955	11.94	^	13	185.7	2899	18.66	1 0.	0.399 0.011	1 0.054	0.001	0.523	0.0536	0.0010	342	41	340	∞	340	rC	6.66
Plesovice - 2	157500000	31.53	3.043	10.36	19	11	57.9	3175	99.28	1 0.	0.434 0.011	1 0.054	0.001	0.187	0.0583	0.0013	527	48	366	∞	338	5	92.5
Plesovice - 3	159400000	17.738	1.775	66.6	2	11	550.0	17270	96.66	1 0.	0.389 0.013	3 0.054	0.001	0.157	0.0521	0.0015	272	63	333	10	339	5 1	101.9
Plesovice - 4	157200000	21.165	1.776	11.92	5	10	190.4	7856	99.95	1 0	0.387 0.011	1 0.054	0.001	0.113	0.0520	0.0012	273	49	333	8	338	5 1	101.7
Plesovice - 5	156400000	18.53	1.499	12.36	-	11	1100.0	35120	88.66	1 0	0.396 0.012	2 0.054	0.001	0.205	0.0530	0.0013	314	54	338	6	339	5 1	100.1
Plesovice - 6	152500000	40.55	4.885	8.30	15	12	80.0	4975	99.27	1 0	0.437 0.012	2 0.054	0.001	0.692	0.0586	0.0008	547	29	367	∞	338	2	6.16
Plesovice - 7	152300000	16.72	1.574	10.62	4-	10	-264.9	30780	62'66	1 0	0.397 0.013	3 0.054	0.001	0.378	0.0535	0.0013	337	51	339	6	337	5	9.66
Plesovice - 8	150400000	17.78	1.736	10.24	4	12	300.0	8128	99.71	1 0.	0.404 0.013	3 0.054	0.001	0.360	0.0545	0.0013	376	53	344	6	337	5	98.1
Plesovice - 9	148900000	27.41	2.476	11.07	4-	6	-230.0	50200	99.84	1 0	0.393 0.011	1 0.054	0.001	0.381	0.0528	0.0010	319	44	337	∞	338	5 1	100.3
Plesovice - 10	142700000	19.28	2.133	9.04	9	6	143.8	5352	62'66	1 0	0.397 0.011	1 0.054	0.001	0.329	0.0536	0.0011	340	45	339	∞	338	9	6.66
Plesovice - 11	139100000	21.34	1.858	11.49	-5	11	-220.0	36520	99.75	1 0	0.396 0.012	2 0.053	0.001	0.303	0.0539	0.0012	355	49	338	6	335	5	6.86
Plesovice - 12	140600000	15.95	1.321	12.07	-2	10	-500.0	27530	99.75	1 0	0.393 0.012	2 0.053	0.001	0.290	0.0537	0.0013	339	55	336	6	333	5	99.2
Plesovice - 13	150900000	12.491	1.012	12.34	-1	12	-1200.0	23180	99.92	1 0	0.389 0.014	4 0.054	0.001	0.473	0.0525	0.0015	296	61	335	11	341	6 1	101.8
Plesovice - 14	140600000	16.91	1.636	10.34	10	10	100.0	2953	98.66	1 0	0.398 0.013	3 0.054	0.001	0.388	0.0533	0.0013	328	52	339	6	339	5	8.66
Plesovice - 15	139400000	9.581	0.776	12.35	4	6	244.4	4544	29.66	1 0	0.400 0.015	5 0.053	0.001	0.269	0.0543	0.0017	356	89	341	11	335	9	98.2
¹ after Hø correction	ection																						

after Hg correction

² in counts per second

³ radiogenic ⁴ Correction factor: 1 = threshold ²⁰⁴Pb cps for no correction (80 cps); 2 = threshold % for ²⁰⁴Pb-based correction (21 %error); 3 = threshold % for ²⁰⁸Pb-based correction (98.5 % radiogenic Pb)