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ABSTRACT

This contribution presents new 40Ar/39Ar laser step-heating data for muscovite associated with four significant 
orogenic gold-mineralized zones in central and western Newfoundland to build upon existing geochronological 
constraints for orogenic gold mineralization across much of the Newfoundland Appalachians. Additionally, we 
provide the first 40Ar/39Ar laser step-heating data for detrital muscovite from gold-mineralized sandstone of the 
Wigwam Formation (Botwood Group) at the Moosehead gold prospect. Most known gold zones on the isIand 
occur in proximity to reactivated crustal-scale faults and related structures, and are commonly localized within 
competent, rigid lithological units (e.g., granitoid rocks); although, some vein systems cut less competent, clastic 
sedimentary rock sequences. Host rocks range in age from Neoproterozoic to Devonian and may extend into the 
Carboniferous. Robust Pragian to Emsian (ca. 410–375 Ma) rutile, muscovite and zircon ages constrain the timing 
of gold mineralization in parts of the Exploits Subzone, whereas less precise age estimates for gold mineralization 
in the Notre Dame Subzone and Laurentian margin range from Wenlock to Emsian (ca. 433–375 Ma). Collectively, 
the geochronological data suggest that fluid-pressure cycling associated with gold mineralization in central and 
western Newfoundland occurred during progressive Siluro-Devonian tectonics associated with the waning stages 
of the Salinic orogenic cycle and spanning the Acadian and Neoacadian orogenic cycles. Multiple, polyphase, 
overlapping orogenic events allowed for repeated, gold mineralizing fluid flow events, particularly in proximity to 
long-lived, reactivated crustal-scale fault zones.

RÉSUMÉ

La présente contribution fait état de nouvelles données obtenues par chauffage échelonné au laser 40Ar/39Ar 
de muscovite associée à quatre zones minéralisées aurifères  orogéniques stratégiques dans le centre et l’ouest de 
Terre-Neuve permettant de mieux préciser les limites géochronologiques existantes de la minéralisation aurifère 
orogénique dans la majeure partie des Appalaches terre-neuviennes. Nous fournissons de plus les premières 
données par chauffage échelonné au laser 40Ar/39Ar de muscovite détritique provenant de grès minéralisé aurifère 
de la Formation de Wigwam (groupe de Botwood) dans la zone d’intérêt aurifère de Moosehead. La majorité des 
zones aurifères connues sur l’île se trouve à proximité de failles d’échelle crustale et de structures connexes, et 
elles se situent communément à l’intérieur d’unités lithologiques rigides parallèles (p. ex. des roches granitiques), 
bien que certains réseaux filoniens recoupent des séquences de roches sédimentaires clastiques moins parallèles. 
L’âge des roches hôtes varie du Néoprotérozoïque au Dévonien et  peut s’étendre au Carbonifère. Des datations 
robustes du Praguien à l’Emsien (env. 410 à 375 Ma) de rutile, de muscovite et de zircon limitent le moment de la 
minéralisation de l’or dans des parties de la sous-zone Exploits, alors que des estimations moins précises de l’âge 
de la minéralisation aurifère dans la sous-zone Notre-Dame et de la marge laurentienne varient du Wenlock à 
l’Emsien (env. 433 à 375 Ma). Les données géochronologiques laissent collectivement supposer que les cycles de 
pression hydraulique associés à la minéralisation d’or dans le centre et l’ouest de Terre-Neuve se sont manifestés 
durant la progression tectonique siluro-dévonienne associée aux stades de ralentissement du cycle orogénique 
salinique et s’étendant aux cycles orogéniques acadien et néoacadien. Plusieurs phénomènes orogéniques 
polyphasés se chevauchant ont permis des écoulements de fluides minéralisateurs aurifères répétés, en particulier 
à proximité de zones de failles d’échelle crustale réactivées persistantes.
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INTRODUCTION

Prior to the late 1980s, the vast majority of gold pro-
duced in the Newfoundland Appalachians was derived as 
a by-product from auriferous volcanic massive sulphide de-
posits such as the Rambler, Ming and in particular, Buchans 
deposits of the central Newfoundland Dunnage Zone (see 
Piercey 2007; Galley et al 2007). Positive market conditions 
and the introduction of flow through shares stimulated an 
Island-wide gold exploration boom in the late 1980s that 
led to the discovery of many of the gold deposits that are 
past producers (Fig. 1) (e.g., Hope Brook Deposit, Big Ridge 
Resources; Hammerdown and Orion, Maritime Resources) 
and are currently in production (e.g., Stog’er Tight deposit, 
Anaconda Mining). In addition to these deposits, prospec-
tive gold deposits and occurrences seeing renewed explo-
ration today include: (1) Valentine Lake Project, Marathon 
Gold Corporation; (2) Cape Ray Deposits, Matador Mining; 
(3) Appleton-JBP linears (now Queensway Project), New
Found Gold; (4) Little River Prospects (now Golden Baie),
Canstar Resources; and (5) Moosehead, Sokoman Minerals.

The geoscientific knowledge base related to gold miner-
alized zones in central and western Newfoundland is lean 
compared to other global gold producing districts. Early 
gold-related studies, subsequent to the explosion of explora-
tion in the late 1980s, provided some of the first descriptive 
and comparative documentation of the gold occurrences on 
the Island (e.g., Tuach 1987; Tuach et al 1988; Evans 1991, 
1993, 1999, 2004; Churchill et al 1993; Wilson and Evans 
1994). Extant geochronological investigations on gold zones 
are limited to those from the Hope Brook (Dubé et al 1995) 
and Cape Ray deposits (Dubé et al 1996; Dubé and Lauz-
ière 1997) and select geochronological studies at the Nugget 
Pond (Sangster et al 2008) and Hammerdown (Ritcey et al 
1995) deposits. Subjects of more recent gold-related, para-
genetic, lithogeochemical and geochronological studies in-
clude: the Rattling Brook (Kerr and van Breemen 2007) and 
Thor prospects (Minnett et al 2012) in western Newfound-
land (White Bay); the Pine Cove (Ybarra 2020) and Ming 
(Au-rich VMS) deposits of Baie Verte Peninsula (Pilote et al 
2020); and the central Newfoundland gold district (Valen-
tine Lake deposit and Wilding Lake prospect; Honsberger 
et al 2022a).

Robust U–Pb geochronological constraints on gold min-
eralization are largely restricted to the Neoproterozoic (ca. 
570–585 Ma) epithermal prospects of eastern Newfound-
land (e.g., O’Brien et al 2001; Sparkes et al 2005; 2016; Spark-
es and Dunning 2014), with fewer constraints on the timing 
of orogenic gold mineralization in central and western New-
foundland (e.g., ca. 374 Ma muscovite, Sandeman and Dun-
ning 2016; ca. 410 Ma rutile, Honsberger et al 2022a). Kerr 
and Selby (2012) summarized many of the earlier geochro-
nological data for gold mineralization, mostly on the Baie 
Verte Peninsula, and this contribution builds upon their 
compilation. We review existing age constraints on gold 
mineralization in the context of our new 40Ar/39Ar geochro-
nological data for muscovite from four gold-mineralized  

zones across western and central Newfoundland and discuss 
the data with respect to Paleozoic orogenesis.

CRUSTAL-SCALE ARCHITECTURE 
OF NEWFOUNDLAND

Williams et al (1988) subdivided the Newfoundland 
Appalachians into four major pre-Silurian tectonic-strati-
graphic domains including, from west to east, the Hum-
ber, Dunnage, (including the Notre Dame and Exploits 
subzones), Gander and Avalon zones. The Gander Zone 
was further divided into Meelpaeg, Mount Cormack and 
Gander Lake subzones. These zones broadly correspond to 
(also from west to east): the Laurentian margin (Humber); 
the Dashwoods terrane (extended Laurentian margin and 
Notre Dame Subzone); Ganderia (peri-Gondwana terranes 
including all Gander subzones and overthrust intraoceanic 
Exploits Subzone rocks); and Avalonia (e.g., van Staal et al 
1996; van Staal and Barr 2012; Fig. 1). The Bras d’Or ter-
rane of Cape Breton Island may extend to the Cinq-Cerf 
and Grey River areas in southern Newfoundland and its 
basement may underlie all the Exploits Subzone (Barr et al 
2014).

The geographic/aerial extent of the Exploits Subzone and 
its boundaries in northeast-central Newfoundland is mis-
represented on most extant compilation maps, particularly  
its interpreted southeastern termination at the former Gan-
der River Ultrabasic Belt (GRUB Line), now known as the 
Gander River Complex (cf. O’Neill and Blackwood 1989). 
The Exploits Subzone includes Ordovician volcanic and sed-
imentary rocks of the Baie Du Nord Group that are structur-
ally interleaved with Ganderian basement in the Meelpaeg 
Subzone (e.g., Valverde-Vaquero and van Staal 2002). The 
correlated Ordovician Baie D’Espoir and Davidsville groups 
in central Newfoundland stratigraphically overlie and are 
imbricated with Cambrian ophiolites and Gander zone 
basement (e.g., Blackwood and Green 1983; Colman-Sadd 
et al 1992). Moreover, brachiopod and trilobite-bearing 
strata of Late to Middle Ordovician (Darriwilian) age, 
comparable to other Exploits Subzone fauna, are exposed 
~30 km east of the Gander River Complex at Indian Bay 
Big Pond (Fig. 1) in the Gander Lake Subzone (Wonderly  
and Neumann 1984). The latter are spatially accompanied 
by pillow basalt, siltstone, conglomerate, and minor gab-
bro along northeast-trending curvilinear magnetic highs 
that likely represent klippe of Exploits Subzone assemblages 
structurally above and interleaved with Ganderian margin 
sedimentary strata (Miller and Weir 1982; Wonderly and 
Neumann 1984; O’Neill and Colman-Sadd 1993). Exploits 
Subzone rocks occur sporadically across parts of the poorly  
exposed Gander Lake subzone and are likely tectonically in-
tercalated with Gander Zone rocks. Emplacement of these 
klippe is constrained to Middle Ordovician (Colman-Sadd 
et al 1992; Sandeman and Dickson 2019); thus, the Exploits 
Subzone and Gander Zone were amalgamated by that time 
and were no longer independent terranes after the Middle 
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aries and faults (modified after Colman-Sadd et al 1990) and the locations of the gold mineralized zones discussed in this 
report. AZ–Apsy zone; BB–Beaverbrook; BR–Browning; BV–Big Vein; CR–Cape Ray; DL–Duder Lake; DVFZ–Doucers 
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Ordovician. Gander River Complex and other linear strong-
ly magnetic anomalies in Gander Zone represent remnant 
overthrust Ordovician ophiolitic rocks, and Ordovician to 
Silurian cover rocks of Ganderia that were subsequently 
structurally modified during younger orogenic events.

The four major pre-Silurian terranes (Laurentian margin, 
Dashwoods terrane, composite Ganderian terranes, and 
Avalonia: van Staal and Barr 2014) are separated and tran-
sected by several major, long-lived polyphase fault zones. 
Progressing eastwards, the terrane-bounding fault zones 
include: the Baie Verte–Brompton Line separating the Lau-
rentian margin from Dashwoods terrane; the Mekwe’jit Line 
(formerly Red Indian Line; RIL: see White and Waldron 
2022) separating Dashwoods terrane from arcs and backarcs 
of the leading Ganderian margin; the Noel Paul’s Line, Dog 
Bay Line, and Gander River Complex separating allochtho-
nous blocks of composite Ganderia and; the Dover-Hermit-
age Bay Fault Zone separating Ganderia and Avalonia (e.g., 
Blackwood and Kennedy 1975; van Staal et al 2009; van Staal 
and Barr 2012; van Staal et al 2014, and references therein).

Despite the prevalence of terrane-bounding faults, oro-
genic gold mineralization in Newfoundland tends to be 
associated with crustal-scale fault zones that transect the 
pre-Silurian terranes. In the west, for example, the Silurian 
to Carboniferous Cabot–Doucers Valley fault system (Lock 
1969; Tuach 1987) merges with the Baie Verte–Brompton 
Line (Fig. 1) to separate the Laurentian margin from Dash-
woods terrane (Waldron and van Staal 2001). Furthermore, 
splays of the Baie Verte–Brompton Line must have been ac-
tive post-Ordovician accretion to form Silurian vein-hosted 
gold mineralization (Dubé et al 1993; Poulsen et al 2000). 
In central Newfoundland, the approximately five-million-
ounce gold deposit at Valentine Lake and numerous gold 
prospects along strike (e.g., Wilding Lake prospect) are 
hosted along an Early Devonian thrust-backthrust system 
(Honsberger et al 2022a) that imbricated rocks of the Ex-
ploits Subzone and Gander Zone and uplifted the Meelpaeg 
nappe along the Noel Paul’s Line.

The new 40Ar/39Ar geochronology samples in the present 
study are from: (1) the White Bay area along the Doucer’s 
Valley–Cabot Fault system of the Laurentian margin (Jack-
sons Arm, Shrik prospect); (2) the southwestern confluence 
of the Exploits and Meelpaeg subzones with Dashwoods ter-
rane (Wood Lake South zone and Hill Top showing; Lepre-
chaun Pond deposit, Valentine Lake); and (3) the northeast-
ern Exploits Subzone of central Newfoundland (Moosehead 
prospect; Fig. 1). Existing geochronological constraints for 
additional auriferous zones are also illustrated in Figure 1.

AURIFEROUS ZONES INVESTIGATED WITH 
40AR/39AR GEOCHRONOLOGY

Jacksons Arm trend (Shrik prospect)

The Jacksons Arm gold trend (Shrik, Boot n Hammer, 
and Stocker zones) occur ~ 4 km north of the community  

of Jacksons Arm on the Coney Head Peninsula in west-
ern White Bay (Fig. 1; Reid and Myllyaho 2012; Myllyaho 
2013; English et al 2017). The showings occur in a curvilin-
ear zone along the margin of the Ordovician Coney Head 
Complex (ca. 478 Ma; Dunning 1987; Fig. 2), an ophiolite- 
related tonalite and marginal basaltic and sedimentary 
units. The Coney Head Complex is unconformably over-
lain by syntectonic, clastic sedimentary and bimodal vol-
canic rocks of the orogenic gold-mineralized Silurian Sops 
Arm Group (e.g., Heyl 1937; Betz 1948; Kerr 2006a and b;  
Sandeman and Dunning 2016). The unconformity and the 
volcanic-sedimentary rocks of the Sops Arm Group are 
thrust imbricated with tonalite of the Coney Head Complex 
along broadly north-striking, east-dipping fault zones (this 
study; Magna Terra Minerals 2022). A sample of altered 
tonalite and adhering quartz vein (HS12-200C), weakly 
anomalous in Bi (3.9 ppm), As (24 ppm), Ag (0.1 ppm), and 
Au (4650 ppb), was collected from the Shrik trench where 
fine- to medium-grained, variably foliated, sericite-altered, 
pyritic and quartz-veined tonalite of the Coney Head Com-
plex is exposed over a ~10 m × ~30 m area (Figs. 3a and 
b). The tonalite is locally cut by irregular, pinch and swell 
quartz veins with rare pyrite, but the relationships between 
deformation, veining, and gold mineralization remain un-
resolved. The tonalite wall rock contains quartz, sericitized 
plagioclase, mats of intergrown fine-grained muscovite and 
sparse pyrite and goethite (Fig. 3c).

Wood Lake South (Main) zone - Hill Top showing

The Wood Lake South (Main) gold zone and Hill Top 
showing occur in central-western Newfoundland near the 
confluence of the Exploits, Meelpaeg, and Notre Dame sub-
zones (Figs 1 and 4). The Hill Top gold showing consists of 
two narrow (1–10 cm wide), southeast-northwest-trending, 
steeply dipping, pinch and swell pyrite + arsenopyrite-bear-
ing quartz veins that cut Ordovician (ca. 467 Ma) Peter 
Strides monzogranite (e.g., van Egmond 2004; van Staal et 
al 2005a; Valverde-Vaquero et al 2006; Sandeman et al 2014; 
Sandeman 2014a) of the Meelpaeeg nappe and extend spo-
radically along strike for ~50 m. The quartz veins are host-
ed in an inferred northwest-trending mineralized fracture 
zone that cuts the monzogranite (Figs. 4 and 5). The host 
granite is strongly foliated, with a strong quartz mineral 
lineation, and is cut by translucent-white, foliated and lin-
eated, barren quartz veins oriented sub-parallel to the fo-
liation. The 40Ar/39Ar geochronology sample from Hill Top 
(HS10-59A) is a light grey to pink, fine- to medium-grained, 
quartz-veined, foliated and lineated monzogranite adjacent 
to the two quartz veins (Figs. 5a and 5b). In thin section, 
polyhedral and sutured quartz porphyroclasts (≤1.5 mm) 
are surrounded by fine-grained intergrown anhedral albite, 
quartz, and sericite (Fig. 5c). Rare euhedral monazite and 
subhedral rutile are intergrown with quartz and sericite in 
the groundmass (Fig. 5d).

Gold-mineralized quartz veins of the Wood Lake South 
(Main) zone are hosted by massive to brecciated and/or(?) 
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mylonitic, orange-pink monzogranitic rocks of the Peter 
Strides Granite Suite. In the main trench (Fig. 6a), intensely  
deformed monzogranite is intruded by a less deformed, 
fine- to medium-grained, sericitic monzogranite. The less 
intensely deformed monzogranite is cut by an extensive  
array of steeply dipping irregular fractures and anastomos-
ing, pinch and swell quartz veins (≤10 cm). Both the veins 
and fractures have minor pyrite + hematite ± arsenopyrite, 
accompanied by adjacent wall rock sericitization, albitiza-
tion and silicification. Muscovite locally forms randomly  

oriented clumps and masses in the matrix of brecciated 
monzogranite, but occurs more typically as wispy platelets 
along fractures (Figs. 6b and 6c). Further details of the geol-
ogy of the main trench and associated auriferous zones are 
provided by van Egmond and Cox (2005) and Sandeman et 
al (2014).

The 40Ar/39Ar geochronology sample (HS13-063A) from 
the Wood Lake South (Main) zone trench consists of an or-
ange-pink, medium-grained, brecciated, and foliated mon-
zogranite exposed below a strand of mylonitic monzogran-
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ite (Figs. 4 and 6). In thin section, large (≤2 mm) polyhedral 
and sutured quartz grains are surrounded by fine-grained 
albite, sericite, and quartz. Subhedral pyrite and arseno-
pyrite are dispersed throughout and locally concentrated 
in vugs and fractures (Fig. 6b). Relatively large (≤1 mm), 
weakly to non-aligned muscovite grains are common (Figs. 
6c and d).

Leprechaun Pond deposit (Valentine Lake)

The Leprechaun Pond deposit of the Valentine Lake gold 
property in central-western Newfoundland occurs within 
the Exploits Subzone near the boundary with the Meelpaeg 
Subzone (Figs. 1 and 7). The Neoproterozoic to Silurian 
rocks of the Valentine Lake area trend northeasterly and are 
bisected by the Victoria Lake shear zone (Valverde-Vaquero 
et al 2006; van Staal et al 2005b). This major northeast-trend-
ing, variably southeast-dipping, crustal-scale shear zone ex-
tends from the Gunflap Hills Fault in the southwest, through 
central Newfoundland along the northern margin of the 
Meelpaeg nappe (Figs. 1 and 7). The northeastern trace of 
the Victoria Lake shear zone is poorly constrained, and it 
may continue north-eastward to the Bay of Exploits, or al-
ternatively, it may bifurcate and verge to the east along the 
northern margin of the Mount Cormack Subzone (Hons-
berger et al 2022a).

To the northwest, in the structural footwall of the Victo-
ria Lake shear zone, Neoproterozoic (ca. 570 Ma) orogenic 
gold-mineralized basement granitoid rocks of the Valen-
tine Lake Intrusive Suite (Evans and Kean 2002; Rogers and 
van Staal 2002; Rogers et al 2006), are uplifted and juxta-
posed against the orogenic gold-mineralized Rogerson Lake 
Conglomerate (Kean and Jayasinge 1980) along the north-
west-dipping Valentine Lake shear zone. The Valentine 
Lake shear zone hosts an approximately five-million-ounce 
orogenic gold resource, including the Leprechaun Pond de-
posit, where bleached and altered Neoproterozoic trondh-
jemite-tonalite and associated rocks contain a stacked array 
of fault-fill and extensional quartz-tourmaline-pyrite (QTP) 
vein sets (Lincoln et al 2018). The Rogerson Lake Conglom-
erate crops out southeast of the Valentine Lake shear zone, 
and is an aerially extensive latest Silurian, syntectonic, clastic 
sedimentary unit of central Newfoundland that delineates 
the southwest-northeast-trending fault system that is host to 
many of the gold occurrences in the central Newfoundland 
gold district (Honsberger et al 2022b; this volume).

At the Wilding Lake gold property, ~36 km northeast 
along strike of the Leprechaun Pond deposit, orogenic gold 
mineralization is hosted within both the Rogerson Lake 
Conglomerate and the associated ca. 422 Ma felsic subvol-
canic and volcanic rocks in the footwall of the northeastern 
extension of the Valentine Lake shear zone (WL on Fig. 1; 
Honsberger et al 2019a; 2019b; 2020a; 2020b; 2022a). Over-
lapping ca. 410 Ma ID-TIMS U–Pb ages for hydrothermal 
rutile in quartz veins from both the Leprechaun Pond de-
posit and the Elm Prospect of the Wilding Lake property 
(Honsberger et al 2022a) indicate an Early Devonian (late 

Figure 3. Photographs and photomicrographs of Shrik 
Showing sample HS12-200C. (a) Photograph of the Shrik 
discovery trench looking north with quartz-veined, altered 
tonalite in the centre, bounded to the north and south by 
sericite altered tonalite. The field of view is 10 m. (b) Close-
up of the Shrik trench with quartz veined tonalite mantled 
by altered tonalite, and the location of sample HS12-200C. 
Field of view is 15 cm. (c) Photomicrograph in plane po-
larized light (PPL) showing the mineralogy of the altered 
tonalite and the random, mat-like nature of the muscovite 
in the sample. The brown tint of the muscovite is because 
of goethite staining. Mineral abbreviations after Whitney 
and Evans (2010).
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Lochkovian) age for quartz vein emplacement associated 
with orogenic gold mineralization.

The 40Ar/39Ar geochronology sample from the Lepre-
chaun Pond deposit, VL-24-62.1m, is a weakly auriferous, 
bleached, fine-grained, foliated and quartz-veined tourma-
line-muscovite-bearing trondhjemite from drillcore (62.1–
63.0 metres depth: Figs. 8a, b, c). Large (≤6 mm) polyhedral 

sutured quartz grains and extensively altered plagioclase are 
surrounded by fine-grained albite, sericite and quartz. Sub-
hedral pyrite is dispersed throughout the rock but concen-
trated near the margins of quartz veins (Fig. 8c). Tourma-
line occurs as needles in or along vein margins. Relatively 
large (≤0.6 mm) muscovite grains are common and occur 
as plates in the groundmass and in primary feldspar grains 
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carbonate + pyrite ± sericite altered (e.g., Clark 1999; Mor-
gan 2016). Trenching uncovered medium-bedded musco-
vite-bearing sandstone, southwest-dipping in the north, and 
south-dipping in the south, with weakly sulphidic, highly 
disrupted, quartz-veined, sandstone-quartz breccia in be-
tween (Figs. 9a, b and 10). The sandstone is variably miner-
alized, and quartz veins are more abundant in the northern 
part of the trench. Mineralization occurs in the hanging wall 
of a discrete east-west fault zone (Figs. 9b and 10). Bedding 
and crosscutting quartz veins are deflected into the fault 
zone, consistent with dextral rotation and reverse(?) slip. 
Further description and assay information for the Mooseh-
ead prospect are presented in Morgan (2016).

The 40Ar/39Ar geochronology sample from the Moosehead 
trench is a beige-grey, medium-grained, medium-bedded, 
quartz-veined muscovite-bearing sandstone of the Wigwam 
Formation from immediately north of the east-west fault 
near the centre of the trench (Figs. 9b and 10a). In thin sec-
tion, large (≤0.4 mm) quartz and muscovite grains are sur-
rounded by fine-grained matrix of albite, sericite, and quartz 
with subhedral pyrite dispersed throughout (Fig. 10b).  

(Fig. 8c); a 250–450 µm fraction was extracted for 40Ar/39Ar 
geochronology.

Moosehead prospect (North Pond trench; TRMH15-3)

The Moosehead Prospect occurs southeast of the town of 
Bishops Falls in north-central Newfoundland (Figs. 1 and 
9; Morgan 2016; Froude 2019, 2021). It lies within the lat-
est Silurian–Early Devonian, intraorogenic Botwood Basin, 
~4 km west of the ca. 425–418 Ma Mount Peyton Intrusive 
Suite (Sandeman et al 2017) in the north-central Exploits 
Subzone (Figs. 1 and 9). Mineralization consists of exten-
sional, auriferous, sulphide-sulfosalt-bearing quartz veins 
and breccias that cut mainly muscovite-bearing sandstone 
and siltstone of the Wigwam Formation of the Botwood 
Group (i.e., Botwood basin; Williams 1969; Dickson et al 
2000; O’Brien 2003; Morgan 2016). Mafic volcanic rocks of 
the lower Botwood Group (Laurenceton Formation) occur 
immediately south and southeast of the prospect. Gabbro-
ic and fine-grained mafic dykes locally cut the sedimenta-
ry rocks and are themselves locally bleached, silicified and 

Figure 5. Photographs and photomicrographs of Hill Top Showing sample HS10-059A. (a) Photograph viewed southeast at 
the narrow Hill Top veins. Note person in background. (b) Photograph of a foliation surface on the wall rock adjacent to the 
Hill Top vein, illustrating the strong L-fabric in the Peter Strides monzogranite defined by aligned quartz and muscovite. (c) 
Photomicrograph in crossed polars of the monzogranite wall rock illustrating the disseminated subhedral pyrite, the altered 
sericitic groundmass and the large, secondary muscovite grains. (d) Backscattered electron image illustrating the miner- 
als and their detailed relationships. Note the subhedral rutile and euhedral monazite, targets for future geochronology.
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Relatively large (≤1 mm), bedding-parallel muscovite grains 
are common, and appear to be detrital in origin (Fig. 10c).

40AR/39AR GEOCHRONOLOGY

Methods

Geochronology samples were collected during 2010–
2015 from selected gold-mineralized zones and drill core 
across central and western Newfoundland (e.g., Sandeman 
et al 2013; Sandeman 2014b; Sandeman and Dunning 2016). 
Kilogram-sized hand samples or ~ 40 cm long pieces of split 
drill core were cut and cleaned of all weathered surfaces 
and crushed to ~ 1 cm chips. About 100 grams of each sam-
ple was gently hand pulverised with pestle and mortar and 
sieved to two size fractions, 250–420 µm and 180–250 µm. 
The grain separates were washed repetitively in deionized 
water and the solute drained. Cleaned and dried samples 
were then gently cleaned in dilute (~0.5N) HNO3 to remove 
adhering sulphides and carbonates from the grain sepa-
rates. The cleaned separates were re-sieved and muscovite 
was hand-picked under a binocular microscope for laser 
step-heating analyses. Muscovite from the Shrik Showing 
(HS12-200C) was of poor quality, fine-grained, and only a 
single muscovite–rich (180–250 µm) grain separate was ex-
tracted.

The 40Ar/39Ar age data were obtained in the 40Ar/39Ar 
Thermochronology Laboratory at Queen’s University. Min-
eral separates and flux-monitors (standards) are wrapped 
in Al-foil, stacked sequentially into an 8.5-cm-long and 
2.0-cm-diameter Al irradiation capsule, and then irradiat-
ed with fast neutrons in position 8D of the McMaster Nu-
clear Reactor (Hamilton, Ontario) for a duration of 72 h 
(at 3 MWH). Packets of flux monitors are located at ~0.5 
cm intervals along the irradiation container and the J-val-
ue for an individual sample is determined by least-squares, 
second-order polynomial interpolation using replicate 
analyses of splits for each monitor position in the capsule. 
The samples are loaded into flat-bottomed pits in a copper 
sample-holder and placed beneath the ZnS view-port of a 
small, bakeable, stainless-steel chamber connected to an  
ultra-high vacuum purification system. Following bake out 
at 100°C, a 30 watt New Wave Research MIR 10-30 CO2 la-
ser with a faceted lens is used to heat samples for ~3 minutes 
at increasing percent power settings (2 to 45%; beam diam-
eter 3 mm). After purification using hot and cold SAESC50 
getters (for ~5 minutes), the evolved gas is admitted to an 
MAP 216 mass spectrometer, with a Bäur Signer source and 
an analog electron multiplier (set to a gain of 100 over the 
Faraday detector). Measured argon-isotope peak heights are 
extrapolated to zero-time and corrected for discrimination 
using a 40Ar/36Ar atmospheric ratio of 295.5 and measured 
ratios of atmospheric argon. Blanks, measured routinely, are 
subtracted from the subsequent sample gas-fractions. The 
extraction blanks are typically <10 x 10–13, <0.5 x 10–13, 
<0.5 x 10–13, and <0.5 x 10–13 cm-3 STP for masses 40, 

Figure 6. Photographs and photomicrographs of Wood 
Lake South Main zone sample HS13-063A. (a) Photograph 
from the main trench with massive and brecciated, quartz-
veined and sericite + pyrite ± arsenopyrite mineralized 
monzogranite cutting mylonitic monzogranite having 
fabric-parallel, sulphide-poor, internally deformed quartz 
veins. The location of sample HS13-063A is shown and the 
Geotul is 54 cm in length. Mylonitic fabric trends 136° and 
dips 66° to the southwest. (b) Cut slab photograph of sam-
ple HS13-063A. White is altered feldspar, grey is quartz 
and reflective silver grains are muscovite. (c) Photomi-
crograph in PPL of the brecciated altered monzogranite 
illustrating the disseminated subhedral pyrite, the altered 
sericite groundmass and the large, secondary muscovite 
grains.
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S1, whereas the laser step-heating results are illustrated in 
Figure 11. Sample coordinates are NAD27 datum, zone 21.

Results

Shrik Showing (HS12-200C: UTM Zone 21, 
516037 E, 5527889 N: muscovite)

Altered tonalite wall rock from this sample was crushed, 
sieved, cleaned, and small (≤0.5 mm), weakly to non-
aligned, goethite-dusted muscovite grains were concentrated  
into a 180–250 µm grain separate for 40Ar/39Ar dating. The 
muscovite separate yielded a complex age spectrum (Fig. 
11a). The initial low-T (power) step (1.43% of 39Ar released) 
yielded an anomalously young age (ca. 336 Ma) but the next 
6 steps (30.3% of 39Ar released) yielded anomalously old 
ages ranging from ca. 390 to 428 Ma and are attributed to 
the incorporation of excess argon. The higher temperature 
(power) steps, excluding the final young gas fraction, form 
a relatively flat segment representing 58.9 % of the 39Ar% 

39, 37, and 36, respectively. The 39Ar and 37Ar are corrected 
for radioactive decay during and after irradiation. Correc-
tions are made for neutron-induced 40Ar from potassium, 
39Ar and 36Ar from calcium, and 36Ar from chlorine (Rod-
dick 1983; Onstott et al 1991). Dates and errors are calcu-
lated using the procedure of Dalrymple et al (1981) and the 
constants of Steiger and Jäger (1977). Plateau and inverse 
isotope correlation dates are calculated using ISOPLOT v. 
3.60 (Ludwig 2012). A plateau is herein defined as 3 or more 
contiguous steps containing >50% of the 39Ar released, with 
a probability of fit >0.01 and MSWD <2. Errors shown in 
Supplementary data Table S1 and in Figure 11 represent 
the analytical precision at 2σ, assuming that the errors in 
the ages of the flux monitors are zero. This is suitable for 
comparing within-spectrum variation and determining 
which steps form a plateau (e.g., McDougall and Harrison 
1988, page 89). The dates and J-values are referenced to GA-
1550biotite (98.5 Ma; Spell and McDougall 2003) and Hb-
3Grhornblende (PP-20; 1073.6 Ma; Jourdan et al 2006). The 
complete 40Ar/39Ar dataset is in Supplementary data Table 
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released and yield an age of 379.7 ± 1.4 Ma (2σ; POF = 0.36; 
MSWD = 1.10). The volume of 39Ar released is slightly less 
than the suggested convention of >60% volume for a plateau 
age (McDougall and Harrison 1988; Ludwig 2012; Schaen 
et al 2021), but the quasi-plateau appears to have geological 
significance.

Hill Top Showing (HS10-59A: UTM Zone 21, 
443526 E, 5334700 N: muscovite)

Analyses of relatively large (250–425 µm) muscovite 
grains yielded a relatively simple 40Ar/39Ar age spectrum 
(Fig. 11b). The nine higher temperature (power) steps 
formed a relatively flat segment representing 91.4% of the 
39Ar released and gave a plateau age of 409.1 ± 1.3 Ma (2σ; 
POF = 0.77; MSWD = 0.42).

Wood Lake South (Main) zone (HS13-063A: UTM 
Zone 21, 500450 E, 5504824 N: muscovite)

Two fractions (250–425 µm and 180–250 µm) of musco-
vite were extracted for 40Ar/39Ar analysis. The nine highest 
(out of 15) temperature (power) steps of the 250–425 µm 
fraction, representing 91.4 % of the 39Ar released gives a pla-
teau age of 403.1 ± 1.2 Ma (2σ; POF = 0.91; MSWD = 0.42; 
Fig. 11c). The second 180–250 µm aliquot (Fig. 11d) yielded 
a quasi-plateau age of 398.4 ± 1.3 Ma, representing 56.9% of 
the 39Ar released (2σ; MSWD = 0.74; POF = 0.65), due largely  
to an unfortunately large-volume last step. The plateau age 
of 403.1 ± 1.2 Ma is considered the best estimate of the age 
of the muscovite.

Leprechaun Pond Deposit (Valentine Lake: VL-24_62.1m: 
UTM Zone 21, 486400 E, 5355880 N: muscovite)

The muscovite at the Leprechaun Pond deposit yielded 
a somewhat jagged age spectrum (Fig. 11e), but five of the 
steps formed a flat segment, comprising 59.9% of the 39Ar 
released, and yielded a quasi-plateau age of 384.2 ± 1.6 Ma 
(2σ; POF = 0.57; MSWD = 0.74) and is interpreted as the 
best estimate of the age of the muscovite.

Moosehead Prospect (HS15-137; 613561E, 
5428182N: muscovite)

Two muscovite fractions (250–425 µm and 180–250 µm) 
were extracted for 40Ar/39Ar geochronology and yielded 
two similar age spectra (Figs. 11f, g). The coarse-grained 
(250–425 µm) aliquot yielded a well-defined 40Ar/39Ar 
plateau age of 457.3 ± 1.2 Ma (2σ; POF = 0.94; MSWD = 
0.44), representing 91.4% of the 39Ar released (Fig. 11f). The 
180–250 µm grain-size fraction (Fig. 11g), similarly yield-
ed a well-defined 40Ar/39Ar plateau age of 453.5 ± 1.1 Ma 
(2σ; POF = 0.48; MSWD = 0.97), representing 97.0% of the 
39Ar released. The older age of 457.3 ± 1.2 Ma for the coars-
er-grained 250–450 µm fraction is interpreted as the best 
estimate of the 40Ar/39Ar age of the muscovite.

Figure 8. Photographs and photomicrograph of Lepre-
chaun Pond deposit. (a) Photograph from the main trench 
to the northwest of Leprechaun Pond illustrating the seric-
ite-altered trondhjemite-tonalite of the Valentine Lake In-
trusive Suite cut by quartz-tourmaline-pyrite veins. (b) 
Cut core photograph of quartz-tourmaline vein cutting 
bleached trondhjemite (DDH VL-24-62.1m). (c) Photo-
micrograph in PPL of a quartz-tourmaline vein contain-
ing pyrite, calcite and muscovite cutting altered trondh-
jemite host rock composed of saussuritized plagioclase 
and quartz. Muscovite forms coarse plates along fractures 
in plagioclase and in vein margins.
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are more robust than others. These include studies apply-
ing 40Ar/39Ar cooling ages on dynamo-metamorphism and 
mineralization-associated potassic alteration; Re–Os ages 
on sulphide minerals; implied maximum ages based on U–
Pb ages of host rocks and direct U–Pb CA-TIMS dating of 
the minerals coeval with quartz vein emplacement. For ex-
ample, the interpreted age of the Hammerdown gold deposit 
(Springdale Peninsula) comes from U–Pb (zircon) thermal 
ionization mass spectrometry (TIMS), which yielded an age 
of 437 ± 4 Ma for a felsic dyke cut by an auriferous vein 

DISCUSSION

Integration of these new 40Ar/39Ar geochronological data 
with existing regional geochronological constraints on gold 
mineralized zones and magmatic events elucidates defor-
mational, metamorphic, and tectonic intervals that were 
favourable for gold-mineralization across Newfoundland 
(Fig. 12). The collective compiled data are diverse as they 
include age constraints determined via different radiometric 
methods on various phases/mineral species: some of which 
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(Ritcey et al 1995). This is therefore a maximum age con-
straint for gold mineralization. In contrast, the ca. 410 Ma 
chemical abrasion (CA) TIMS ages for rutile from aurifer-
ous quartz veins at the Wilding Lake gold prospect and Lep-
rechaun Pond gold deposit (Honsberger et al 2022a) provide 
high-precision maximum constraints on the age of orogenic 
gold-mineralized quartz vein emplacement. Detailed inves-
tigations of vein and alteration mineral parageneses, their 
relationships to gold deposition and systematic geochro-
nological study of different mineral species are required to 
better understand the timing of gold mineralization in New-
foundland.

The collective geochronological data outline two distinct, 
broad age-ranges for orogenic-style gold mineralization in 
the central and western Newfoundland Appalachians (Fig. 
12). These include an older, Wenlock (middle Silurian) to 
Lochkovian (Lower Devonian) ca. 440 to ca. 405 Ma event, 
and a younger, Middle Devonian event at ca. 400–375 Ma. 
The former includes muscovite growth/resetting intervals 
for gold-bearing zones of the Laurentian margin, Dash-
woods terrane, western Exploits subzone and along the 
Meelpaeg–Exploits subzones boundary; the latter includes 
muscovite from gold-bearing zones across the Laurentian 
Margin, Dashwoods terrane, Exploits Subzone, and Gander 
Zone (Fig. 12).

The muscovite from the Shrik showing occurs in an 
Ordovician, intraoceanic arc-related tonalite that has a 
strongly metaluminous composition (Sandeman, unpub-
lished data 2022). The muscovite is spatially associated with 
quartz veining and bleaching of the tonalite resulting from 
hydrothermal fluid flow; therefore, it formed as a result of 
metasomatism, opposed to by igneous or dynamothermal 
metamorphic processes. Accordingly, the 40Ar/39Ar geo-
chronological result of 379.7 ± 1.4 Ma is interpreted as a 
maximum age constraint for gold mineralization.

The host rocks of the Hill Top and Woods Lake South 
zones are muscovite-biotite-bearing, strongly peraluminous 
granitoid rocks of the Ordovician Peter Strides suite (part of 
the Meelpaeg Subzone) that comprise the hanging wall of 
the Victoria Lake-Valentine Lake fault system. The north-
ern portion of the Meelpaeg Subzone records metamorphic 
U–Pb monazite and titanite ages and 40Ar/39Ar hornblende, 
muscovite and biotite cooling ages that range from ca. 418 
to 400 Ma (Valverde-Vaquero et al 2003). Muscovite from 
the Hill Top (409.1 ± 1.3 Ma) and Woods Lake zones (403.1 
± 1.2 Ma) therefore likely represent Acadian metamorphic 
cooling temperatures in the immediate hanging wall of the 
Victoria Lake Shear Zone, which represent best approxima-
tions of maximum ages of gold mineralization.

Metaluminous tonalite and trondhjemite of the Valentine 
Lake Intrusive Suite host the Leprechaun Pond gold deposit.  
These rocks do not contain primary muscovite and the 
white mica is hydrothermal in origin. However, the rela-
tionship between the muscovite and deformation of the au-
riferous quartz-tourmaline-pyrite veins is ambiguous. The 
hydrothermal rutile age of ca. 410 Ma (see Honsberger et 
al 2022a) is significantly older than the muscovite plateau 

Figure 10. Photographs and photomicrographs of the 
Moosehead Prospect trench. (a) Photograph looking 
north from the east-west fault with decimetre-scale bed-
ded muscovitic sandstone cut by an array of narrow, 
weakly sulphidic quartz veins. These veins largely trend 
northwest-southeast and are rotated into an east-west ori-
entation near the main fault, indicating this is a dextral 
fault. (b) Close up of the warped bedding and crosscut-
ting quartz veins at sample location HS15-137. Note the 
folding of bedding and the small yellow arrows pointing 
to quartz veins. (c) Photomicrograph in PPL of the sand-
stone showing disseminated subhedral pyrite, carbonate- 
sericite-altered groundmass and large, bedding-parallel 
muscovite grains.
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ages provide the best estimates for potassic alteration asso-
ciated with quartz vein emplacement. Furthermore, the ca. 
403 and 409 Ma muscovite ages are also in broad agreement 
with two identical 406 ± 2 Ma 40Ar/39Ar plateau ages for 
alteration-related muscovite from the Mosquito Hill gold 
prospect along the southeastern margin of the Mount Cor-
mack Complex (Fig. 1; Sandeman et al 2013).

Early Devonian metamorphism, metasomatism and oro-
genic gold mineralization along the Victoria Lake–Valentine 
Lake fault corridor is compatible with the timing of initial 
Acadian thrusting after ca. 418 Ma in southcentral New-
foundland (Dunning et al 1990; Valverde-Vaquero and van 
Staal 2001; van der Velden et al 2004; Valverde-Vaquero et 
al 2006). Furthermore, Early Devonian mineralization coin-
cides with ca. 415 to 410 Ma Acadian ductile deformation in 
north-central and southwestern Newfoundland (Dunning 
et al 1990; Dubé et al 1996; McNicoll et al 2006). In south-
western–central Newfoundland, 40Ar/39Ar geochronology 
of white mica provides evidence for low-P – low-T Acadian 
metamorphism between ca. 408 and 390 Ma (Willner et al 
2018). On the Baie Verte Peninsula, orogenic gold mineral-
ization may have been initiated earlier than in central New-
foundland as Re–Os pyrite geochronology yielded ages of 
420 ± 7 Ma and 411 ± 7 Ma for the Stog’er Tight and Pine 
Cove deposits (Kerr and Selby 2012), respectively. Similarly, 
hydrothermal zircon from the Stog’er Tight deposit was dat-
ed at 420 ± 5 Ma (Fig. 1; Ramezani et al 2002).

The new Middle–Upper Devonian muscovite ages for the 
Leprechaun deposit (ca. 384 Ma) at Valentine Lake and Shr-
ik showing at White Bay (ca. 380 Ma), contrast with Early 
Devonian orogenic gold-bearing vein formation document-
ed in both locations (ca. 410 Ma rutile; Honsberger et al 
2022a; ca. 419 to ca. 408 Ma; Kerr and van Breemen 2007; 
Minnett et al 2012). However, the new data are compatible 
with a previous age determination for secondary muscovite 
at White Bay (ca. 374 Ma, Sandeman and Dunning 2016), 
as well as with ca. 374 ± 8 Ma hydrothermal xenotime from 
a gold-mineralized vein at the Nugget Pond deposit on 
the Baie Verte Peninsula (Sangster et al 2008). Moreover, a 
gold-mineralized mafic sill/dyke that cuts the Late Silurian 
Indian Islands Group near Gander Bay at the Titan prospect 
(Fig. 1; McNicoll et al 2006) yielded a SHRIMP U–Pb zir-
con age of 381 ±5 Ma, providing a maximum, late Devonian 
age for the gold mineralization. All these data support the 
existence of a Middle–Upper Devonian gold mineralization 
event that is superimposed on Early Devonian quartz vein 
systems in western, west–central, and central Newfound-
land.

All geochronologically constrained orogenic gold oc-
currences in central and western Newfoundland are Late  

age of 384.2 ± 1.6 Ma (this study), suggesting either a single 
protracted alteration and mineralization event, or multiple 
discrete events.

In contrast to the other dated samples, muscovite from 
the sandstone of the Moosehead prospect (ca. 457.3 ± 1.2 
Ma and 453.5 ± 1.1 Ma) is detrital in origin and oriented 
parallel to bedding. Therefore, these ages represent meta-
morphic cooling ages for the metasedimentary or granitoid 
sources for the sandstone. One proximal potential Ordovi-
cian (Darriwillian: Cohen et al 2013) source terrane for the 
detrital muscovite is the Mount Cormack Complex (Gander 
Zone) of central Newfoundland (Fig. 1; Williams et al 1988; 
Colman-Sadd et al 1992). The Mount Cormack Complex 
preserves a central core of foliated, upper amphibolite-grade 
migmatitic psammite and pelite that were metamorphosed 
and intruded by garnet-muscovite syenogranite (Through 
Hills granite) at ca. 465–464 Ma (Colman-Sadd et al 1992; 
Valverde-Vaquero et al 2006). Metamorphic ages from the 
complex include: a monazite age of 462 ± 1 Ma; a titanite age 
of 460 ± 3 Ma; a 40Ar/39Ar hornblende plateau age of 465.7 ± 
6.4 Ma; and a 40Ar/39Ar biotite plateau age of 439.4 ±2.4 Ma 
(Valverde-Vaquero et al 2003, 2006). The hornblende and 
biotite ages bracket the interval defined by the Moosehead 
trench muscovite ages and support the suggestion of the 
Mount Cormack Complex as a possible detrital muscovite 
source. Muscovite from the Meelpaeg nappe yield younger, 
Devonian regional metamorphic cooling ages ranging from 
ca. 418 to 394 Ma (Valverde-Vaquero et al 2003), similar 
to those obtained in the Gander Lake Subzone (ca. 404 to 
388 Ma: O’Neill and Lux 1989; O’Neill and Colman-Sadd 
1993). The apparent absence of older, Ordovician muscovite 
in these areas does not entirely preclude them as possible 
sources, however, this appears to be the case. To the west of 
the Botwood Basin, an alternative Ordovician, muscovite- 
bearing source might be represented by the muscovite- 
biotite-psammite of the reworked Laurentian margin (e.g., 
Fleur de Lys Supergroup, Baie Verte Peninsula).

The Early Devonian muscovite ages from central New-
foundland (Hill Top showing and Wood Lake South zone) 
are similar to, but slightly younger than, the ca. 410 Ma ages 
determined along strike to the northeast for hydrothermal 
rutile in gold-mineralized veins from the Leprechaun Pond 
deposit (Valentine Lake) and Wilding Lake prospect (Hons-
berger et al 2022a). This may reflect a lower 40Ar/39Ar clo-
sure temperature for muscovite relative to the U–Pb closure 
temperature for rutile (ca. 600°C; Vry and Baker 2006). The 
ca. 410 Ma rutile ages are interpreted to provide the best 
minimum estimates for quartz vein emplacement and initial 
orogenic gold mineralization along the Victoria Lake-Val-
entine Lake fault corridor (Fig. 1), whereas the muscovite 

Figure 11. (next page) 40Ar/39Ar age spectra for muscovite grain separates from the samples under investigation. (a) Shrik 
Showing muscovite HS12-200C (250–425 µm). (b) Hill Top Showing muscovite HS10-059A (250–425 µm). (c) Wood Lake 
South (Main) zone muscovite HS13-063A-1 (250–425 µm). (d) Wood Lake South (Main) zone muscovite HS13-063A-2 
(180-250µm). (e) Leprechaun Pond Deposit muscovite VL-24-62.1m (250–425 µm). (f) Moosehead Prospect detrital mus-
covite HS15-137-1 (250–425 µm). (g) Moosehead Prospect detrital muscovite HS15-137-2 (180–250 µm).
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(b) Hill Top showing (HS10-59A)
250-425 µm muscovite in vein margin

380

390

400

410

420

430

0 20 40 60 80 100

A
g
e
 (

M
a
)

A
g
e
 (

M
a
)

(c) Woods Lake Main Zone (HS10-63A-1)
250-425 µm muscovite
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(d) Woods Lake Main Zone (HS13-63A-2)
180-250 µm muscovite

Plateau age = 398.4 ± 1.3 Ma
(2σ, including J-error of 0.000024)

MSWD = 0.74, POF = 0.65
39Includes 56.9 % of the Ar released
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(f) Moosehead (HS15-137-1)
250-425 µm muscovite

Plateau age = 457.3 ± 1.2 Ma
(2σ, including J-error of 0.000024)

MSWD = 0.44, POF = 0.94
39Includes 91.4 % of the Ar released
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(g) Moosehead Prospect (HS15-137-2)
180-250 µm muscovite

Plateau age = 453.5 ± 1.1 Ma
(2σ, including J-error of 0.000024)

MSWD = 0.97, POF = 0.48
39Includes 97.0 % of the Ar
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Silurian to Middle–Upper Devonian and define two gold- 
forming intervals broadly between ca. 433 and 405 Ma and 
ca. 390 and 372 Ma. Spatiotemporal coincidence of oro-
genesis, metamorphism, magmatism and precious metal 
mineralization occurs across much of the Laurentian mar-
gin, Dashwoods terrane, the western Exploits Subzone and 
selected parts of the eastern Exploits Subzone. The oldest 
orogenic gold deposits occur in the west along the Lauren-
tian margin and eastern Dashwoods terrane and are asso-
ciated with the terminal stages of the Middle to Late Silu-
rian Salinic orogenic cycle (ca. 435–427 Ma: e.g., van Staal 
and Barr 2012). Moreover, regional magmatic, sedimentary, 
metamorphic, and structural events indicate that although 
terrane accretion progressed oceanward (present-day east) 
throughout the Paleozoic (e.g., van Staal et al 2014), earlier 
accreted terranes were affected by mineralizing events relat-
ed to subsequent accretion of outboard terranes (e.g., Hons-
berger et al 2022a). Thus, mineralized zones in central and 
western Newfoundland yield Middle–Late Silurian to Mid-
dle Devonian ages that post-date accretion of the encom-
passing terrane. For example, accretion of Dashwoods to the 
Laurentian margin took place in the Ordovician (Waldron 
and van Staal 2001), but gold mineralization at White Bay 
(Humber Zone, Fig. 1) is Late Silurian to Early or Middle 
Devonian (Fig. 12). Furthermore, ca. 410 Ma orogenic gold 
mineralization along the Victoria Lake–Valentine Lake fault 
corridor post-dates ca. 435 Ma accretion of the composite 
Gander Zone/Exploits Subzone (Ganderia) to the Dash-
woods terrane and composite Laurentia (e.g., Honsberger 
et al 2022a). These relationships indicate that other tectonic 
processes in addition to accretion, such as oroclinal bends 
and orogen-parallel along strike temporal variations in the 
kinematics of orogenic accommodation, were critical to 
generating the orogenic gold-mineralized faults in central 
and western Newfoundland, as is presumed elsewhere along 
the Iapetan suture zone of the Appalachian mountain belt 
(Romer and Kroner 2018).

CONCLUSIONS

1. New 40Ar/39Ar geochronological constraints across cen-
tral and western Newfoundland are consistent with two dis-
tinct intervals of orogenic gold mineralization between ca. 
433 and 405 Ma and ca. 390 and 372 Ma.

2. The late Silurian–Early Devonian event includes mus-
covite growth/resetting intervals for gold-bearing zones of 
the Laurentian Margin, Dashwoods terrane, western Ex-
ploits subzone and along the Meelpaeg–Exploits subzones 
boundary, whereas the younger Devonian interval includes 
muscovite from gold-bearing zones across the Laurentian 
Margin, Dashwoods terrane, Exploits Subzone, and Gander 
Zone.

3. 40Ar/39Ar plateau ages for detrital muscovite from Wig-
wam Formation sandstone at the Moosehead prospect (ca. 
457.3 ± 1.2 to 453.5 ± 1.1 Ma) suggest the Mount Cormack 
Complex is an erosional source for the sedimentary units of Fi
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the Botwood Basin.
4. Detailed investigations of quartz vein and alteration

mineral parageneses, their relationships to gold deposition 
and systematic geochronological investigations of a number 
of different mineral species at select auriferous zones is nec-
essary to better constrain the timing of gold mineralization 
in central and western Newfoundland.
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