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Abstract

Traditional techniques in portfolio management rely on theprecise knowledge of the underlying probability distri-
butions; in practice, however, such information is difficult to obtain because multiple factors affect stock prices on a
daily basis and unexpected events might affect the price dynamics. To address this issue, we propose an approach to
dynamic portfolio management based on the sequential update of stock price forecasts in a robust optimization setting,
where the updating process is driven by the historical observations. Forecasts are updated using only the most recent
data when the stock price differs significantly from predictions. In this work, we present a robust framework to optimal
selling time theory. We introduce a wait-to-decide period,and allow actual price movements to drive the best decision
in response to a bad investment. Numerical results illustrate our strategy, which requires less frequent updating of the
problem parameters than in the traditional approach while exhibiting promising performance.
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1. Introduction

The foundation of modern portfolio management was
developed in the 1950s when Markowitz formulated a
single-period portfolio selection problem where the in-
vestor seeks to maximize his utility by investing in as-
sets with random returns (Markowitz 1952). If the re-
turns follow a jointly normal distribution and the in-
vestor’s utility is quadratic, the problem can be refor-
mulated as a mean-variance problem that maximizes the
expected return while constraining the portfolio vari-
ance. Sharpe (1964), Lintner (1965), and Mossin (1966)
extended this mean-variance model when they inde-
pendently developed the capital asset pricing model
(CAPM), which laid out a set of assumptions charac-
terizing investors’ behavior. By simplifying how an in-
vestor acts and reacts to market movements, Treynor
(1966), Sharpe (1966), and Jensen (1969) recognized
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the CAPM to be a practical method to compare the per-
formance of all active portfolio managers.

Recently, research has strayed away from the under-
lying assumptions of the Markowitz model: asset re-
turns are not necessarily Normally distributed, and an
investor’s utility is not necessarily quadratic. It is very
difficult for an investor to articulate his utility, and es-
timating the distribution of asset returns is a daunting
task. In addition, optimal portfolios are often sensitive
to estimated parameters, in that the optimal allocation
solved using inaccurate parameters might vary signif-
icantly from the optimal allocation using true values
(Chopra and Ziemba 1993). This calls for the devel-
opment of robust models in portfolio optimization that
rely on minimal parameter estimation. Gülpınar and
Rustem (2007a,2007b) and Rustem et. al. (2000) extend
the classical mean-variance portfolio problem using a
robust min-max approach to address imprecise return
forecasts and risk estimation. They characterize opti-
mal decisions from a worst-case scenario perspective,
and suggest various approaches to handling future un-
certainty while guaranteeing noninferior performance.
Our work, instead, builds on such stochastic models by
reacting to new observations quickly and allowing real
price movements to direct decisions in all scenarios as

c© 2009 Preeminent Academic Facets Inc., Canada. Online version: http://journals.hil.unb.ca/index.php/AOR. All rights reserved.
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time progresses.
Furthermore, the CAPM model presents several other

issues. Under the assumption that markets are efficient,
it is difficult for managers to earn profits after account-
ing for transaction costs and research fees. Also, a sec-
ond assumption that an investor pays no transaction
costs or incurs federal and state tax on gains leads to
an unrealistic portfolio revision policy; this assumption
suggests forecasting and updating as often as possi-
ble. Bertsimas and Pachamanova (2008) provide a de-
tailed study on various robust portfolio optimization ap-
proaches, and highlight the computational advantage of
a simple underlying model when handling complex ad-
ditional requirements, e.g., transaction costs.

As an alternative to risk-adjusted returns, practition-
ers often wish to decide which decisions result in su-
perior performance, which depends on their ability to
invest in the best-performing securities at the best time
relative to the investor’s objectives. Investors face both
general and detailed choices when selecting a portfolio.
General assessment of timing and selection ability in-
clude deciding to invest in equities as opposed to fixed-
income securities when the stock is performing well. A
significant body of literature has been dedicated to as-
sessing peaks, bottoms, trends, patterns and other fac-
tors affecting a stock’s price movements to determine
future values. (Examples of often-used indicators in-
clude Williams %R, Commodity Channel Index rating,
Money Flow Index, and Average Directional Index rat-
ings and moving average crossovers.) Chance and Hem-
ler (2001) study real market data of professional timers
and find evidence of timing capability. The authors use
robust regression techniques to validate their findings,
but noted that the professionals who traded most fre-
quently performed best. When accounting for taxes and
fees timing performance diminished significantly, but
not completely.

Specific assessment focuses on more detailed allo-
cation choices, such as choosing stocks in a better-
performing industry or the relatively better-performing
stocks in a given industry. Many studies have been con-
ducted to that effect, noting that skilled active money
managers can outperform the average forecasts built into
market prices used in passive strategies; for instance,
the reader is referred to Klaas et. al. (2001) for a dis-
cussion on the economic significance of investing in
active funds, even in cases where the investor is skepti-
cal about the manager’s skill level. Huang et. al. (2006)
present a robust Conditional Value-at-Risk approach to
portfolio selection with uncertain exit time. They make

allocation decisions accounting for exogenous and en-
dogenous exit probabilities, and solve the resulting op-
timization model over an interval of exit probabilities
to protect against downside risk. Approximating exit
probabilities at future time steps differs markedly from
allowing real price movements to drive the portfolio al-
location, which we do here.

In contrast, we propose an approach to dynamic port-
folio management based on the sequential update of
stock price forecasts in a robust optimization setting,
where the updating process is driven by historical ob-
servations and the information that recent price changes
reveal. Forecasts are updated using only the most re-
cent data when the stock price differs significantly and
consistently from predictions. In other words, this work
focuses on determining a fund manager’s next-best-step
once he realizes he might have made a mistake, while
avoiding to sell an asset too soon in case poor early per-
formance is not representative of the true stock price dy-
namics. Karatzas and Wang (2000) study optimal stop-
ping times with discretionary stopping, whereby the
decision-maker can freely stop before or at a prespeci-
fied final time in order to maximize the expected utility
of his portfolio wealth or consumption. This approach
relies on finding an optimal family of strategies based
on a calculated optimal return function. In contrast, per-
formance in our model is assessed using a manager’s
regret, defined as the difference between a scenario out-
come for the manager and a specified benchmark strat-
egy, e.g., the stock price at the end of the time horizon.
Regret provides a computationally tractable downside
risk measure without requiring any assumption on the
investor’s utility function or the distribution of the re-
turns.

Most works in behavioral finance define regret to be
“a psychological reaction to making a wrong decision
where wrong is determined by actual outcomes rather
than in relation to the information available at the time
the decision was made” (Dembo and Freeman 1998).
In this sense, behavioral theorists have used the notion
of regret to shed light on why investors, managers, and
analysts have a tendency to invest and make decisions
similar to each other, a phenomenon often referred to as
“piggy-backing”. Individuals, and fund managers, tend
to feel less regret when they lose money along with oth-
ers, as they are less subject to intense scrutiny. Our no-
tion of regret, which focuses on identifying early that a
mistake has been made to avoid compounding its effect,
provides an unique approach to market timing oppor-
tunities and allows managers to take unique, original
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investment decisions while limiting their downside risk.
Further motivation for this study stems from tradi-

tional decision theory, in which a stop-loss rules deter-
mine whether to continue or stop a process based on the
present position and past events. In this work, we refer to
the non-robust approach as the “traditional” approach.
We add robustness into the decision-making framework
by introducing a waiting period prior to the decision to
sell risky assets once their value falls below a thresh-
old. Thus, the manager faces two separate investment
decisions. First, how often should the manager update
the parameters and how should the most recent infor-
mation be incorporated into his decision? Second, if the
manager receives a signal to consider adjusting his port-
folio allocation, how soon after the signal should the
adjustment occur, i.e., when should the manager stop
hoping for a correction and cut his losses? Xia (2001)
addresses similar issues in the context of dynamic asset
allocation, but focuses on how to update predictor pa-
rameters at each time period, and not on when model
parameters should be updated.

This notion of robustness attempts to value obtain-
ing additional information relative to the amount risked
in doing so. What we hope to achieve is a framework
for decision-making that decreases the chance for the
manager to realize he has made a mistake when he
reaches the end of the time horizon, and the size of
that mistake (measured by the amount of money lost).
Performance is evaluated by comparing the approach
with traditional strategies, such as selling right away or
holding the stock until the end. We agree that the key
to successful management is in the search for accurate
and superior information (Bodie et. al. 2005). While, in
practice, managers are often quick to sell when stock
prices fall, our numerical results show that this is not al-
ways the optimal strategy. The results also suggest that
such frequent, e.g., daily, assessments may lead to poor
decision-making: if the decision-maker realizes soon af-
ter selling that he should not have sold, the decision was
not robust.

Our model builds upon the Lognormal distribution of
stock prices, which has been shown to provide a rea-
sonably good starting point to fit real data (see Hull
(2002) and the references at the end of Chapter 12 for a
discussion of the model and its limitations); our goal is
to strengthen this framework by introducing flexibility
(adaptability) in the decision-making process. Specif-
ically, our work seeks to improve on existing portfo-
lio management techniques by incorporating newly ob-
served data into probabilistic decision thresholds. We

further investigate our ability to reduce unnecessary up-
dating in order to save portfolio managers time, compu-
tational effort, and fees in practice. Results indicate that
the proposed approach plays a significant role in helping
to recognize when a bad investment has been made and
when an asset should be sold. We demonstrate that our
approach requires less frequent updating of the problem
parameters than the traditional approach while preserv-
ing performance. To the best of our knowledge, this is
the first time that an adaptive forecasting approach has
been proposed to the optimal stopping (selling) time
problem in portfolio management.

The remainder of this paper is organized as follows.
Section 2. presents the model, numerical simulation,
results, and analysis for one risky asset. The model is
extended to multiple risky assets in Section 3.. Section
4. contains concluding remarks.

2. The Model

2.1. The Binomial Approximation to Stock Dynamics

We consider an asset pool ofN risky assets in a
discrete-time, finite-horizon setting. There exist no
transaction costs for selling or buying assets and each
risky assetn ∈ N is in supply ofSn shares. The fund
manager is interested in buying shares of assets that
return maximum profit to his clientele, while adhering
to their loss restrictions. He has an initial wealth ofW0

to allocate between the risky assets and a riskless asset
earning an exogenous rater, and must holdM < N

assets at all times untilT , at which point he liquidates
the entire portfolio. He tracks each asset, and buys and
sells assets that have fallen below or risen above set
probability thresholds. When he decides to sell assets,
he must reinvest the liquidated funds in either a risky
or riskless asset immediately.

A vast amount of literature supports the conjecture
that stock price movements follow a Lognormal distri-
bution, which can be approximated by a binomial ran-
dom walk. (The reader is referred to Ison (1996) and
Treynor (1966) for a succinct presentation of practical
insight into the binomial approximation of stock price
movements.) Net gain realized by holding stockn is
described as a random walkYtn =

∏t
s=1 Xsn at time

t with all X ’s obeying the distribution of the random
variableXn:

Xn =

{
un, w.p. pn,

dn, w.p. qn = 1 − pn,
(1)
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whereun, dn are known constants withdn < 1 and
1 + r < un (so that the choice between the risky and
the riskless assets is non-obvious).

A manager’s expected profit from stockn is described
by the estimated probabilitŷptn the stock increases in
price each time period. Instantaneous meanµtn and
standard deviationσtn of the random profit are:

µtn = lnun · (2p̂tn − 1) (2)

σtn =
√

p̂tn(lnun − µtn)2 + (1 − p̂tn)(ln un + µtn)2.(3)

The manager initially decides to invest in a stock if
he believes the stock will have greater return than the
riskless asset over the investment horizon[0, T ]. Using
profit parameters(µtn, σtn), we find the probability that
the stock price will rise above or fall below a specified
level at each timet, for instance, the probability that the
price at expiration is above or below the price at which
he bought an asset. The decision to sell at timet a stock
bought at timet0 is made when:

Pr(YTn ≤ St0n) ≥ ǫs,

whereSt0n is the price of stockn at time t0 and ǫs

specifies the probability of loss. Using thatYTn =
Stn

∏T
i=t+1 Xin, this can be written as:

Pr

(
Stn

T∏

i=t+1

Xin ≤ St0n

)
≥ ǫs. (4)

Taking the logarithm and rearranging terms in Equation
(4), we construct confidence intervals on a manager’s
decision to sell at timet(s) depending on time left until
expirationT − t. We have:

St(s)n ≤ St0ne−[µtn(T−t)+φ−1(ǫs)σtn

√
T−t]. (5)

whereφ−1 is the inverse of the t-distribution witht −
t0−1 degrees of freedom. A manager sells assets when
they fall below the threshold(5); this will be referred
to as a trigger threshold for the remainder of this paper.

2.2. Robust Selling Time Approach

In practice, well-performing stocks often exhibit poor
performance over a few time periods, and should be
kept in the fund’s portfolio nonetheless. Because of fast-
changing market conditions, driven by changes in lead-
ership, quarterly earnings announcements, competitors’
moves and global market conditions, it is difficult to
assess whether a stock will perform well in the future

based on historical data. Managers are particularly keen
on avoiding selling stocks too early, as this mistake is
much more obvious to their clients than that of not in-
vesting in a given stock at all. Our purpose here is to
make the manager’s decision more robust by defining
the selling time above to be the start of a stopping pro-
cess. The manager considers selling the stock when the
probability of the stock getting worse exceeds thresh-
old (5); at this time, he questions the validity of the es-
timated parameters but updates the parameters accord-
ingly rather than selling immediately. Going forward,
the manager selects one of several possible options, de-
pending on stock behavior.

The manager chooses to sell the stock if losses in-
curred are too severe (the stock crosses an “immediate
sell” threshold when the stock is down) or if the price
has not recovered enough at the end of a waiting pe-
riod. The “immediate sell (down)” threshold is identi-
cal to Equation (5), except that the probability of loss
at expirationǫisd is higher.

St(isd)n ≤ Stne−[µtn(T−t)+φ−1(ǫisd)σtn

√
T−t]. (6)

The decision to sell may also be the result of a sharp
increase in price. In this case, the manager believes that
the price has peaked and he wishes to capture abnormal
gains. We model this event using a similar threshold
whereǫisu is the level of confidence the manager has
that the price has peaked and will not continue to rise;
this addresses the mean-reverting tendency exhibited by
stocks in practice.

Second, if the price does recover enough in the stop-
ping period to justify holding the stock longer, a man-
ager can decide not to sell at this time. In this instance,
the manager updates his profit estimation parameters
and recomputes his decision thresholds. The stopping
process terminates and will not begin again unless the
probability of loss again exceeds a threshold reflecting
updated information. The recovery threshold is identi-
cal to (5), except the probability of loss at expiration
ǫr, has decreased:

St(r)n ≥ Stne−[µtn(T−t)+φ−1(ǫr)σtn

√
T−t]. (7)

If the stock neither spikes or recovers, the manager
must decide whether to sell the stock or wait to see
if the stock will recover. By waiting, the manager ob-
tains more information on the price process but might
incur even bigger losses; an important question arises
then regarding the length of the waiting period. In or-
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der to determine the appropriate length, we consider the
expected hitting timeτ of either levelA or −B (with
A, B > 0) for the biased random walk. Recall that:

E(τ |S0 = 0) =
B

q − p
−

A + B

q − p

1 −
(

q
p

)B

1 −
(

q
p

)A+B
,

whereq = 1− p. Our model cannot directly apply this
formula because our thresholds are not constant, and it
is not possible to find a closed-form solution. To derive
an approximate expected hitting time, we rely on con-
ditional hitting probabilities at each time period from
the beginning of the stopping process to expiration. We
find that they require significant computational effort,
and the decision thresholds change very little at times
far from timeT , such that nearly identical results are
obtained by simply fitting a horizontal line to the non-
linear thresholds. At times nearT , however, the ex-
pected hitting time increases rapidly because of the way
the bounds approach the price levelS0n asymptotically.
Thus, we set our loss allowance at 2% to solve for a
one-sided expected hitting time, which we use in the
simulations presented below. We know that in expecta-
tion,

E[Sn] = lnun · (2p̂∗tn − 1), (8)

wherep̂∗tn represents the sample probability at the time
the stock price hits the threshold triggering the waiting
period. We then solve for̂p∗tn using:

p̂∗tn =
1

2

[
lnSt(s)n

t · lnun
+ 1

]
.

Substitutingp̂∗tn into Equation(8) and using Wald’s
equation, we find the value for the expected hitting time
as:

E[τ ] = −
x

E[Sn]
. (9)

wherex (in %) represents the maximum loss the man-
ager is willing to accept going forward.

The solution to Equation(9) provides a minimum
for the length of the stopping period, given that the
process does not fall below its immediate-sell threshold
or recover enough to end the triggered process. The
actual length of the stopping period is determined by
the value of the stock price at the expected hitting time,
conditioned on the price rising in the next time period.
In other words, if a stock price increase in the next time
period results in the price exceeding the “sell” trigger
threshold, the length of the stopping period will increase

by one period. If the price moves higher, the stopping
process horizon will be extended until the manager finds
the stock has recovered. If the price falls lower and more
thanE[τ ] periods have passed, the manager will sell.

2.3. Framework and Calibration

Suppose initial wealth of each manager isW0 = 1.
There exists one risky and one riskless asset for each
manager to choose from in the selection of his portfolio,
and he must invest his entire wealth at all time periods.
A manager selects a stock to purchase shares of at time
t0 = 1 based on expected performance. We model this
decision by assuminĝp > 0.5 at t0. We assume that the
manager cannot decide to sell a stock for a minimum
of 2 business weeks after the purchase, as he will be
reluctant to admit he has made a mistake. If the price
of the stock falls below the loss threshold, the manager
must sell immediately and invest in a riskless asset until
time T = 60. If a manager decides to sell the risky
asset, he must invest the entire proceeds from selling
stock into the riskfree asset atr = 3% annually. A
manager can decide to sell at any time period, and each
time period represents one trading day. As mentioned
above, there is no transaction fee to sell a risky asset or
to invest in a risk-free asset.

As noted in Equations(2) and (3), the parameter̂p
dictates our decision-making process; thus, our objec-
tive is to update this parameter whenever there is reason
to believe it is not accurate. We seek to differentiate be-
tween the cases where a manager has invested in a bad
stock and when he has incorrect subjective probabilities.
An example of investing in a bad stock is investing in a
company taking on a new CEO, who makes poor busi-
ness choices and causes the value of the stock to drop;
if a manager believes the CEO is good for the company,
he will invest in the stock, but must quickly realize that
his investment choice was a mistake. On the other hand,
suppose a manager invests in a soaring stock which has
produced strong gains over the past few weeks. If the
stock price falls due to some temporary isolated market
noise soon after the manager has purchased shares, the
manager must realize that the strength of the company
has not changed. Therefore, we construct our model so
that we can closely monitor the implications of assum-
ing a given value of̂p relative to its closeness to the
actual probability of the stock movementp.

We generate 5000 stock prices assuming the real
probability p of the stock price is known using MAT-
LAB. We select uniformly distributed values forp over
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[0.48, 0.505], to focus on the range where the decision
is not clear-cut. For each value ofp, we find values for
u andd in Equation(1) by settingd = 1

u and solving
the equation inu:

p =
a − 1

u

u − 1
u

,

or, equivalently:

u2p − au + 1 − p = 0,

wherea = erdt.
In Figure 1, we see that for values ofp below0.48,

u takes on unreasonable values to represent daily in-
crements. Also, for values greater than0.505, u flattens
out such that our model does not reflect any other per-
formance change than forp = 0.505.

0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

p

u

Fig. 1. Solving foru over p

Also, for eachp, we run our simulation over an inter-
val of p̂ = [0.5, 0.7] in increments of 0.05. (This interval
is larger than the interval forp because managers only
estimate over a short time horizon. Thus, the estimated
parameters will change rapidly as time progresses.) The
interval was chosen as such to ensure that the manager
will decide to purchase the risky asset att0, while en-
suring that managers do not assume unrealistically high
gains.

The only remaining parameters that need to be de-
fined are the values thatǫ have been set to in creating
decision thresholds. We analyze the performance of the
approach for various values ofǫs, and choose values of
ǫr andǫisd so that the feasible price range for the robust
selling period boundsSt(r)

andSt(isd)
is approximately

2σt in length each time thresholds are updated. For ex-
ample, when̂p = 0.6, ǫs = 0.5 results in best overall

returns, and thus we setǫr = 0.31 andǫisd = 0.77.
In order to assess the performance of the decision

mechanism, we compare the mean outcome for a fund
manager who acts according to the robust mechanism
detailed above to that of a manager who opts for a tra-
ditional strategy. A (sell) mistake is defined as a deci-
sion which results in the manager receiving less than
he would have by holding onto the stock until timeT ,
and the difference is the cost incurred. A correct (sell)
decision results in the manager earning more than he
would have by holding onto the asset untilT , and the
difference is the amount saved. Thus, the average com-
parative return̄S is:

S̄ =
amount save - amount cost

# of diverging decisions
. (10)

The results below suggest that our model also provides
valuable insights into the value of gaining information
before making a decision to sell.

2.4. Simulation Results

2.4.1. Overall Performance
The first simulation presented examines the flexibility

of the robust model. For each value ofp̂ in the range
[0.5, 0.7], we implement the robust decision mechanism
on a set of 5000 generated stock processes, withT = 60
time periods. Recall that positive values ofS̄ indicate
that the robust approach outperforms the traditional one.
Results from this simulation are as follows:

Table 1

Performance (across all̂p).
p S̄∗ ($) max precision(%) ∆t

0.48 -0.00128 0.3063 3.83 7.20
0.485 -0.00212 0.2117 4.53 7.18
0.49 0.00013 0.2032 6.74 7.25
0.495 0.00091 0.1254 9.68 7.28
0.5 0.00051 0.0572 11.77 7.50

0.505 0.00027 0.0303 11.15 7.59

where:
• S̄∗ is defined in Equation(10),
• max is the average difference between the maximum

amount saved and the maximum cost in the traditional
vs robust approaches.

• precision is the average percentage of avoided mis-
takes using the robust approach relative to the tradi-
tional approach,
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• ∆t is the average number of extra time periods a
manager using the robust approach invests in risky
assets.
We find that our model performs worse than the tra-

ditional approach for the two lowest values in the range
of p. This is due to the extreme volatility linked to
low p values, or unrealistic magnitudes ofu, d. Re-
sults are very encouraging ifp is restricted to a smaller,
more practical range[0.49, 0.505]. The following table
presents results for the case where managers invest in a
riskless asset after selling the risky asset:

Table 2

Mean performance across all̂p = [0.49, 0.505].
p S̄∗ max precision(%) ∆t

meanall 0.00046 0.10403 9.84 7.41

The results show that the robust approach performs
better than the traditional approach on average over this
interval of p. The gap between the maximum amount
saved and cost is tightened by $0.10 on average. The
manager using the robust model correctly identifies
9.84% more mistakes relative to the traditional model.
Also, the robust approach will hold risky assets an av-
erage of 7.41 time periods longer than the traditional
approach. While the increase in̄S is not big, one must
keep in mind that realize that this reflects only the
improvement with only one stock and a manager who
begins with $1.

Looking back at Table 2, we find that our model per-
forms best whenp = 0.495. Relative to other values of
p, the the values ofmax andprecision imply that the
best performing managers are those who balance lim-
iting the variation of their returns and increasing their
precision. An overly conservative manager (lowp̂) will
greatly decrease the gap of max outcomes but will earn
returns very similar to the traditional case. A manager
who focuses on maximizing his precision must bear
with very volatile outcomes, and take on extreme losses
more often. In the next section, we run a different sim-
ulation to compare the performance of different fund
managers; their differences are reflected in their differ-
ent choices for̂p.

2.4.2. Heterogeneous Managers
For each value of̂p in the range[0.5, 0.7], we imple-

ment the robust decision mechanism on a set of 5000
generated stock processes withT = 60 time periods.
We then change the initial value of̂p (which does not

affect the processes) and the respective values forǫ. Re-
sults from this simulation are as follows:

Table 3

Heterogeneous Managerŝp = [0.5, 0.7]

p̂ S̄∗ max precision(%) ∆t

0.5 0.000292 0.8798 14.65 10.54
0.55 0.000372 0.7445 9.51 7.79
0.6 0.000890 0.6459 8.20 7.12
0.65 0.000042 0.6160 6.53 6.22
0.7 0.000398 0.5089 8.63 5.28

where all parameters are defined as before. Notice that
here we average across all values ofp for each value
of p̂, whereas in the previous simulation we averaged
across all values of̂p for each value ofp.

We find that the manager witĥp = 0.6 is the top per-
former with respect tōS. In line with the results pre-
sented in the previous section, this manager balances
his limitation of taking an extreme loss, the desire to
increase his precision, and his willingness to invest in
risky assets longer than is recommended by traditional
approaches. Managers who estimate their parameters
too conservatively will exhibit the greatest precision rel-
ative to the traditional approach, but the increase in per-
formance is small on average. These managers concern
themselves with better behaved processes which have
lower standard deviation, which explains the longer av-
erage waiting period and greater reduction in the vari-
ability of outcomes. Managers who take on too much
risk, on the other hand, set their parameters such that
recovery is harder and they cut their losses too soon.
Also, they are more willing to accept a greater mag-
nitude of loss, so the variability of their outcomes is
relatively high.

We conclude that a manager who follows the robust
approach does the best at differentiating between an
investment mistake and a temporary downward price
trend. We see that neither maximizing precision nor
holding onto risky assets as long as possible is an opti-
mal objective for investing.

2.5. Example

Figure2 illustrates an example of the decision process
faced by a manager in one specific run. The solid line
represents the stock price. Each dotted line represents
a threshold defined above, and is labeled accordingly.
Suppose att = 0, the manager assumes ap̂ value of
0.6, and thus invests his entire wealthW0 in shares of
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the stock. At timet = 38, the stock first falls below the
trigger thresholdSts

, which is represented as a circle on
the plot. A manager following the traditional approach
would sell his stock holding at that time period and
reinvest his funds in a riskfree asset untilT . It is obvious
in this case that this “traditional” manager sells too soon.
Had he given the process a chance to recover, he would
have earned a significant profit.

A manager following the robust approach decides
to begin a stopping process, updates the value ofp̂ at
t = 38 and holds the stock instead in hopes of recov-
ery. At this time,p̂ ≈ .43. This value, along with the
thresholds(6) and(7) from t = 38 to t = T , are used
to find the expected hitting time. In this run,E[τ ] = 9
time periods, so that we wait untilt = 47. The pro-
cess behaves well in the waiting period, and it appears
to be en route to recovery att = 47, as it has risen
above the trigger threshold. Thus, we allow the stop-
ping period to be extended until either the process has
recovered or until it decidedly loses momentum and is
sold. The process crosses its recovery threshold(7) at
t = 52, and all parameters are updated, and a new set
of thresholds are constructed using this newly available
information. At timeT we find that the manager using
the traditional approach has made a mistake, and ends
with a 46% loss over the entire time interval. The man-
ager following the robust approach has correctly iden-
tified that the decrease in price was not a mistake, and
receives a 45% profit relative to the price at purchase.

3. Multiple Risky Assets

3.1. The Approach

We now introduce multiple risky assets into the port-
folio mix. The decision to reinvest liquidated funds in ei-
ther risky or riskless assets is determined by maximizing
the Sortino ratio of the portfolio mix. This downside risk
measure, introduced by Sortino and Price (1994), re-
places standard deviation with downside semi-standard
deviation in Sharpe’s famous measure. Thus, the ratio
is the expected rate of return in excess of the riskless
asset, per unit of downside risk.

In the case where the manager is holding the riskless
asset, he decides to swap back into some risky asset
when the return to-date exceeds that of the riskless asset
(recall that we assume no transaction costs), i.e., when:

[
Stn − S1n

S1n

]1/t

> r.

The manager is restricted from buying back into the
same portfolio he just sold; furthermore, a manager will
not immediately buy back into a portfolio that he has
recently convinced himself and his clientele to be a bad
investment strategy.

A last necessary addition to the multiple risky assets
model is an aggregate portfolio downside threshold. If
that aggregate threshold is crossed, the manager will
liquidate the risky assets and allow the wealth to sit
in a riskless investment until timeT . The level of this
threshold is determined using unrestricted simulations
(that is, without the threshold) and setting it equal to a
percentage of the maximum observed losses; we allow
the percentage to depend on the size of the losses. For
example, if a manager is holding a risky portfolio worth
$100 today, which in the past quarter hit a low of $60
in aggregate value, he will only accept a maximum loss
of say 40% of $40, whereas a manager who is holding
a risky portfolio worth $100 today, which in the past
quarter hit a low of $94, will be willing to accept a
maximum loss of say 80% of $6.

3.2. Problem Setup

3.2.1. Questions
We now are faced with a broader set of questions

to assess our strategy’s performance in the multiple
asset case: Does the decision mechanism described
produce higher returns than traditional stopping rules?
Are results consistent with the findings above regard-
ing the flexibility of our approach and heterogeneous
managers? How volatile are the terminal values of the
portfolio? How much variability exists in the maximum
and minimum performances across all trials? Does
maintaining a robust decision mechanism for the entire
time interval compound the effects of a mistake relative
to the traditional approach? Ultimately, has the robust
model increased the managers’ ability to recognize and
optimally react to mistakes?

3.2.2. Framework
Suppose the initial wealth of each manager isW0 =

100. There exists a pool ofN = 10 risky assets and
one riskless asset to choose from in the selection of
the portfolio, and each manager must invest his entire
wealth at all time periods. A manager selectsm = 5
stocks to purchase at timet0. A manager will not sell a
stock for a minimum of 2 business weeks after purchase;
if he decides to sell an asset he is holding, he must invest
the entire proceeds from selling the asset into some other
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Fig. 2. Example.

investment not being held. A manager can decide to sell
at any time period, and each time period represents one
day or 1

252 of a year. Assume no withdrawals of funds
by investors and no transaction fees to sell or buy an
asset.

We compare the mean outcome for a fund manager
who acts according to the robust mechanism detailed
above and that for a manager who opts for a traditional
strategy. In each run of each instance, we collect data
across the same ranges forp̂ andp as in the single as-
set case. First, we track the difference between the final
portfolio value and the value at the time the first mistake
is realized. By doing so, we can assess which strategy
recovers better from this first downfall in wealth, as both
managers’ portfolios have identical worth at this mo-
ment. This statistic is the principal performance mea-
sure. Second, the standard deviation of realized portfo-
lio values is averaged over all values ofp and p̂. This
indicates how volatile the aggregate portfolio values are
from the time of the first mistake until timeT for all
runs. Next, a comparison of the maximum and mini-
mum portfolio values provides a check to ensure our
approach is in line with robust theory. Last, we keep
count of the total number of decisions made for each
value ofp and p̂ in order to determine how much ef-
fort the robust strategy saves a manager. The swapping

mechanism between stocks was coded and the numeri-
cal experiments were performed using MATLAB.

3.3. Results

3.3.1. Overall Performance
As in the single risky asset case, we first test the

flexibility of the robust model. For each value ofp̂ in
the range[0.5 0.7], we implement the robust decision
mechanism on a set of 2000 runs, each involving a pool
of 10 risky assets and one riskless asset. A change in
the value of̂p warrants the generation of new stock pro-
cesses, and requires a change in the respective values
of ǫ. For simplicity in the experiments, we assume that
the p̂ values of the 5 stocks in the portfolio at the be-
ginning of the time horizon are the same for each run.
Results from this simulation are as follows:
where:
• AP is the average performance difference,
• σdiff is the difference between the average standard

deviation of all realized portfolio values,
• min is the average difference of minimum perfor-

mance,
• max is the average difference of maximum perfor-

mance,
• # dec. is the average difference of total number of



Michael Dziecichowicz & Aurélie Thiele – Algorithmic Operations Research Vol.4 (2009) 58–69 67

Table 4

Performance (across all̂p).
p AP σdiff min max # dec.

0.48 0.1441 0.8852 -5.5978 -15.7854 3.05
0.485 -0.0244 0.5661 -2.2687 -5.1101 2.97
0.49 0.3742 0.4914 -1.6764 3.8230 2.19
0.495 0.0526 0.3199 -1.6398 2.6498 1.29
0.5 0.1076 0.1720 0.1448 -0.1603 1.61

0.505 -0.0335 0.0874 0.1825 -0.3341 1.75

decisions made.
All measures pertain to the difference between the tra-
ditional and robust approaches.

On average, the robust strategy performs better than
the traditional strategy. The best performing manager
successfully reduces the volatility of realized portfo-
lio values and captures higher maximum gains, while
making less swaps than a traditional manager. Specifi-
cally, whenp = 0.49, a manager implementing a robust
decision-making strategy makes $0.37 more per run on
average. Further, he reduces the standard deviation of
realized portfolio values by approximately 0.49 stan-
dard deviations, while making 2.19 less decisions per
run on average. Whenp is close to 0.5, we find that the
robust strategy makes decisions which closely resemble
the traditional approach regarding the number of deci-
sions made and actual swapping order between stocks,
while generally earning higher returns. Also, we see
that the robust model increasingly reduces the volatil-
ity of portfolio values as the volatility of the processes
increases.

In cases where the robust strategy is outperformed,
the difference is not very sizeable. Practically, the differ-
ence in performance will be outweighed by the amount
of costs saved by making less decisions. We address
this in more detail in the next section. Table 6 presents
the mean results over a range ofp parameters.

3.3.2. Heterogeneous Managers
For each value of̂p in the range[0.5, 0.7], we imple-

ment the robust decision mechanism on a set of 2000
runs, each involving a pool of 10 risky assets and one
riskless asset. We hold constant the set of processes in
this test, and only change the initial value ofp̂ and the
respective values forǫ. Results from this simulation are
as follows:

We find that the manager who initially believesp̂ =
0.55 is the top performer with respect toAP andmin.
We also find that he reduces the volatility of realized
portfolio values, while making an average of 1.67 de-

Table 6

Heterogeneous Managerŝp = [0.5, 0.7].
p̂ AP σdiff min max #dec

0.5 -0.1107 0.2514 -1.0938 -0.5576 1.85
0.55 0.0684 0.2738 0.3710 2.1148 1.67
0.6 0.0024 0.2826 -0.1428 3.0338 1.74
0.65 0.0177 0.2969 -0.0137 -0.8813 1.74
0.7 -0.0860 0.2903 -0.3184 -2.9143 1.97

cisions less than a traditional manager. This simulation
concentrates on a manager’s initial decision, and the
implications of setting inaccurate initial parameters. In
line with our robust framework, the numbers suggest
that limiting extreme losses and lowering the volatility
of returns translates into better average performance.
Managers who assumêp values closer to the median of
the interval do a better job than their less conservative
counterparts.

Managers who initially assumêp = 0.5 or 0.7 fail
to protect against extreme losses as effectively as the
traditional strategy, while making the fewest relative
decisions. Perhaps the manager who assumes an initial
p̂ value closer to0.5 sets his thresholds too indecisively,
such that he waits too long to sell a falling stock. On the
other hand, a manager who uses a traditional strategy
in this case realizes his initial lack of confidence in
the profitability of his risky holdings, and is quick to
sell at the first signs of loss. Alternatively, perhaps the
manager who assumes an initialp̂ value closer to0.7 is
overly confident in his risky holdings’ ability to recover
after realizing a mistake, which explains fewer swap
decisions.

A comparison of managers’ abilities to set initial pa-
rameters shows significant value in “conservative op-
timism,” focused on limiting aggregate portfolio loss.
The results in Tables 4 and 5 indicate that a tradeoff
between reducing the variability of portfolio values and
making less decisions is optimal.

3.4. Transaction Costs

After a manager decides to buy or sell a stock, he
must either liquidate a current position to obtain cash to
buy the desired asset, or reinvest the liquidation value
of selling the stock in some other asset. The liquidation
value is the market value of the sold stockSt returned to
the manager, minus the fees, expenses, or tax incurred
at that time period; for instance, individual investors of-
ten must pay a certain percentage of the specific stock’s
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Table 5

Mean performance across all̂p = [0.49, 0.505].
p AP σdiff min max # dec.

meanall 0.1252 0.2677 -0.7472 1.4946 1.71

market value times the number of shares sold. Further,
investors that hold illiquid assets in their portfolio face
higher potential costs of liquidating their assets, espe-
cially when performance of the assets has been poor.
In mutual funds, managers are usually charged a fixed
transaction penalty. Thus, we assume a total transaction
costC to be a fixed amount per share of stock sold over
the entire time horizon times the number of shares sold.

Monitoring the effects of transaction costs will be-
come increasingly necessary as the number of risky as-
sets increases, as the number of decisions increases, and
asT → ∞. The value of accurate information becomes
increasingly valuable to managers as more complexities
are introduced. The results presented in Table 5 indicate
that the robust strategy was outperformed by the tradi-
tional approach in two instances,p = 0.485 and0.505.
(Recall thatp = 0.485 was decided to be an unrealistic
price movement magnitude to use across the entire time
interval, in the sense that it yielded unrealistic values of
u andd.) Dividing the relative average performance by
the average number of swap decisions made in each in-
stance, we find the average transaction cost that would
make the performance of either strategy equal to zero.
Specifically, the average cost per decision is $0.008 and
$0.019 respectively. These costs are below the costs that
fund managers actually incur, implying that the robust
model proves profitable if implemented because it ben-
efits from a lesser number of decisions and thus lower
transaction costs than the traditional approach.

4. Conclusions and Future Work

4.1. Conclusions

In this paper, we have proposed an approach to dy-
namic portfolio management based on the sequential
update of stock price forecasts in a robust optimization
setting. Our approach takes the standpoint of an active
mutual fund manager who wishes to maximize profits
to individual investors. The primary contribution of this
paper is the development of detailed guidelines and nu-
merical testing of the robust decision mechanism. Nu-
merical results suggest that our approach outperforms
traditional strategies within an interval of probabilities

chosen for its practical relevance in the binomial ap-
proximation to the Lognormal model of asset prices.
Our method allows us to determine the value of gaining
more information about a stock process before making
a final decision at the end of the time horizon.

4.2. Future Research Directions

This research can be extended in a number of direc-
tions. We plan to apply our methods to real market data
to test the validity of our data-driven approach. Another
avenue of research would consider a robust buy-in de-
cision to complement its selling counterpart. In the case
an asset has been performing well recently, but has ex-
hibited too little or too much volatility for the investor to
decide to buy right away, the investor can delay his de-
cision until he determines the trend more precisely. An
additional extension to this model is to consider making
the confidence level of our thresholds a function of the
current level of profit. Intuitively, this would allow an
investor who has made money on his overall portfolio
to be more willing to hold an asset that is experiencing
a downturn in price. Alternatively, an investor who has
lost money will more aggressively monitor future price
movements, for fear of incurring excessive loss.

Finally, expanding the asset pool to include the trad-
ing of risky asset derivatives is an interesting consider-
ation for our model. Because margin requirements are
low in option trading, a small price movement in the
wrong direction or an erroneously estimated parameter
may result in losses that force an investor out of the
market; on the other hand, derivatives provide relatively
cheap hedging instruments. This extension, while intro-
ducing a vast amount of complexity into the problem,
is a necessary step towards practical implementation.

References

Bertsimas, D., D. Pachamanova. 2008. Robust multi-
period portfolio management in the presence of trans-
action costs.Computers & Operations Research, 51
(1), 3–17.

Bodie, Z., A. Kane, A. Marcus. 2005.Investments,
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