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Abstract

This paper deals with the2-Peripatetic Salesman Problem for the case where costs respect the triangle inequality.
The aim is to determine2 edge disjoint Hamiltonian cycles of minimum total cost on a graph. We first present a
straightforward9/4 approximation algorithm based on the well known Christofides algorithm for the travelling salesman
problem. Then we propose a2(n−1)/n-approximation polynomial time algorithm based on the solution of the minimum
cost two-edge-disjoint spanning trees problem. Finally, we show that by partially combining these two algorithms, a
15/8 approximation ratio can be reached if a5/4 approximation algorithm can be found for the related problem of
finding two edge disjoint subgraphs consisting of a spanningtree and a Hamiltonian cycle of minimum total cost.
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1. Introduction

The m-Peripatetic Salesman Problem (m − PSP )
is defined on a complete n-vertex (undirected) graph
G = (V, E) whereV = {1, . . . , n} is a vertex set and
E = {(i, j) : i, j ∈ V, i < j} is an edge set. A cost
ce ∈ R is assigned to each edgee ∈ E. The prob-
lem consists of determiningm edge disjoint Hamil-
tonian cyclesH1, . . . , Hm ⊂ E, of minimum total
cost

∑m

k=1 C(Hk) (where C(Hk) =
∑

e∈Hk
ce) on

G. Whenm = 1 the m − PSP reduces to theTrav-
elling Salesman Problem(TSP). Let indicate the so-
lution cost obtained by applying a generic algorithm
A as C(A). Let OPT represent the optimalm-PSP
solution (whereOPTi is the optimali-th cycle) and
C(OPT ) =

∑m
i=1 C(OPTi) its value. The optimal

TSP solution is indicated withTSP1 andC(TSP1) is
its cost. Finally,ρ(A) is the approximation ratio for the
algorithmA, (i.e. C(A)

C(OPT ) ). In the sequel we consider

Email: Federico Della Croce [federico.dellacroce@polito.it],
Vangelis Th. Paschos [paschos@lamsade.dauphine.fr],
Roberto Wolfler Calvo [roberto.wolfler@lipn-paris13.fr].

the case withm = 2 (2 − PSP ), where we assume
n ≥ 5 to avoid infeasible cases.

Them−PSP was introduced by Krarup [4]. Appli-
cations include the design of watchman tours [5] where
it is often important to assign a set of edge-disjoint
rounds to the watchman in order to avoid always re-
peating the same tour and thus enhance security. In the
same spirit, De Kort [7] cites a network design appli-
cation where, in order to protect the network from link
failure, several edge-disjoint cycles must be determined.
This author also mentions a scheduling application of
the2 − PSP where each job must be processed twice
by the same machine but technological constraints pre-
vent the repetition of identical job sequences.

In [8] 2−PSP was shown to beNP − hard by re-
duction from the Hamiltonian path problem. In [6] some
polynomially solvable cases of2 − PSP are consid-
ered. In [8], [9] and [10] upper and lower bounds cal-
culation are presented and a branch and bound method
is proposed. Polyhedral approaches for them-PSP are
presented in [2,3]. For the metric2 − PSP (when the
cost function satisfies the triangular inequality), an ap-
proximation algorithm with performance ratio9/4 is

c© 2010 Preeminent Academic Facets Inc., Canada. Online version: http://journals.hil.unb.ca/index.php/AOR. All rights reserved.
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proposed in [12]. Recently, Ageev et al. [1] proposed
a 2-approximation polynomial-time algorithm starting
from the solution of the minimum cost2 edge-disjoint
spanning trees problem. The proof of this result is how-
ever rather technical, non-intuitive and pretty hard to
follow.

In his seminal paper, Krarup [4] discussed the fol-
lowing simple heuristic (denoted hereafterKH) for
2 − PSP : solve a first TSP on the initial graphG, re-
move from the graph the edges used in the TSP solu-
tion, solve a second TSP on the remaining graph and
merge the two Hamiltonian cycles found to obtain the
2 − PSP solution. If a complete graph with general
cost function is considered,KH is shown in [4] to
give unbounded error, even if the TSPs are solved op-
timally (we denote hereafter byKHOPT such version
of KH). Indeed, this is the case also for a complete bi-
partite graph: consider the following example with ten
vertices(1, . . . , 10) with the odd nodes in the left par-
tition and the even nodes in the right partition. Edges
costs are defined as follows:c1,2 = c2,3 = c3,4 =
c4,5 = c5,6 = c6,7 = c7,8 = c8,9 = c9,10 = c10,1 = ǫ;
c1,8 = c3,10 = c4,9 = M ; all the other edges have cost
equal to2ǫ. The unique optimal solution of the TSP is
the cycleα = 1− 2− 3− 4− 5− 6− 7− 8− 9− 10,
whose value is equal 10ǫ. Removing those edges all
remaining Hamiltonian cycles contain either edgee1,8

and/or edgee3,10 and/ore4,9 inducing a cost function
value greater than or equal toM . The optimal solution
of 2 − PSP has value≤ 31ǫ obtained with the cycles
λ = 1−4−3−2−9−6−7−8−5−10−1whose value is
15ǫ andµ = 1−2−5−4−7−10−9−8−3−6−1whose
value is16ǫ. Thus the ratio C(A)

C(OPT ) ≥ M
31ǫ

→ +∞ for
M big andǫ small suitably chosen.

In this paper we investigate the metric case. We first
show that from the Hamiltonian cycleHC1 computed
by applying Christofides’ algorithm(CA) [11] it is pos-
sible to derive a second disjoint cycleHC2 such that
the cost ofHC2 is at most twice the cost ofHC1. Cor-
respondingly we deduce a straightforward9/4 approx-
imation algorithm. A second approximation algorithm
is then reported in Section 2.2.. It is based on the idea
of solving first (similarly to [1]) the minimum cost two-
edge-disjoint spanning trees problem which is known
to be polynomially solvable. Then, by duplicating the
edges, each tree is transformed into an Eulerian cycle
and by means of a patching procedure similar to the
one proposed in [11], two edge disjoint Hamiltonian cy-
cles are obtained. We show that this second algorithm
reaches a2n−1

n
-approximation ratio.

Incidentally, we notice that this result was obtained
somewhat contemporarily and independently from [1])
(a preliminary version of this work was already pre-
sented at the AGaPe - Algorithmique à Garanties de
Performance / Algorithms with Performance Guaran-
tees - workshop held at the University Paris-Dauphine,
France, in December 2006) and its proof is much sim-
pler and more intuitive than the one in [1].

Finally, we show that by partially combining the pro-
posed two algorithms, a15/8 approximation ratio can
be reached if a5/4 approximation algorithm can be
found for the related problem of finding two edge dis-
joint subgraphs consisting in a spanning tree and a
Hamiltonian cycle of minimum total cost.

2. Approximation results

2.1. A simple 9
4 -approximation algorithm

In this paragraph we present a first simple approxi-
mation algorithm which gives a9/4 approximation ra-
tio. Let G(V, E) be a complete graph with a costce as-
sociated to each edge such that the triangular inequality
holds, i.e.ceij

+ cejk
≥ ceik

. Consider the following
algorithm and the related figure (Figure 1).

Algorithm 1 The9/4-approximation ratio

Phase 1) Apply Christofides’ Algorithm (CA) for
finding a TSP solution and build the Hamiltonian tour
H1 = (1/2/ . . . /n/1) (let w.l.o.g.e12 be the smallest
cost edge among the ones used inH1);
Phase 2) If n is oddthen the second disjoint tourH2

is 1/3/ . . . /n − 2/n/2/4/ . . ./n− 1/1,
else the second disjoint tourH2 is 1/3/ . . . /n −
1/2/n/n− 2/n− 4/ . . . /4/1.
return The edge disjoint Hamiltonian cyclesH1 and
H2.

It is well known that CA for the TSP [11] has approx-
imation ratio≤ 3(n−1)

2n
. Then, the following theorem

holds.
Theorem 1 Algorithm 1 is polynomial and has a94 -
approximation ratio.
Proof. The polynomiality trivially holds from the poly-
nomiality of Cristofides’ algorithm. For the ratio: ifn
is odd, thenC(H1) = C(CA) and:

C(H2) = C(1/3/ . . . /n − 2/n/2/4/ . . ./n − 1/1)

≤C(1/2/3/ . . . /n/1/2/3/ . . ./n/1)

= 2C(H1)
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Figure 1. An example of Algorithm 1

Therefore:

ρ(H1 ∪ H2) =
C(H1 ∪ H2)

C(OPT )
≤

C(H1 ∪ H2)

2C(TSP1)

≤
3(n−1)

2n
+ 3(n−1)

n

2
=

9(n−1)
2n

2
≤

9

4

Analogously, ifn is even, thenC(H1) = C(CA) and:

C(H2) = C(1/3/ . . . /n− 1/2/n/n− 2/n− 4/ . . . /4/1)

≤ C(1/2/3/4/ . . . /n− 2/n − 1/n/1/2/1/n

/n − 1/n− 2/n− 3/n − 4/ . . . /4/3/2/1)

= 2C(H1) + 2ce12 ≤
2n + 1

n
C(H1)

Therefore:

ρ(H1 ∪ H2) ≤
C(H1 ∪ H2)

2C(TSP1)

≤
3(n−1)

2n
+ 2(n+1)

n

3(n−1)
2n

2

=
3(n−1)

2n
+ 6(n2

−1)
2n2

2
≤

9

4

The proof of the theorem is now complete.

Remark
Phase2 of Algorithm 1 is actually applicable to any
cycle A = (1/2/ . . . /n/1), namely, for any givenA
with costC(A), it is possible to derive a disjoint cycle
B with cost C(B) ≤ 2(n+1)

n
C(A). This induces the

following upper and lower bounds on the approximation
ratio of AlgorithmKHOPT .
Corollary 2 3n+2

2n
≥ C(KHOP T )

C(OPT ) ≥ 7/6

Proof. For the upper bound, by computingTSP1

and then finding a second disjoint cycle with cost
not superior to2(n+1)

n
C(TSP1) as in Algorithm 1,

we get C(KHOP T )
C(OPT ) ≤

C(TSP1)+
2(n+1)

n
C(TSP1)

C(OPT ) =
3n+2

n
C(TSP1)

C(OPT ) =
3n+2

n
C(TSP1)

C(OPT1)+C(OPT2) ≤
3n+2

n
C(TSP1)

2C(TSP1) =
3n+2
2n

. For the lower bound, consider the following ex-
ample with six vertices(1, . . . , 6) and edge costs defined
as follows:c1,2 = c1,6 = c2,3 = c3,4 = c4,5 = c5,6 =
1; c1,3 = c1,5 = c2,4 = c2,6 = c3,5 = c4,6 = 1 + ǫ;
c1,4 = c2,5 = c3,6 = 2. The unique solution of the TSP
is the cycleα = 1 − 2 − 3 − 4 − 5 − 6 − 1, whose
value is equal to6. Removing those edges all remaining
three Hamiltonian cycles contain two edges with cost
2 inducing a cost function value≥ 8. Hence each of
these three2−PSP solutions has cost≥ 14. However,
the optimal solution of2 − PSP has value12 + 6ǫ
obtained with the cyclesλ = 1− 2− 3− 4− 6− 5− 1
andµ = 1 − 3 − 5 − 4 − 2 − 6 − 1. Thus the ratio is
C(KHOP T )

C(OPT ) ≥ 14
12+6ǫ

→ 7
6 for ǫ → 0 suitably chosen.

2.2. A 2(n−1)
n

-approximation algorithm

Given a complete graphG(V, A), we first determine
two edge-disjoint spanning trees of minimum cost (it
is well known that such problem is polynomially solv-
able, see for instance [13]) and such cost obviously con-
stitutes a lower bound to2 − PSP . Let define in the
following these spanning trees as treeA and treeB.

More precisely, ifC(A) + C(B) constitutes the cost
function value of the minimum cost two-edge-disjoint
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spanning trees problem, we haveC(A)+C(B)
C(OPT ) ≤ n−1

n
.

Indeed, this occurs becauseC(A)+C(B) ≤ C(HP1)+
C(HP2) where HP1 and HP2 denote the Hamilto-
nian paths derived from the optimal solution by elim-
inating the two largest edges inOPT1 andOPT2 re-
spectively. But, then,C(HP1) ≤ n−1

n
C(OPT1) and

C(HP2) ≤
n−1

n
C(OPT2) and, hence,C(A)+C(B) ≤

n−1
n

(C(OPT1)+C(OPT2)) = n−1
n

C(OPT ). The al-
gorithm is divided into two main phases. We first trans-
form A into a Hamiltonian cycleA∗ while possibly
modifying B but in such a way thatB remains a tree.
Then, alsoB is transformed into a Hamiltonian cycle
while possibly modifyingA∗ but in such a way to keep
A∗ Hamiltonian.

In the first phase, the algorithm duplicates all edges
of tree A which becomes Eulerian and is denoted in
the following asA′. GivenA′, the algorithm iteratively
selects the node with largest degree and substitutes a
pair of its edges with their diagonal in a way similar (but
not identical) to what is done in Christophides algorithm
[11].

To apply these patching iterations, we need to take
into account not only that substituting a pair of edges
belonging to the same node with their diagonal may
disconnect the Eulerian cycle, but also the possibility
that the diagonal may belong to treeB. In this case
an exchange of edges betweenA′ andB is operated in
order to keep a Eulerian cycle and a tree. In all cases,
at each iteration the number of edges ofA′ is reduced
until A′ becomes Hamiltonian. At the end of this phase,
we have then a Hamiltonian cycleA∗ and a treeB.

The second phase starts by duplicating all edges of
treeB which becomes then Eulerian and is denoted in
the following asB′. Then, the algorithm transformsB′

into a Hamiltonian cycleB∗ while keepingA∗ Hamil-
tonian. This is done in a way similar to what was de-
scribed above for obtainingA∗ except for those sub-
cases requiring an exchange of edges that are handled
differently.

In both phases, the algorithm always operates on the
largest degree node of an Eulerian cycle: in the follow-
ing we present the exhaustive cases that may occur.
(1) Phase 1: the considered Eulerian cycle isA′, while

B is a tree and the largest degree node ofA′ has
at least six edges: then, either it has at least two
double edges (case 1a), or it has at least four single
edges (case 1b).
(a) The node has at least two double edges,

namely it has two double edges and at least
one further edge which may be either double

(then three double edges) or single (then two
double edges and one single edge) as rep-
resented in Figure 2 where1 is the highest
degree node,2 and3 are the nodes adjacent
to 1 by means of double edges, while4 is
the node adjacent to1 by means of a single
or double edge indicated with a dashed line:
then, either we substitutee12 and e13 with
e23 or e12 and e14 with e24 or e13 and e14

with e34. Notice that sincee23, e24 and e34

form a three edges cycle, then at least one
of these edges is not included inB and is
therefore available forA′. Also, note that the
graph remains Eulerian ase12 and e13 are
double edges.

1 32

4

Figure 2. Case 1a

(b) The node has at least four single edges (as
represented in Figure 3.i where1 is the highest
degree node and2, 3, 4 and5 are the nodes
adjacent to1).

1 42

5

3

i)

1 42

5

3

ii)

�
�

�
�

�
�

�
�

Figure 3. (i) Case 1b; (ii) Patching inducing disconnectionof
A′ in case 1b.

There are six possible ways of substituting
two edges with their diagonal, namely sub-
stitutions s1 = {e12 and e13 with e23}, or
s2 = {e12 and e14 with e24}, or s3 = {e12

and e15 with e25}, or s4 = {e13 and e14

with e34}, or s5 = {e13 and e15 with e35},
or s6 = {e14 and e15 with e45}. Also, as
edgese23, e24, e25, e34, e35 ande45 form sev-
eral subcycles, at least some of them must be
available. Assume w.l.o.g. thate23 is available
(the other options work in a similar way) that
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is it does not belong toB: then, substituting
e12 and e13 with e23 either keepsA′ Eule-
rian or disconnectsA′ (see Figure 3.ii where
the dashed lines indicate that there is a chain
from 2 to 3 and from4 to 5). In the first case,
we are done. In the second case, asA′ is Eu-
lerian, then substitutionss2, s3, s4 ands5 do
not disconnectA′. But then, as edgese24, e25,
e34 ande35 form a subcycle, then eithers2,
or s3, or s4 or s5 are available and do not dis-
connectA′.

(2) Phase 1 (cont.): the considered Eulerian cycle is
A′, while B is a tree and the largest degree node
of A′ has four edges: then, either it has four single
edges (case 2a), or it has one double edge and two
single edges (case 2b), or it has two double edges
(case 2c).
(a) The node has four single edges: see case 1b.
(b) The node has one double edge and two single

edges (as represented in Figure 4) where1
is the highest degree node and3, 4 are the
nodes adjacent to1 by means of single edges,
while 2 is the node adjacent to1 by means of
a double edge.

1 43

2

Figure 4. Case 2b

Then, either we substitutee12 ande13 with
e23 or e12, e14 with e24. If any of e23 or e24

does not belong to treeB, then we simply
apply the corresponding substitution, else the
substitution is coupled to an edge exchange
betweenA′ andB. If the first substitution oc-
curs, that is edgee23 is taken fromB and as-
signed toA′, then, correspondingly, edgee13

eliminated fromA′ is assigned toB. Alter-
natively, edgee24 is taken fromB and as-
signed toA′ and, correspondingly, edgee14

eliminated fromA′ is assigned toB. To see
that the exchange guarantees thatB remains
a tree, notice that, by definition of tree, node
1 is connected to2, 3, 4 in B through a path
that reaches first either2, or 3, or 4. If the
path reaches first3, then by substituting inB
edgee24 with edgee14 we guarantee thatB

remains a tree. Similarly, if the path reaches
first 4, then by substituting inB edgee23 with
edgee13 we guarantee thatB remains a tree.
Finally, if the path reaches first2, it is indif-
ferent to substitute inB edgee23 with edge
e13 or edgee24 with edgee14 and in all cases
A′ remains Eulerian whileB remains a tree.

(c) The node has two double edges and subcases
2a and 2b do not hold. Then, this configu-
ration may only apply if all nodes (except
two - the head and the tail) have two double
edges, that is when the Eulerian cycle is actu-
ally a double path (as represented in Figure 5)
P = (1/2/ . . . /n) where1 is the head node
andn is the tail node with1 andn having one
double edge and all the other nodes having
two double edges.

... n − 121 n

Figure 5. The double path of case 2c

Then, we obtain the Hamiltonian cycle
(1/2/ . . . /n/1) by keeping just one single
edge for each pair of adjacent nodes and
adding the edgee1n. In the case wheree1n

belongs to treeB, thene1n is substituted in
B by any available edgeeij that makesB
becoming again a spanning tree.

(3) Phase 2: the considered Eulerian cycle isB′, while
A∗ is a Hamiltonian cycle and the largest degree
node ofB′ has at least six edges: then, either it
has at least two double edges (case 3a), or it has
at least four single edges (case 3b).
(a) The node has at least two double edges: see

case 1a as no exchanges are involved.
(b) The node has at least four single edges: see

case 2b as no exchanges are involved.
(4) Phase 2 (cont.): the considered Eulerian cycle is

B′, whileA∗ is a Hamiltonian cycle and the largest
degree node ofB′ has four edges: then, either it
has four single edges (case 4a), or it has one double
edge and two single edges (case 4b), or it has two
double edges (case 4c).
(a) The node has four single edges: see case 2a

as no exchanges are involved.
(b) The node has one double edge and two sin-

gle edges where1 is the highest degree node
and3, 4 are the nodes adjacent to1 by means
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of single edges, while2 is the node adjacent
to 2 by means of a double edge. Then, either
we substitutee12 ande13 with e23 or e12, e14

with e24. If any of e23 or e24 does not belong
to cycleA∗, then we apply the corresponding
substitution. Alternatively, let5 and6 be the
nodes adjacent to2 in A∗. Then, if edgee25

(e26) does not belong toB′, we apply an edge
exchange betweenB′ andA∗ by substituting
in B′ edgese12 ande13 with edgee23 taken
from A∗ and, in the same time, substituting
in A∗ edgese23 ande15 (e16) with edgese13

ande25 (e26). Finally, if bothe25 ande26 be-
long to B′ (see Figure 6), then no exchange
is necessary, as only cycleB′ is affected.

1 4

6

3

5 2

Figure 6. A configuration of case 4b

Indeed, either edgese12, e13 and e25 are
substituted by edgee35, or edgese12, e13 and
e26 are substituted by edgee36, or edgese12,
e14 and e25 are substituted by edgee45, or
edgese12, e14 ande26 are substituted by edge
e46 and at least three among the edgese35,
e36, e45 and e46 are available. This occurs
because these edges form a4-edge subcycle
and becauseA∗ already uses edgese15, e16,
e23 ande24. But then, at least one of the sub-
stitutions related to the available edges does
not disconnect the cycle (it can be shown by
means of an analysis analogous to the one
presented in case 1b) and can therefore be ap-
plied.

(c) The node has two double edges. We consider
here the case where there are no nodes with
four edges according to subcases 4a or 4b.
But then, as for subcase 2c the Eulerian cycle
is actually a path (as represented in Figure 5)
P = (1/2/ . . . /n) where1 is the head node
and n is the tail node with1 and n having
one double edge and all the other nodes hav-
ing two double edges. Then, ife1n does not
belong toA∗, we obtain the Hamiltonian cy-
cle (1/2/ . . . /n/1) by keeping just one sin-
gle edge for each pair of adjacent nodes and

adding the edgee1n. Alternatively, e1n be-
longs toA∗. Then consider the three follow-
ing Hamiltonian cycles:

HA = (1/2/n/n− 1/ . . . /6/5/4/3/1)

HB = (1/2/3/n/n− 1/ . . . /6/5/4/1)

HC = (1/2/3/4/n/n− 1/ . . . /6/5/1)

All these cycles containn − 2 edges of the
pathP plus two other edges, namelye2n - e13

for HA, e3n - e14 for HB ande4n - e15 for
HC . But then at least one of these Hamiltonian
cycles can be obtained asA∗ already contains
edgee1n and therefore can contain at most one
more edge connected to node1 and another
connected to noden.

The pseudo-code of the algorithm is given in Algo-
rithm 2.
Theorem 3 Algorithm 2 has a2(n−1)

n
-approximation

ratio and requires polynomial time.
Proof. Consider the optimal solution valueC(OPT ).
As C(A) + C(B) ≤ n−1

n
C(OPT ), we know that

duplicating the edges of both trees does not ex-
ceed 2(n−1)

n
C(OPT ), namely C(A′) + C(B′) =

2C(A) + 2C(B) ≤ 2(n−1)
n

C(OPT ). We want to
prove thatC(A∗) + C(B∗) ≤ 2(C(A) + C(B)) ≤
2(n−1)

n
C(OPT ). To this extent, as far as Phase2 is

considered, if we denote byA∗

1 (A∗

2) andB′

1 (B′

2) the
Hamiltonian cycleA∗ and the Eulerian cycleB′ before
(after) applying any considered subcase, we need only
that C(A∗

2) + C(B′

2) ≤ C(A∗

1) + C(1′2). Instead, as
far as Phase1 is concerned, if we denote byA′

1 (A′

2)
and B1 (B2) the Eulerian cycleA′ and the spanning
treeB before (after) applying any considered subcase,
we need to haveC(A′

2) + C(B2) ≤ C(A′

1) + C(B1)
but alsoC(A′

2) + 2C(B2) ≤ C(A′

1) + 2C(B1) as at
the end of phase1 all edges of treeB are duplicated.

Now, with respect to cases 1a, 1b and 2a, as the trian-
gular inequality holds and no exchange is applied, we
haveC(A′

2) ≤ C(A′

1) and C(B2) = C(B1). Hence,
C(A′

2) + C(B2) ≤ C(A′

1) + C(B1) and C(A′

2) +
2C(B2) ≤ C(A′

1) + 2C(B1).
For case 2b, if no exchange is necessary, then the

same analysis of cases 1a, 1b and 2a holds. Besides, if
an exchange occurs, let assume w.l.o.g. that edgee23

substitutese12 and e13 in A′ and thate13 substitutes
e23 in B. Then,C(A′

2) = C(A′

1) + c23 − c12 − c13

and C(B2) = C(B1) + c13 − c23. Hence:C(A′

2) +
C(B2) = C(A′

1) + C(B1) − c12 ≤ C(A′

1) + C(B1).
Also: C(A′

2) + 2C(B2) = C(A′

1) + 2C(B1) + c13 −
c12 − c23 ≤ C(A′

1) + 2C(B1).
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Algorithm 2 The 2(n−1)
n

-approximation ratio

Compute two edge-disjoint minimum cost spanning trees
A andB;
Make A Eulerianand Stop = FALSE;
PHASE 1
repeat

Select the nodej with largest degreedj

if dj ≥ 6 andj has at least2 double edgesthen apply
case 1a
else if dj ≥ 6 and j has at least4 single edgesthen
apply case 1b
else if dj = 4 andj has4 single edgesthen apply case
2a
else if dj = 4 and j has1 double edge and2 single
edgesthen apply case 2b
else if dj = 4 and j has2 double edgesthen apply
case 2c
else the cycleA is Hamiltonian andStop = TRUE

until The condition Stop=FALSE
END OF PHASE 1
Make B Eulerianand Stop = FALSE;
PHASE 2
repeat

Select the nodej with largest degreedj

if dj ≥ 6 andj has at least2 double edgesthen apply
case 3a
else if dj ≥ 6 and j has at least4 single edgesthen
apply case 3b
else if dj = 4 andj has4 single edgesthen apply case
4a
else if dj = 4 and j has1 double edge and2 single
edgesthen apply case 4b
else if dj = 4 and j has2 double edgesthen apply
case 4c
else the cycleB is Hamiltonian andStop = TRUE

until The condition Stop=FALSE
END OF PHASE 2
return two edge disjoint Hamiltonian cycles

For case 2c, if no exchange is necessary, then the
same analysis of cases 1a, 1b and 2a holds. Besides,
if an exchange occurs, thenC(A′

2) = C(A′

1) + c1n −∑n−1
k=1 ck,k+1 andC(B2) = C(B1)+ cij − c1n. Hence,

due to the triangular inequality,∀i, j:

C(A′

2) + C(B2) = C(A′

1) + C(B1) −

n−1∑

k=1

ck,k+1 + cij

≤ C(A′

1) + C(B1) −

j−1∑

k=i

ck,k+1 + cij

≤ C(A′

1) + C(B1)

Also, always due to the triangular inequality:

C(A′

2) + 2C(B2) = C(A′

1) + 2C(B1) − c1n−
n−1∑

k=1

ck,k+1 + 2cij

≤ C(A′

1) + 2C(B1) − c1n −

i−1∑

k=1

ck,k+1

−

n−1∑

k=j

ck,k+1 −

j−1∑

k=i

ck,k+1 + 2cij

≤ C(A′

1) + 2C(B1) − c1n −
i−1∑

k=1

ck,k+1

−

n−1∑

k=j

ck,k+1 + cij

≤ C(A′

1) + 2C(B1) − cni − cj,n + cij

≤ C(A′

1) + 2C(B1)

As far as phase2 is concerned, for cases 3a, 3b and 4a,
as no exchange is necessary, then the same analysis of
cases 1a, 1b and 2a holds.

For case 4b, if no exchange is necessary, then the
same analysis of cases 1a, 1b and 2a holds. Besides,
if an exchange occurs, let assume w.l.o.g. that edge
e23 substitutese12 ande13 in B′ and thate13 ande25

substitutee23 ande15 in B. Then:C(B′

2) = C(B′

1) +
c23 − c12 − c13 and C(A∗

2) = C(A∗

1) + c13 + c25 −
c23−c15. Hence:C(A′

2)+C(B2) = C(A′

1)+C(B1)−
c12 − c15 + c25 ≤ C(A′

1) + C(B1).
Finally, for case 4c, no exchange is necessary and

for all three Hamiltonian cycles it is immediate to show
by means of the triangular inequality thatC(B′

2) ≤
C(B′

1). We prove it for cycleHA, but a similar analysis
holds forHB andHC . We have:

C(B′

2) = C(HA)

= C(1/2/n/n− 1/ . . . /6/5/4/3/1)

≤ C(1/2/3/ . . . /n/n− 1/n− 2/ . . . /3/2/1)

= 2C(1/2/3/ . . ./n − 2/n− 1/n)

= C(B′

1).

For the computational complexity, we note that com-
puting two edge-disjoint minimum cost spanning trees
requires polynomial time. Also, the edges duplications
to obtain the Eulerian circuits require linear time. Fi-
nally, the selection of the largest degree node and the
application of any of the cases 1a...4c require at most
linear time and can be applied at mostO(n) times.



20 Federico Della Croce et al. – 2-Peripatetic Salesman Problem

2.3. Towards a 15
8 -approximation algorithm

Let the HC − ST problem denote the problem of
finding in a given graphG a Hamiltonian circuit and
a spanning tree edge disjoint inducing minimum total
cost. Here we derive a158 -approximation algorithm for
the2 − PSP , provided that a54 approximation ratio is
available for the relatedHC − ST problem.

Consider the following algorithm.

Algorithm 3

a) Solve theHC − ST problem computing corre-
spondingly a Hamiltonian cycleA∗ and a disjoint
spanning treeB;
b) Apply to A∗ step b) of Algorithm1 computing a
second tourB∗ disjoint fromA∗ so thatA∗ ∪ B∗ is
a feasible solution of2 − PSP .
c) Apply to A∗ andB phase b) of Algorithm2 in-
ducing two disjoint toursA′ andB′. Let A′ ∪ B′ be
the second feasible solution of2 − PSP .
return The minimum cost solution betweenA∗∪B∗

andA′ ∪ B′.

Proposition 4 If the HC − ST problem is 5/4-
approximable, then Algorithm3 induces a 15

8 -
approximation ratio for2-PSP.
Proof. As a Hamiltonian path is also a tree, the op-
timal solution of theHC − ST problem constitutes
a lower bound on the optimal solution of2 − PSP .
Hence, if theHC − ST problem is5/4-approximable,
thenC(A∗ ∪ B) ≤ 5

4C(OPT ). Then eitherC(A∗) ≤
C(B) or C(A∗) > C(B). If C(A∗) ≤ C(B), then
C(A∗) ≤ 5

8C(OPT ) and, correspondingly,C(A∗ ∪
B∗) ≤ 3C(A∗) ≤ 15

8 C(OPT ). Besides, ifC(A∗) >
C(B), then C(B) ≤ 5

8C(OPT ). But then,C(A′ ∪
B′) ≤ C(A∗) + 2C(B) ≤ 5

4C(OPT ) + 5
8C(OPT ) =

15
8 C(OPT ).

Notice that, concerning theHC − ST problem, by
applying Phase1 of algorithm2, a straightforward3n−1

2n

approximation ratio holds. Should one improve this re-
sult down to5/4, then a15/8 approximation ratio would
hold for 2 − PSP by means of Proposition4.
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