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Abstract

Column generation algorithms have been specially designedfor solving mathematical programs with a huge number
of variables. Unfortunately, this method suffers from slowconvergence that limits its efficiency and usability. Several
accelerating approaches are proposed in the literature such as stabilization-based techniques. A more classical approach,
known as “intensification”, consists in inserting a set of columns instead of only the best one. Unfortunately, this
intensification typically overloads the master problem, and generates a huge number of useless variables. This article
covers some characteristics of the generated columns from theoretical and experimental points of view. Two selection
criteria are compared. The first one is based on column reduced cost and the second on column structure. We conclude
our study with computational experiments on two kinds of problems: the acyclic vehicle routing problem with time
windows and the one-dimensional cutting stock problem.

Key words: column generation; diversification; stabilization; cutting stock problem, vehicle routing problem with time
windows.

1. Introduction

During the past few decades, the Column Generation
(CG) principle has gained considerable popularity for
solving various classes of decision problems of practical
interest [10]. Although successfully used, this method
suffers from slow convergence that somewhat limits its
efficiency and usability. The column generation scheme
offers several possibilities for improvement. There are
techniques for accelerating the overall convergence of
the CG algorithm, such as bundle [8,23,33], polyhedral
[5,14,26], and center [15,18,13,28] stabilization meth-
ods, which operate on dual space and aim at stabilizing
dual variable behavior. Other methods consist of hy-
bridizing the method with other optimization methods
such as the subgradient method [2,4]. In addition, re-
lated but different approaches are proposed for accel-
erating particular CG problems generally based on the
resolution of pricing problems. On the one

hand, pricing problems can be used to approximate
solutions by using heuristics [6,21,29], metaheuristics
[7], or relaxations [27], while on another, reoptimization
techniques [12,30] can be used. An overview of these

Email: N. Touati [nora.touati@lipn.univ-paris13.fr], L.
Létocart [lucas.letocart@lipn.univ-paris13.fr], A. Nagih
[anass.nagih@univ-metz.fr].

methods is presented in [31].

In the primal view of the column generation envi-
ronment, the oracle outputs a column that enriches the
Restricted Master Problem (RMP) description; in dual
space, the oracle produces a cutting plane that refines
a polyhedral relaxation of the dual function. The effi-
ciency of the column generation method is considerably
related to the computed column and dual solution qual-
ity at each iteration. Stabilization methods aim at com-
puting “good” dual solutions, close to the best current
one. These approaches allow the iterations number to
be decreased.

Another more conventional way to reduce the number
of iterations in practice is to add a set of columns corre-
sponding to solutions with negative reduced cost (mini-
mization problem case), also including not-optimal so-
lutions. This allows the Master Problem (MP) approxi-
mation to be improved, an optimal basis to be character-
ized more quickly, and hence to decrease the number of
iterations. This intensification generally overloads the
master problem and generates a large proportion of use-
less variables, which do not belong in the final optimal
basis. The fundamental issue in this work is to study
possibilities of taking full advantage of this informa-
tion set output by the oracle in order to improve the
restricted master description without overloading it.

c© 2010 Preeminent Academic Facets Inc., Canada. Online version: http://journals.hil.unb.ca/index.php/AOR. All rights reserved.
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To decrease the restricted master problem size, we
generally add only the k-first generated solutions or the
k-best marginal cost solutions at each iteration. This
paper studies the characteristics and the pertinence of
information brought by these columns to the restricted
master description, from theoretical and experimental
basis. Next, an alternative selection criterion is studied
while also looking also at columns structure. In fact, in
order to improve the restricted master problem descrip-
tion, it is preferable to select heterogeneous columns
[32]. Two different techniques are proposed for comput-
ing these particular columns and show theoretically and
in experiments, why and how suboptimal heterogeneous
columns are preferable over suboptimal best marginal
cost ones. In order to appreciate the impact of the pro-
posed approaches, three criteria have been defined:
1. The RMP size must decrease, i.e. the generated

columns quality must improve.
2. The overall computing time required for finding an

optimal basis for the Master Problem (MP) should
decrease.

3. The column generation iteration number must not
increase significantly.
Our experimental study focuses on two optimiza-

tion applications. The vehicle routing problem with
time windows based on a time-space network (called
Acyclic Vehicle Routing Problem with Time Windows
(AVRPTW)) and the one-dimensional cutting stock
problem.

This paper is organized as follows. In Section 2 we
address the column generation approach on the primal
and dual spaces. In Section 3 we discuss different strate-
gies of inserting columns into the master problem at
each iteration of column generation: intensification, k-
intensification and diversification. We present some di-
versification procedures, analyze the characteristics of
the generated columns and compare diversification with
the stabilization principle. Section 4 presents an experi-
mental study of the proposed approaches on the acyclic
vehicle routing problem with time windows and on the
one-dimensional cutting stock problem. Lastly, in Sec-
tion 5 we present our conclusions.

2. Column generation

Let us consider the following problem:
(IP ) min cx, Ax ≥ a, Bx ≥ b, x ∈ N

n,

whereA ∈ R
m×n, B ∈ R

p×n, a ∈ R
m, b ∈ R

p

andm,n, p ∈ N. Suppose that the setXB = {x ∈
N

n|Bx ≥ b} is bounded, it can be expressed asXB =

{xi, i ∈ I}, whereI is a finite set of indices. Hence,
(IP ) can be reformulated as follows:

min
∑

i∈I

(cxi)λi,
∑

i∈I

(Axi)λi ≥ a,

st.
∑

i∈I

λi = 1, λi ∈ N , ∀i ∈ I

The continuous relaxation of this new formulation
is equivalent to the lagrangian relaxation of constraints
Ax ≥ a [24]. The Dantzig-Wolfe [9] master problem is
obtained:

(MP) min
∑

j∈J

(cxj)λj ,
∑

j∈J

(Axj)λj ≥ a,

st.
∑

j∈J

λj = 1, λj ≥ 0 , ∀j ∈ J,

where J is the index set of extreme points of
Conv(XB), the convex hull ofXB. As the (MP) num-
ber of variables is potentially exponential, we define
the master problem(MP k) restricted to the subset of
variables indexed inJk ⊆ J , called Restricted Master
Problem. Columns are iteratively added to the RMP
until optimality reached. By analogy with the simplex
algorithm, we compute at each iteration a column with
negative reduced cost, candidate to enter into the basis.
The reduced cost̄c(x) of a variablex is given by:

c̄(x) = (c− πA)x− π0

whereπ ∈ R
m
+ (resp.π0 ∈ R) is the dual variable

vector corresponding to constraints
∑

j∈J (Ax
j)λj ≥ a

(resp.
∑

j∈J λj = 1). The search for a variable with a
negative reduced cost is achieved by solving the follow-
ing problem, called the Pricing Problem (PP):

(PPπ) min
j∈J
{(c− πA)xj − π0} ⇔ min

x∈XB

{(c− πA)x}

Column generation seen in the dual space

Consider the dual problem of(MP ):

(DM) max πa+ π0,

st. π(Axj) + π0 ≤ cxj , ∀j ∈ J,

(π, π0) ∈ (Rm
+ ,R)
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Let θ = πa + π0, the problem(DM) can be refor-
mulated as:

(DM) ⇔ max θ, θ ≤ cxj + π(a−Axj),
∀j ∈ J, (θ, π) ∈ (R,Rm

+ )
⇔ max θ, θ ≤ Θ(π),

(θ, π) ∈ (R,Rm
+ ),

with Θ(π) = minj∈J{cxj + π(a−Axj)}. The dual
problem potentially contains an exponential number of
constraints, equal to|J |. Kelley’s cutting plans method
[20] considers a reduced set of these constraints that
handle an RMP. Cuts are added at each iteration until
the optimum ofΘ reached. The problem(DM) can
also be formulated as:

(DM) ⇔ max θ,

θ ≤ Θ(πj) + gj(π − πj), ∀j ∈ J, (θ, π) ∈ (R,Rm
+ ),

wheregj is the subgradient ofΘ atπj . From the dual
point of view, the pricing problem resolution allows to
define a facet ofΘ at the considered dual point. CG
in the dual space consists in iteratively approaching the
functionΘ.

3. Solution intensification in column generation

It is well-known that solution intensification which
consists in adding several columns to the RMP at each
iteration of CG, contributes to decreasing the number of
iterations. Unfortunately this can considerably expand
the RMP, when the final optimal base contains a very
restricted number of the generated columns (see table 2,
section 4.1.4.). The set of columns of negative reduced
cost to be added to the master problem can deeply af-
fect the overall number of generated variables and the
computing time required to find an optimal solution.
To avoid the rapid and useless increase in RMP size,
classically we restrict to the generation of the k-first or
k-best solutions (as illustration, see experimental study
of section 4.1.4., table 2).

3.1. k-Intensification

Solutions of neighbor reduced cost generally con-
tribute to the same master problem constraints.
Definition 1 Let be x, xp ∈ N

n and L(x, xq) =
{i|xi.x

q
i = 0, i = 1, ..., n}. xq is p-neighbor compared

to x if |L(x, xq)| = p, that is xq contributes to the
samep constraints asx.

Denote byl(xq), the length ofxq (number of non-
null components ofxq). If |l(xq)− |L(x, xq)|| < e, for
a given small integere, then solutionsx andxq are too
close; the addition ofxq to the restricted master problem
not brings significant information to the master problem
approximation. So we need to generate fewer columns,
but good ones, in order to significantly improve the re-
stricted master approximation. In [32], the author states
that a better MP approximation can be obtained when
selecting a set of heterogeneous solutions. In the follow-
ing, we analyze complementary column characteristics
and we propose effective ways to release diversification
in a CG context.

3.2. Diversification

Letx an optimal solution of the PP. Letx1 andx2 two
suboptimal solutions with the same cost, respectively
p1-neighbor and p2-neighbor compared to x such that
p2 < p1. x associated withx2 contribute to more con-
straints than x associated withx1, that is(x, x2) con-
tribution to characterize MP domain dominates(x, x1)
contribution. In dual space, the suboptimal cutC2 asso-
ciated with the columnx2 leads to a better dual function
approximation with respect toC (cut associated with
x) than the suboptimal cutC1 (associated withx1).
Remark 1 Intensification subproblem solution space
contains only feasible solutions. Diversification sub-
problem solution space include feasible solutions that
contribute to a maximum number of constraints. There-
for, the diversification subproblem is richer that the in-
tensification one.

The diversification procedure consists in inserting a
set of0-neighbor columns into the master problem at
each column generation iteration. The generation of
complementary solutions allows an earlier improvement
of the master problem approximation. These procedures
can be more efficient on the first iterations to quickly
characterize a good approximation and useless on the
last ones. Thus, diversification may be applied only on
the first iterations.

We present the following two procedures for com-
puting 0-neighbor columns at an iteration of CG.

3.2.1. Diversification by resolution
At each CG iteration and with the same MP dual vari-

ables, Diversification by Resolution (CGDR) consists of
iteratively computing a0-neighbor solution compared
to all generated columns with optimal reduced cost. Al-
gorithm 1 presents the main steps of one iteration:
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Algorithm 1. Schematic iteration of CG with diversification
by resolution
S ← set of all pricing problem’s feasible solutions
C ← ∅ {set of columns to add to the MP}, next←
true
repeat
xk ← a solution of minimum cost inS
if xk has negative costthen
C ← C ∪ {xk}
S ← S \ {solutions contributing to the same
constraints thanxk}
if S 6= ∅ then k ← k + 1,
elsenext← false
end if

else
next← false.

end if
until (next = false)

3.2.2. Diversification by selection
For subproblems that can be solved by an algorithm

giving a set of solutions without over-cost computing
time, CG with Diversification by Selection (CGDS) is
proposed. It consists in selecting 0-neighbor columns
among all the negative reduced cost solutions computed
at each iteration of CG. Algorithm 2 presents the main
steps of one iteration:

Algorithm 2. Schematic iteration of CG with diversification
by selection
C ← ∅ {set of columns to add to the MP}
Solve the pricing problem
X ← all solutions with negative reduced cost
while X 6= ∅ do
x̂← minimal cost solution inX , C ← C ∪ {x̂}
X ← X \ {solutions contributing to at least one
same constraint than̂x}

end while

We expected that this technique can lead to the com-
putation of very few columns at each iteration, which
include many poor reduced cost ones compared to those
generated using the CGDR approach.

3.3. Relationship between diversification and stabi-
lization

CG stabilization methods aim at computing a “good”
dual solution at each CG iteration, to decrease the num-
ber of iterations. The selection criterion of these dual

solutions is based on the computation of a neighbor-
hood around the current best dual solution. This avoids
dual solution oscillations. Therefore, the goal of this
method is to generate relatively close cuts according to
the fixed neighborhood. Figure 1-(a) illustrates the dual
function approximation at iteration 3 of CG, with each
iterationi ∈ {0, 1, 2} providing a cutCi

s.

Diversification consists of generating various cuts as-
sociated with complementary columns. These cuts have
the property of being deeper and allow a global dual
function approximation to be effectively characterized.
As for figure 1-(a), figure 1-(b) shows the dual function
approximation obtained with diversification where we
compute at each iterationi ∈ {0, 1, 2}, a cutCi

d corre-
sponding to a complementary column.

When stabilization aims at computing a good dual
function local approximation around the best dual solu-
tion found, diversification aims at construct a good dual
function global approximation.

4. Applications

We present in the following two experimental studies
on two different classes of problems: the cutting stock
problem and the vehicle routing problem. The goal for
the same resolution scheme, is to evaluate the impact
of inserting or not inserting a set of 0-neighbor solu-
tions. In particular, we show the interest of taking into
account although the column structure instead of insert-
ing columns with the best reduced costs.

4.1. Application to the vehicle routing problem with
time window

The VRPTW can be described as follows: given a set
of costumers, a set of vehicles, and a depot, the VRPTW
is to find a set of minimum cost routes, originating
and terminating at the depot, such that each costumer
is visited by exactly one vehicle to satisfy a specific
demand. For each costumer, the service starts during a
given time window. A vehicle can wait in case of early
arrival, but late arrival is not permitted. In connection
with costumer demands, a capacity constraint restricts
the load that can be carried by a vehicle. The master
problem can be formulated as a set partitioning problem
[1]. For this, let R be the set of all feasible routes,
i.e. routes satisfying the time window restrictions. The
master problem can be expressed as follows:
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Fig. 1. Stabilization and diversification in column generation

(MPV RPTW ) min
∑

r∈R

crλr,

st.
∑

r∈R

δirλr = 1, ∀i ∈ N ,

λr ≥ 0, ∀r ∈ R,

wherecr is the cost of router andδir is 1 if route
r visits nodei and 0 if not. The resolution of this for-
mulation by column generation, consists in repeatedly
selecting a variableλr associated with a router ∈ R
with negative reduced cost. This variable is a solution
of the pricing problem equivalent to a Shortest Path
Problem with Time Windows and Capacity Constraints
(SPPTWCC).

The standard approach to solving the SPPTWCC in
practice is based on the dynamic programming method
and has a pseudo-polynomial time complexity. The prin-
ciple is to associate with each possible partial path a
label indicating the cumulated cost, time and demand,
and to eliminate labels with the help of dominance rules.
A label correcting algorithm is being considered here,
where the nodes are repeatedly treated and their la-
bels extended [11]. Solving the SPPTWCC with a dy-
namic programming approach is closely related to solv-
ing multiobjective shortest path problems, the aim being
to generate non-dominated paths (i.e., Pareto optimal
paths).

4.1.1. Numerical experiments
Many routing problems in practice are modelled by

acyclic networks, particularly when the width of the
time windows is lower than the inter-task time of its

successor nodes. It is the case in locomotive assignment
problems [25], school-bus assignment and aircraft fleet
assignment for example [3] where each node in the net-
work represent a time-space state. In this case, a topo-
logical order can be established on the nodes. The label
correcting algorithm in this case is still not polynomial
[22].

4.1.2. Test problems
Two kinds of AVRPTW instances are considered in

our tests:
• Some Solomon test instances from which we can

extract acyclic networks. The time window’s width
associated with each node is lower than the maxi-
mum of the successor arc durations: (C101 25 (25
costumers), C101 50 (50 costumers), C101 (100 cos-
tumers) and C1 2 1 (200 costumers)).
• 40 randomly generated instances. 10 instances are

generated for each size: G 100 (100 costumers), G
120 (120 costumers), G 140 (140 costumers) and G
160 (160 costumers), by varying 4 parameters:

(1) The number of adjacent arcs for each vertex is
dispersed in the square [degMin, degMax] accord-
ing to a uniform distribution, wheredegMin ∈
{5, 7, 8, 10} anddegMax ∈ {12, 15, 20, 23, 25}.

(2) The time window width is uniformly generated in
the square[5, 20].

(3) The demands are uniformly generated in the square
[10, 40].

(4) The vehicle’s capacity is uniformly generated in the
square[150, 500].

(5) The costs are uniformly generated in the square
[10, 25]. All results reported in this paper for each
randomly generated class size are average values
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over 10 test instances.

4.1.3. Solution intensification
This study began with preliminary experiments on

AVRPTW instances solved by the Intensified Column
Generation (ICG), where all Pareto optimal columns
with negative reduced cost are added to the MP at each
iteration. A basic suboptimal column is known as a
pricing problem suboptimal solution that belongs to the
final optimal basis. Table 1 shows the contribution of
suboptimal columns to the final optimal basis.

These results show that the percentage of basic sub-
optimal columns in the final optimal basis is higher than
81%, except for the smallest Solomon instance. The
early addition of columns to the MP allows an optimal
basis to be characterized more quickly, and hence the
number of iterations to be decreased. On average, more
than 99% of the generated columns do not belong to the
final optimal basis. For this purpose, we will study the
generated column characteristics in order to propose a
selection criterion of good ones. The aim is to reduce
the number of generated columns without significantly
increasing iteration number for decreasing the global
computing time.

4.1.4. k-Intensification
To avoid the rapid and needless increase in the mas-

ter problem size, we limited ourselves to the generation
of the k best solutions,k being a parameter to be de-
termined and expressed in %. The previous case (ICG)
is associated withk = 100. We call this procedure k%
Intensified Column Generation (k%ICG).

Table 2 shows a comparison between the algorithm
performances for different k values. The column num-
ber is reduced when k decreases, whereas the iteration
number and the resolution time increase in most in-
stances. The addition of columns with good reduced
cost is not enough to improve the computing time re-
quired to find an optimal basis.

Table 3 shows for the previous procedures the average
suboptimal column percentage in the final optimal basis
for the same test instances.

On average, this percentage increases whenk in-
creases, so suboptimal solutions with good reduced cost
contribute less to the final optimal basis than those with
a worse reduced cost. These experimental results show
that at each iteration of k%ICG (k = 10, 20, 50) pro-
cedures, suboptimal columns generated have generally
slight deviations compared to the optimal solution ob-

tained, i.e. they cover almost the same nodes.

4.1.5. Diversification

Diversification by resolution consists in repeatedly
solving the PP while removing from the network all the
nodes covered by the optimal solution of negative re-
duced cost that was obtained, with the next PP being
solved on the partial subgraph that is induced. Diversi-
fication by selection consists in selecting from all the
Pareto optimal solutions of negative reduced cost ob-
tained the best 0-neighbor ones. Based on ICG, CGDR
and CGDS consist in respectively applying diversifica-
tion by resolution and diversification by selection on

the first iterations, whenv(MPk)−v(MPk−1)
v(MPk)

≥ ε, where

v(MP k) is the MP’s value at iterationk andε a given
small real. Table 4 presents the results.

As expected, CGDS allows the total columns number
to be decreased; we generate on average only 43% of
what was generated by the ICG. The number of columns
generated by CGDS at each iteration is very small com-
pared to ICG, but their costs are bad (relatively high).
The intensification of complementary columns with bet-
ter costs (CGDR) allows the computed columns num-
ber to be decreased; we generate on average 41% of
what was generated by ICG. Master problems are then
smaller and their resolution easier. This decreases the
global resolution time of ICG procedures by 36% with
CGDS and 47% with CGDR on average.

The dominant procedure between CGDR and CGDS
is that which achieve out a compromise between the
gain on time obtained from the MP resolution and the
additional cost of pricing problem resolution. With a re-
duced number of columns, CGDR built a best approx-
imation of the pricing problem’s convex hull. Figure 2
compares the master problem’s values (v(MPV RPTW ))
on the 30 first iterations when we add to the MP all the
columns of negative reduced cost (ICG), the columns
with best reduced costs (10%ICG) and the comple-
mentary columns (CGDS and CGDR). For example, on
the two first iterations, the approximation obtained by
the CGDR with 76 columns is better than the ICG one
with 12037 columns. Diversification allows the gener-
ated column number to be decreased without signifi-
cantly increasing the iteration number and to reduce the
global computing time of the larger test instances where
size of the master problem is great, which is the case in
our experimentations when

n ≥ 100, where n is the number of nodes (Table 4).
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Table 1
Instance C101 25 C101 50 C101 C1 2 1 G100 G120 G140 G160

NbCols 246 1 003 2 724 11 461 16 960 19 013 25 259 23 864
%SOCOB 60 87 81 87 97 98 96 98
%GCOB 2,0 0,7 0,5 0,1 0,6 0,2 0,2 0,5
NbCols: total generated columns number.
%SOCOB: pourcentage of basic suboptimal columns in the finaloptimal basis.
%GCOB: pourcentage of basic optimal columns in NbCols.

Generation of suboptimal columns

Table 2
Solomon’s C101 25 C101 50 C101 C1 2 1

instances nbI nbC tG tM nbI nbC tG tM nbI nbC tG tM nbI nbC tG tM
10% ICG 57 241 11.6” 2.4” 97 895 115,2” 22.6” 220 3655 35.11’ 6.61’ 309 13159 630,69’ 68,34’
20% ICG 30 306 6.6” 1.5” 59 1027 70,2” 15.9” 101 3433 16.21’ 2.82’ 232 18721 478,14’ 73,93’
50% ICG 17 517 5.4” 1.6” 31 1644 48.0” 13.6” 66 5329 12.27’ 3.02’ 159 23679 253,23’ 49.01’
ICG 15 785 6.1” 2.2” 25 1957 47.3” 15.2” 42 5614 8.32’ 2.13’ 109 23622 250,67’ 49.67’
Generated G100 G120 G140 G160

instances nbI nbC tG tM nbI nbC tG tM nbI nbC tG tM nbI nbC tG tM
10% ICG 103 3950 12.76’ 3.64’ 157 5505 40.61’ 9.32’ 141 6910 40.61’ 14.53’ 109 7037 23.84’ 8.76’
20% ICG 69 6384 12.21’ 4.20’ 102 8505 34.88’ 10.12’ 92 10881 44.01’ 16.73’ 73 10470 19.90’ 8.54’
50% ICG 37 11632 10.72’ 3.92’ 49 14923 35.68’ 9.92’ 47 18662 41.33’ 15.53’ 44 17325 20.10’ 8.18’
ICG 20 17691 12.34’ 2.34’ 26 21451 44.51’ 2.08’ 25 26187 36.09’ 2.93’ 28 23872 22.99’ 0.80’
nbI: total iterations number.
nbC: total generated columns number.
tG: the global resolution time.
tM: cumulated master problems resolution time.

Intensified and k% intensified column generation

Table 3
C101 25 C101 50 C101 C1 2 1 G100 G120 G140 G160

10% ICG 75 85 77 89 85 83 87 88
20% ICG 25 100 84 88 89 93 92 96
50% ICG 75 100 92 89 96 96 95 97

ICG 60 100 93 93 97 98 97 98

Suboptimal columns proportion in the final optimal basis (in%)

Table 4
Solomon’s C101 25 C101 50 C101 C1 2 1

instances nbI nbC tG tM nbI nbC tG tM nbI nbC tG tM nbI nbC tG tM
20% ICG 30 306 6.6” 1.5” 59 1027 1.17’ 15.9” 101 3433 16.21’ 169.2” 232 18721 478,14’ 73,93’
50% ICG 17 517 5.4” 1.6” 31 1644 0.80’ 13.6” 66 5329 12.27’ 181.2” 159 23679 253,23’ 49.01’
ICG 15 785 6.1” 2.2” 25 1957 0,78’ 15.2” 42 5614 8.32’ 127,8” 109 23622 250,67’ 49,67’
CGDS 46 344 10.6” 0.06” 56 1069 1.09’ 0.3” 95 3726 15.63’ 3.3” 136 20101 219,05’ 0,70’
CGDR 42 343 10.2” 0.06” 60 1221 1.27’ 0.4” 73 3293 9.83’ 1.5” 126 18285 221,10’ 0,57’
Generated G100 G120 G140 G160

instances nbI nbC tG tM nbI nbC tG tM nbI nbC tG tM nbI nbC tG tM
20% ICG 69 6384 12.21’ 252.0” 102 8505 34.88’ 607.2” 92 10881 44.01’ 1003.8” 73 10470 19.90’ 512.5”
50% ICG 37 11632 10.72’ 235.2” 49 14923 35.68’ 595.2” 47 18662 41.33’ 931.8” 44 17325 20.10’ 490.8”
ICG 20 17691 12.34’ 142.2” 26 21451 44.51’ 124.8” 25 26187 36.09’ 175.5” 28 23872 22.99’ 48.3”
CGDS 48 3573 7.34’ 1.8” 51 5676 22.29’ 4.5” 52 7207 19.35’ 6.0” 57 4822 9.28’ 3.3”
CGDR 40 1545 7.21’ 1.0” 42 2684 22.32’ 2.2” 45 2552 19.89’ 2.2” 49 1885 10.08’ 1.3”
nbI: total iterations number.
nbC: total generated columns number.
tG: the global resolution time.
tM: cumulated master problems resolution time.
ε = 0.001.

Diversification in column generation

4.2. Application to the one-dimensional cutting stock
problem

The One-dimensional Cutting stock Problem (1D-
CSP) consists in minimizing the number of rolls of pa-
per (each with lengthL) needed to producebi rolls with
lengthli for li = 1, 2, ...,m, where0 <= li <= L for
eachi.

The master problem can be formulated as a set cov-
ering problem [16,17] corresponding to demand satis-
faction. LetD be the set of all feasible cutting patterns
with respect to the lengthL and letaij , i = 1, ...,m
andj ∈ D be the number of pieces of lengthli cut in
one roll of configurationj. The master problem can be

expressed as follows:

min
∑n

i=1 xi∑n

i=1 aijxi ≥ bj , j = 1, ...,m
xi ≥ 0, integer, i = 1, ..., n

wherexi denotes the number of rolls cut according
to thei-th pattern. With the possibility that|D| is very
large, it can be very difficult to solve the master prob-
lem directly. We consider a restricted master problem
defined by a few patterns and generate new ones until
an optimal basis is obtained.

The pricing problem is an integer knapsack problem
formulated as follows:
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Fig. 2. Master problems evolution values on the30
th first iterations

max
∑m

j=1 ujai∑m

j=1 ljaj ≤ L,

ai ≥ 0, integer, i = 1, ..., n

whereuj, j = 1, ...,m, is the dual variable associated
with constraints

∑n

i=1 aijxi ≥ bj .

4.2.1. Intensification and diversification
Generally, the 1D-CSP column generation resolution

consists in inserting one column of negative reduced
cost at each iteration. Most of the improving methods
are based on the pricing problem’s resolution acceler-
ation. Through these experimentations we attempt to
evaluate the impact of intensification and diversification
on column generation performances for the resolution
of the 1D-CSP. Three CG procedures are being com-
pared:
• Classical CG (CCG) where one column is added to

the RMP at each iteration.
• Intensified CG (ICG) where many solutions are added

to the RMP at each iteration. To generate many solu-
tions at each iteration, we repeatedly solve the pric-
ing problem while avoiding the computation of the
same cost solutions.
• CG with Diversification by Resolution (CGDR),

where 0-neighbor columns are added to the RMP at
each iteration. To generate 0-neighbor solutions at
each iteration, we repeatedly solve the pricing prob-
lem while fixing the objective function coefficient
value associated with each non-null component of
the current solution at a great value. Diversification

by resolution is applied on the first iterations, when
v(MPk)−v(MPk−1)

v(MPk) ≥ ε, wherev(MP k) is the MP’s
value at iterationk andε a given small real.
A computational experiment was conducted on ran-

dom problem instances generated by CUTGEN1 [19].
The 1800 instances of 18 classes are solved here. The re-
stricted master problems and the subproblems are solved
by CPLEX 10.

As can be seen from Table 5, solutions intensification
decrease the iteration number but increase the number
of generated columns compared to the CCG. The global
resolution time is decreased for Typei, i = 13, ..., 18
instances. Diversification (CGDR) permits to decrease
the iteration number compared to the ICG, therefor, op-
timal solutions are obtained more quickly with efficient
characterization of the MP description. This decrease
the total number of generated columns. The CGDR pro-
cedure decreases the CCG resolution time by 29% and
the ICG resolution time by 44%.

5. Conclusion

Column generation stabilization methods aim at
computing good dual solutions at each iteration, thus
decreasing the iteration number. Dual solution quality
affects that of the primal solutions, so the generated
columns quality is important for improving column
generation performance. We focused on the intensified
column generation where a set of columns is added to
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Table 5
CUTGEN1 Type 01 Type 02 Type 03 Type 04 Type 05 Type 06
instances nbI nbC tG nbI nbC tG nbI nbC tG nbI nbC tG nbI nbC tG nbI nbC tG
Av(CCG) 22 22 0.58’ 22 22 0.59’ 39 39 1.17’ 39 39 1.16’ 68 68 2.49 68 68 2.82’
Av(ICG) 18 92 1.00’ 18 92 0.99’ 30 163 2.08’ 30 163 2.16’ 51 328 5.64’ 51 328 5.51’
Av(CGDR) 13 27 0.52’ 13 27 0.51’ 19 50 1.00’ 19 50 0.97’ 28 89 2.11’ 28 90 2.12’
CUTGEN1 Type 7 Type 8 Type 9 Type 10 Type 11 Type 12
instances nbI nbC tG nbI nbC tG nbI nbC tG nbI nbC tG nbI nbC tG nbI nbC tG
Av(CCG) 12 12 0.20’ 12 12 0.21’ 30 30 0.75’ 30 30 0.73’ 70 70 3.07’ 70 70 3.08’
Av(ICG) 8 34 0.31’ 8 34 0.30’ 22 64 0.86’ 22 64 0.85’ 54 135 3.35’ 54 135 3.37’
Av(CGDR) 5 13 0.16’ 5 13 0.15’ 11 31 0.51’ 11 32 0.51’ 28 73 2.16’ 28 72 2.16’
CUTGEN1 Type 13 Type 14 Type 15 Type 16 Type 17 Type 18
instances nbI nbC tG nbI nbC tG nbI nbC tG nbI nbC tG nbI nbC tG nbI nbC tG
Av(CCG) 10 10 0.14’ 10 10 0.14’ 26 26 0.51’ 26 26 0.51’ 69 69 1.79’ 69 69 1.82’
Av(ICG) 8 11 0.13’ 8 11 0.13’ 22 28 0.43’ 22 28 0.45’ 57 69 1.54’ 56 69 1.52’
Av(CGDR) 3 10 0.10’ 3 10 0.10’ 6 24 0.26’ 6 24 0.27’ 13 55 0.77’ 13 55 0.74’
nbI: total iterations number.
nbC: total generated columns number.
tG: the global resolution time.
ε = 0.001.

Diversification in column generation

the master problem at each iteration. We studied some
characteristics of the generated columns and some
properties of good ones to avoid needless columns and
decreasing the master problem size. Experimental re-
sults on Solomon and randomly generated instances of
the acyclic vehicle routing problem with time windows
indicate that the addition of the k% pricing problem
best solutions (k=10, 20, 50) to the master problem
at each iteration increase the iterations number and
column generation resolution time.

Instead of interesting to the suboptimal columns re-
duced cost, we interest to their structure. It is known
that complementary columns efficiently improve the re-
stricted master problem description. We proposed two
different ways to compute these particular columns: di-
versification by selection and diversification by resolu-
tion. We presented in this paper the first study on the im-
pact of diversification on the intensified column gener-
ation performance, where two problems are considered:
the acyclic vehicle routing problem with time windows
and the one-dimensional cutting stock problem.

Experimental results on our test instances show that
the generation of complementary columns allows the
total generated column number and master problem res-
olution time to be significantly decreased. Diversifica-
tion for the acyclic vehicle routing problem more effi-
ciently improves the restricted master problem descrip-
tion than k%-Intensification. The diversification meth-
ods proposed for this problem dominate the intensified
column generation for the largest instances, despite the
additional difficulty imposed on pricing problems reso-
lution. The efficiency of diversification (by resolution)
is also shown in the one-dimensional cutting stock prob-
lem.

We distinguished here a correlation between diversi-
fication and stabilization principles, which were to be
compared on an experimental level, between diversifi-

cation and stabilization column generation schemes. We
analyzed in this paper the impact of diversification in
a column generation algorithm for the computation of
a discrete problem Lagrangian relaxation bound. It will
be interesting to study this impact on the overall branch-
and-price scheme where column generation with diver-
sification algorithm is used to solve the problem at each
node of the branch-and-bound tree.
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