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Analysis and Comparison of Three Algorithms for the Vertex Cover Problem
on Large Graphs with Low Memory Capacities. 1

Eric Angela Romain Campigottoa Christian Laforestb
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Abstract

In this paper, we consider the classicalNP-completeVERTEX COVERproblem inlarge graphs. We assume that the size
and the access to the input graph impose the following constraints: (1) the input graph must not be modified (integrity
of the input instance), (2) the computer running the algorithm has a memory of limited size (compared to the graph) and
(3) the result must be sent to an output memory once a new pieceof solution is calculated. Despite the severe constraints
of the model, we propose three algorithms that satisfy them.We derive exact formulas giving theexpected sizeof the
solution they return. This allows us to compare them, in an analytic way. Then, we consider their complexities. We give
exact formulas expressing theexpected number of requeststhey perform on the input graph. Again, we compare them
analytically. For both comparisons, we show that none of them is better than the two others.

The formulas we give can help users to estimate the best balance between quality of the solution and performance.

Key words: large graphs, vertex cover, mean analysis of algorithms

1. Introduction

Most of the known optimization algorithms need to
explore, mark, modify, etc. the instance given as input
before producing their results. To do that, the instance
is entirely loaded into the memory of the computer and
is manipulated by the algorithm. Often, “extra” data
structures are also necessary to memorize parameters
useful all along the computation or to update the current
solution that will be returned as the final product of the
program.

However, this classical model is no more adapted for
many new computing applications. Indeed, nowadays,
many fields such as biology, meteorology, finance, etc.
produce very large amount of data. These data are usu-
ally stored on large databases, calleddata warehouses,
in order to be exploited and analyzed. These data are
collected by asourcethat can be a laboratory (collection
of experimental results or physical measures) or a com-
pany (collection of financial values for example). This

Email: Eric Angel [eric.angel@ibisc.fr], Romain Campig-
otto [romain.campigotto@ibisc.fr], Christian Laforest [chris-
tian.laforest@isima.fr].
1 Work partially supported by the projectsToDo (French
ANR) andApproximation rapideof GDR-RO.

source can open the access of its collected data to exter-
nal partners2 . However, as the data often result from
heavy and/or costly experimental process, they must not
be corrupted by the manipulations of the partners. This
means that the data must be read-only and must be pre-
served from modifications.

However, a partner does not always have a machine
with the capacity to load the whole data and as the
treatment of such huge data takes time and it cannot
in general allocate all its computers during such a long
period. For simplicity here, we suppose that it allocates
only one computer with standard memory capacities.

Our General Model of Access to Data.With the previ-
ous discussions, we model the situation as follows (we
give an illustration in Fig. 1). We assume there is one
standard computer, called the “Processing Unit”, for ac-
cessing data and running algorithms. The input data are
stored on a data warehouse called “Input data”. As the
solution of the computation can be large, we suppose
that it is stored on an external memory (e.g. a hard disk
or a data warehouse) called “Result”. We enumerate
now the main constraints of our general model.

2 We do not treat at all here problems related to rights of
access to these data. We suppose that the partners have all
the appropriated rights toread the data.

c© 2011 Preeminent Academic Facets Inc., Canada. Online version: http://journals.hil.unb.ca/index.php/AOR. All rights reserved.
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C1. The input data cannot be modified; theintegrityof
input data must be preserved.

C2. The processing unit has a “small” memory space
(compared to the huge size of the data/instance).

C3. The solution must be sent piece by piece to an
external memory, called here “Result”, as soon as
it is produced.

ConstraintC2 implies that the instance cannot be loaded
into the memory of the processing unit (see hypothesis
above). The constraintC3 comes from the fact that in
many cases, the solution is (in order of magnitude) as
large as the input data, i.e. impossible to be stored in
the memory of the processing unit. Because of memory
constraints, the solution cannot fit in memory of the
processing unit. Hence, using intermediate solutions to
construct the final one can here be complex, take time
and memory since this imply to reload the appropriated
part of the current solution from the result machine.
To avoid such complex mecanisms, we adopt here a
radical point of view in proposing methods that scan
data and send final results as soon as they are produced,
without keeping in memory trace of past computation
and without modifying past part of the solution.

The Vertex Cover Problem. We have chosen to
study in this paper the well-knownVERTEX COVER

problem, a classicalNP-complete optimization graph
problem [5], that has received a particular attention for
the last few decades. In particular, this problem oc-
curs in many concrete applications, such as the network
monitoring [12,17] or the resolution of biological con-
flicts [12,15], and many approximation algorithms have
been proposed (see for example the section of [3] de-
voted to this problem).

Notations. GraphsG = (V,E) considered through-
out this paper are undirected, simple, unweighted and
represent theinstanceto be treated here. We denote by
n the number of vertices (n = |V |) and bym the num-
ber of edges (m = |E|). For any vertexu ∈ V , we
denote byN(u) the set ofneighborsof u (i.e. the set
of vertices sharing an edge withu), d(u) = |N(u)| the
degreeof u (i.e. the number of neighbors) and∆ the
maximum degreeof vertices ofG.

Definition of the Vertex Cover Problem. A cover
C of G is a subset of vertices such that every edge
contains (oris covered by) at least one vertex ofC,
that isC ⊆ V and∀e = uv ∈ E, one hasu ∈ C or
v ∈ C (or both). TheVERTEX COVER problem is to
find a cover of minimum size.

Example of Application on the Vertex Cover Prob-

lem in Our Model. Let us consider the Single Nu-
cleotide Polymorphism (SNP3 , pronounced “snip”)
Haplotype Assembly Problem [8]. In this problem, ge-
neticists are interested to the genetic differences among
individuals. More precisely, they want to determine
haplotypes for large numbers of individuals, i.e. sets of
variants genetically linked because of their proximity
on the genome.

Let G = (S, C) be aSNP conflict graph, constructed
from DNA sequences, SNPs and experimental values.
In this graph, each vertexsi ∈ S represents a SNP and
each edge{si, sj} ∈ C represents a conflict between
two distinct SNPssi and sj (for more details about
this notion, see [14]). The SNP Assembly Problem is to
maximize the number of SNPs which are not in conflict.
In other words, the goal is to remove the smallest subset
S ′ of S from G, such that the induced subgraphG \ S ′
contains no edge; that is to find a cover of minimum
size inG.

From massive experimental measures, one can gen-
erate very large DNA sequences and very large number
of SNPs (in a DNA Sequencing Center for example)
and then easily create a (very large)SNP conflict graph
stored on a data warehouse. These data/graphs can be
shared, via read-only access, with scientists for various
computational experiments, measures, etc.

A geneticist, who wants to resolve biological conflicts
in such a particular graph, does not necessarily have
powerful computers to make the work. Therefore, he
has limited possibilities, e.g. he cannot copy the whole
graph into the memory of its computer (but he can let a
software run for several days). Thus, a simple process
of computation must be implemented on its machine,
getting theSNP conflict graphpiece by piece by sending
requests to the data warehouse, perform processing on
each of these pieces and send the result to an external
local hard disk for example.

In this paper, we propose and compare algorithms
that have all the features to run under such particular
constraints and low powerful environments.

Quick Overview of Existing Algorithms for Vertex
Covering.Many algorithms have been proposed for the
VERTEX COVER problem. As it isNP-hard, most of
the methods are approximation algorithms or heuristics.
Here, we give a rapid overview of these methods.

A well-known heuristic is to select a vertex of maxi-
mum degree and delete this vertex and its incident edges

3 A SNPis a single base mutation in DNA.
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Processing Unit
Input data Result

Input Output

Figure 1. Overview of the model

from the graph, until all edges have been removed [10].
It has an approximation ratio inO(log∆). Another pop-
ular algorithm, with the best known constant approxi-
mation ratio,2, is to construct a maximal matching of
the input graph and return the vertices of the matching
(see [3]). To compute such a solution, an edge is ran-
domly chosen, and its two endpoints with their incident
edges are deleted from the graph, until all edges have
been removed. For these algorithms, in order to delete a
vertex and its incident edges, we have to modify the in-
put graph or store information on deleted elements into
the memory of the processing unit, and that does not
satisfy constraintsC1 andC2. Another well-known al-
gorithm is to construct aDFS spanning tree and select
its internal nodes [13]. It has an approximation ratio of
2. During the computation of aDFS spanning tree, we
have to keep several vertices into memory (those which
are being explored and those which have been explored)
or to mark these vertices in the input graph, and again
that does not satisfy our constraints.

The best known algorithm has an approximation ra-

tio of 2−Θ

(

1√
logn

)

. It is based on semidefinite pro-

gramming relaxation (see [7]). This kind of method re-
quires to fit entirely the graph into memory, that does
not satisfyC2.

Thus, there are many algorithms for theVERTEX

COVER problem but there does not seem to be a way to
implement them in order to satisfy the constraintsC1,
C2 andC3 given in the introduction.

Organization of the Paper. Despite the very severe
constraints of the model and the intrinsic difficulty of the
VERTEX COVER problem (NP-complete), we describe
in Sect. 2. three algorithms adapted to our model.

To compare them, we propose in Sect. 3. general
analytical formulas giving the exact expected size of the
vertex cover produced. This leads us to show that none
of them is better than the two others.

To go further in the comparison, we give in Sect. 4.
general formulas giving the maximum number and the
expected number of requests made by the algorithms
on the “Input data” warehouse. This is a measure of

complexity of our algorithms. We show that based on
this measure, none of the algorithm is better than the
two others.

We conclude and give perspectives in Sect. 5..

2. The Algorithms LL, Sorted-LL, Antisorted-LL

We describe in this section three algorithms suitable
to our model:LL (ListLeft),SLL (Sorted-LL) and

←−−SLL
(Anti Sorted-LL).

Labeling of Nodes, Left and Right Neighbors.In
real applications, the vertices have labels (depending on
the applications domain) which are assumed to be pair-
wise distinct and can be ordered (e.g. by lexicographic
order). We formalize this as follows. In alabeled graph,
denoted byG = (V, L,E), the vertices ofG are la-
beled by a given functionL such that for each vertex
u ∈ V , a uniquelabel L(u) ∈ {1, . . . , n}. We denote
by L(G) the set of all possible labelingsL for a graph
G = (V,E). Given a labeled graphG = (V, L,E) and
a vertexu ∈ V , v is called aright neighbor(resp.left
neighbor) of u if v ∈ N(u) and if v has a label larger
(resp. smaller) thanu.

Description of the Algorithms. We give now a basic
description of our algorithms, based on the previous
notions. We give later the way they can be implemented
in the model of Fig. 1 to satisfy constraintsC1, C2, C3.

Algorithm 1 [LL ] Let G = (V, L,E) be a labeled
graph. For each vertex u ∈ V , u is added to the
cover if it has at least one right neighbor.

Algorithm 2 [SLL ] Let G = (V, L,E) be a labeled
graph. For each vertex u ∈ V , u is added to the
cover if ∃v ∈ N(u) such that d(v) < d(u) or if u has
at least one right neighbor with the same degree.

Algorithm 3 [
←−−SLL ] Let G = (V, L,E) be a labeled

graph. For each vertex u ∈ V , u is added to the
cover if ∃v ∈ N(u) such that d(v) > d(u) or if u has
at least one left neighbor with the same degree.
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Approximation Ratios. It can be easily seen that
these algorithms always return a vertex cover of the
input graph.LL and

←−−SLL have an approximation ratio
of at least∆. Indeed, on starsLL can return all the
leaves, if the center is labeled byn, and

←−−SLL returns
all the leaves. It has been proved in [4] thatSLL (pre-
sented as alist algorithm) has an approximation ratio
of at most

√
∆
2 + 3

2 .

Details on the Model and Satisfaction of the Con-
straints C1,C2 andC3. We suppose that the data ware-
house stores the labeled graphG = (V, L,E) in the
form of an adjacency list in which vertices and their
neighbors are stored in an arbitrary order (not necessar-
ily following the labels).

If the degrees of the vertices are not stored in the
input data unit, onlyLL can be used. If we suppose
that, in addition, the degrees are stored in a table (with
direct access in the input unit),SLL and

←−−SLL can also
be executed. The table of degrees must have been stored
and computed when the graph has been constructed; we
suppose here that it is available.

The processing unit (runningLL, SLL or
←−−SLL)

sendsrequeststo the data warehouse to scanG vertex
by vertex and for each current vertexu (its label and its
degree if needed), scans its neighbors (their labels and
their degrees if needed) one by one. When the process-
ing unit decides that a vertexu belongs to the solution
(applying the conditions given in the descriptions of
the algorithms above),u is put immediately and defini-
tively into the cover (it is sent to “Result”). Then, the
processing unit asks for the next vertex (and its neigh-
bors) from the data warehouse; otherwise, it must scan
all the neighbors ofu (and, at the end, require the next
vertex like in the previous case). We suppose that the
“Input data” warehouse has the ability to do all these
operations in an efficient way (returning the labels and
the degrees, going to the next neighbor, the next vertex,
etc.).

In this model, the three algorithms satisfy the con-
straintsC1 (the instance is not loaded),C2 (at any mo-
ment the processing unit only has two labels in mem-
ory and two degrees) andC3 (the current piece of the
solution is sent as soon as it is produced).

It is worth to notice thatLL can be adapted to the
streaming model (see [9] for a survey), since it requires
only labels of vertices to compare them.

3. Mean Analysis about Quality of Solutions

These three algorithms work deterministically on any
given labeled graph. However, the labels of vertices are
often totally arbitrary and only come from the applica-
tion domains. Different labelings can give different re-
sults, i.e. covers of different sizes. In this section, we
compare these algorithms with respect to the size of the
vertex cover they return. Since there aren! possible la-
belings inL(G), we assume that each one can occur
with a probability 1

n! .
We give in Theorem 1 exact formulas correspond-

ing to the expected size of solution constructed byLL,
SLL and

←−−SLL on any graphG. For that, we introduce
additional notations.
Let S = V \ {u | ∃v ∈ N(u), d(v) < d(u)} (resp.←−
S = V \ {u | ∃v ∈ N(u), d(v) > d(u)}) be the set
of vertices with no neighbor of lower (resp. greater)
degree. Letσ(u) = |{v | v ∈ N(u)∧d(v) = d(u)}| be
the number of neighbors ofu having the same degree
as that ofu.
Theorem 1. Let G = (V,E) be any graph. Let
E
[

A(G)
]

be the expected size of the solution con-
structed by algorithmA on G. By considering all the
labelings ofL(G) with equiprobability assumption, we
have

E
[

LL(G)
]

= n−
∑

u∈V

1

d(u) + 1
, (1)

E
[

SLL(G)
]

= n−
∑

u∈S

1

σ(u) + 1
, (2)

E
[←−−SLL(G)

]

= n−
∑

u∈←−S

1

σ(u) + 1
. (3)

Proof. We give the proof forLL and for SLL. The
proof for

←−−SLL is similar to theSLL one.
Proof forLL. Let G = (V, L,E) be any labeled

graph. LetCLL be a cover constructed byLL on the la-
beled graphG. Let us consider a vertexu of G. u is not
selected byLL if and only if it has no right neighbor,
which means that all its neighbors have labels smaller
than it. Since we consider a uniform distribution over
the set ofn! possible labelings, this event appears with
a probability of d(u)!

(d(u)+1)! . Indeed, if we sortu and the
d(u) vertices ofN(u) by increasing order of labels,
there are(d(u) + 1)! possible permutations, and the
number of permutations such thatu is in the last posi-
tion is d(u)!. Thus,P

[

u ∈ CLL
]

= 1− 1
d(u)+1 and the

result follows by summing those probabilities for each
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vertexu of G.
Proof forSLL. Let G = (V, L,E) be any labeled

graph. LetCSLL be a cover constructed bySLL on
the labeled graphG. Let us consider a vertexu of G.
If u 6∈ S, it means that there exists a vertexv ∈ N(u)
such thatd(v) < d(u). So, for all the vertices ofV \S,
we haveP

[

u ∈ CSLL | u 6∈ S
]

= 1. Also, if u ∈ S,
then it is selected bySLL if it has at least one right
neighbor with the same degree. By following the same
principle as forLL, for all the vertices ofV \ S, we
haveP

[

u ∈ CSLL | u ∈ S
]

= 1 − 1
σ(u)+1 . The result

follows by summing those probabilities for each vertex
u of G.

One can note similarities between the proof of Theo-
rem 1 forLL and a result ofCaroandWei on the size
of an Independent Setin a graph (see [1]).
Theorem 2. AmongLL, SLL and

←−−SLL, no algorithm
can be elected as the best one: there exist graphs for
which each algorithm returns, in expectation, a cover
smaller than the two others.

Proof. We show that, for each algorithm, there exist
graphs for which it is the best in expectation.
• Let Sn be a star withn vertices. If we apply resp.

(1), (2) and (3) onSn, for all n > 2, we have

E
[

LL(Sn)
]

= n− n− 1

2
− 1

n
=

n

2
− 1

n
+

1

2
.

For SLL, the setS contains all the leaves ofSn.
Thus, we have

E
[

SLL(Sn)
]

= n− n+ 1 = 1 .

For
←−−SLL, the set

←−
S only contains the center ofSn.

Hence, we have

E
[←−−SLL(Sn)

]

= n− 1 .

We can easily see that
E
[

SLL(Sn)
]

< E
[

LL(Sn)
]

< E
[←−−SLL(Sn)

]

.
Note thatSLL is optimal forSn.
• Let GRp×q be a grid graph withn = p× q vertices.
∀p, q > 2, we have

E
[

LL(GRp×q)
]

= n− (p− 2)(q − 2)

5
− 2(p+ q − 4)

4
− 4

3

=
4n

5
− p+ q

10
− 2

15
.

ForSLL, the setS contains all the vertices which
are neighbors to the border and the corner vertices of
GRp×q. So, we have

E
[

SLL(GRp×q)
]

= n− (p− 4)(q − 4)

5
− 2(p+ q − 8)

3
− 4

=
4n

5
+

2(p+ q)

15
− 28

15
.

For
←−−SLL, the set

←−
S contains all the border and

corner vertices ofGRp×q. Therefore, we have

E
[←−−SLL(GRp×q)

]

= n− (p− 4)(q − 4)

5
− 2(p+ q − 8)

4
− 4

3

=
4n

5
+

3(p+ q)

10
− 8

15
.

Thus, we can see thatLL is better in expectation
thanSLL and

←−−SLL on grid graphs.
• Let AI+a be a special bipartite graph withn = 2a2+
a − 1 vertices. InAI+a , the set of vertices isX1 ∪
X2 ∪ Y1 ∪ Y2, with X1 = {v1, . . . , va2−2}, Y1 =
{w1, . . . , wa2}, X2 = {z1, . . . , za} andY2 = {t}.
The set of edges isviwj ∀i, j, ziwa(i−1)+k for k =
1, . . . , a and i = 1, . . . , a; and tzi ∀i. An example
is given in Fig. 2. Note that anAI+a graph is an
extension of graphs presented in [4].

We consider thata > 2. The set of verticesV =
X1 ∪ Y1 ∪ X2 ∪ Y2 is constituted as follows:X1

containsa2− 2 vertices of degreea2, Y1 containsa2

vertices of degreea2 − 1, X2 containsa vertices of
degreea + 1, andY2 contains1 vertex of degreea.
Thus, forLL, we have

E
[

LL(AI+a )
]

= n− a2 − 2

a2 + 1
− a2

a2 − 1 + 1
− a

a+ 2
− 1

a+ 1

= n− 1− a2 − 2

a2 + 1
− a

a+ 2
− 1

a+ 1
.

For SLL, the setS only contains the vertext of Y2.
Thus, we have

E
[

SLL(AI+a )
]

= n− 1 .

For
←−−SLL, the set

←−
S contains thea2 − 2 vertices of

X1. Therefore, we have

E
[←−−SLL(AI+a )

]

= n− a2 + 2 .

We can see thatLL is better thanSLL. We com-
pare

←−−SLL with LL:

E
[

LL(AI+a )
]

− E
[←−−SLL(AI+a )

]

= a2 − 3− a2 − 2

a2 + 1
− a

a+ 2
− 1

a+ 1
> 0
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when a > 3, becausea
2−2

a2+1 < 1, a
a+2 < 1 and

1
a+1 < 1, that impliesa2−2

a2+1 + a
a+2 + 1

a+1 < 3.

Hence,
E
[←−−SLL(AI+a )

]

< E
[

LL(AI+a )
]

< E
[

SLL(AI+a )
]

.
Note thatSLL always returns a worst solution (of
sizen− 1) on anyAI+a graph.

b bb b bb b bb

b b b

b b bb b

b

X1

X2

Y2

Y1

X1

Y1

X2

b b

Figure 2. Example ofAI
+
a

graph witha = 3

Applications of (1), (2) and (3) on another classes of
graphs can be found in [2].
Special Properties ofLL. We show here that for any
graphG, LL can construct an optimal cover for any
graphG in the best case or a very large cover in the
worst case.
Lemma 1. For any graphG, there exists a labeling
functionL∗ ∈ L(G) such thatLL returns an optimal
solution on the labeled graphG = (V, L∗, E).

Proof. Let C∗ be an optimal cover. It is easy to show
thatV \C∗ is an independent set and that eachu ∈ C∗

has at least a neighbor inV \ C∗ (otherwise,u and all
its neighbors would be inC∗, thusC∗ would not be
optimal). The labeling functionL∗ we propose is one
such that vertices ofC∗ get labels between1 and|C∗|
and vertices ofV \C∗ get labels between|C∗|+1 and
n. If algorithmLL is executed on such a labeled graph,
it returns all the vertices ofC∗ (since each vertexu
of C∗ has at least a neighbor inV \ C∗ with a higher
label) and no vertex ofV \ C∗ (becauseV \ C∗ is an
independent set and thus each vertex in this set only has
neighbors inC∗, i.e. “on its left”).

Lemma 2. For any graphG, there exists a labeling
functionLw ∈ L(G) such thatLL returns a cover of
sizen− c on the labeled graphG = (V, Lw, E), with c

the number of connected components ofG (c = 1 if G

is connected). This bound is tight:LL cannot construct
a cover of size more thann− c.

Proof. First, we consider a graphG with c = 1 con-
nected component. LetT be any spanning tree ofG. Let
r be any vertex ofT . The labeling functionLw ∈ L(G)
labels the vertices as follows. Vertexr gets labeln.
The d1 neighbors/children ofr in T get thed1 labels
(n − d1, . . . , n − 1); the d2 vertices at distance2 get
thed2 preceding labels (n− d1 − d2, . . . , n− d1 − 1),
etc. until each vertex receives a label, level by level
(see Fig. 3 for an illustration). With this labeling, since
T is a spanning tree, each vertexu 6= r has at least
one right neighbor: its parentv in the treeT rooted in
r. Hence, the execution ofLL on this labeled graph
G = (V, Lw, E) will return all the vertices, except the
root r, which is the vertex labeled with the maximum
value. This is the maximum size achievable, sinceLL
never put in a cover the vertex with the larger label
(since it cannot have a right neighbor).

1 2 3

45

67(r)

b

b

r

b

b

b

b

Figure 3. Example of a labeled spanning tree of a graph.
Dotted linescorrespond to edges which are present in the
graph but not in the spanning tree.

If G is not connected, we can apply the previous
labeling and analysis on each connected component of
G.

4. Analysis of the Number of Requests

In Sect. 2., we have seen that, during the execution
of algorithms, the processing unit gets vertices one by
one, in any order of labels (not necessarily from1 ton).
Moreover, the neighbors of a vertexu are also obtained
one by one, in any order. That implies two situations.
(1) If u is not sent to the cover by examining the

current neighbor, the processing unit retrieves a
neighbor ofu which has not yet been scanned. If
there is no remaining neighbor, i.e. whenu has
been compared with all of its neighbors, it decides
definitively thatu is not in the cover.

(2) If u is sent to the cover because of the examination
of the current neighbor, the system doesn’t need
to go further and to compareu with its remain-
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ing neighbors. Hence, the processing unit is not
required to retrieve all the neighbors of a vertex.

We call requestthe action of getting a neighbor (its la-
bel, and its degree, if needed) which has not yet been
scanned. In this section, we evaluate thenumber of re-
questsmade by the three algorithms to construct their
solutions. Given a labeled graph, this number depends
on the order in which neighbors of vertices are sent to
the algorithm.

In our model, the processing unit takes longer to get
a neighbor from the “Input data” warehouse than to
compare two vertices (their labels and/or their degrees)
stored in its memory. Hence, the number of requests
determines the running time of the algorithms. So, we
study precisely in this section the worst time complexity
and the average time complexity of our three algorithms.

Note that this kind of study is similar to thequery
complexityapproach presented in [11]. It has a finer
granularity than the complexity analysis in I/O-efficient
algorithms or streaming algorithms. Indeed, in the I/O-
efficient model (see [16] for a survey), we focus on the
number of access disk, while in the streaming model
[9], we focus on the number of passes through the data
stream.

In Subsect. 4.1., we study the maximum number of
requests, by considering for each vertex the worst order
in which its neighbors can be retrieved.

In Subsect. 4.2., we study the average number of
requests, by considering that for each vertexu ∈ V , its
d(u) neighbors can be retrieved in any one of thed(u)!
possible orders with a uniform probability. Then, we
assume that all then! labelings of a graphG (in L(G))
can occur with a uniform probability.

Notations. We denote byd+(u) (resp.d−(u)) the
number of right (resp. left) neighbors ofu. We denote
by dinf(u) (resp.dsup(u)) the number of neighbors ofu
having a degree smaller (resp. greater) than that ofu.
We denote byσ+(u) (resp.σ−(u)) the number of right
(resp. left) neighbors ofu having the same degree.

4.1. The Maximum Number of Requests

In this subsection, we give exact formulas for the
maximum number of requests performed by the three
algorithms.
Lemma 3. Let G = (V, L,E) be any labeled graph.
We denote byW

{

QA(G,L)
}

(resp.CA) the maximum
number of requests made (resp. the cover constructed)
by algorithmA on the labeled graphG. One has

W
{

QLL(G,L)
}

=
∑

u6∈CLL
d(u) (4)

+
∑

u∈CLL
(d−(u) + 1) ,

W
{

QSLL(G,L)
}

=
∑

u6∈CSLL
d(u) (5)

+
∑

u∈CSLL
(dsup(u) + σ−(u) + 1) ,

W
{

Q←−−SLL(G,L)
}

=
∑

u6∈C←−−−
SLL

d(u) (6)

+
∑

u∈C←−−−
SLL

(dinf(u) + σ+(u) + 1) .

We give the proof forLL. Proofs forSLL and
←−−SLL

are similar.

Proof. Let G = (V, L,E) be a labeled graph. LetCLL
be a cover constructed byLL on G. Let us consider a
vertexu of G. u ∈ CLL if and only if it has at least one
right neighbor. In the worst case, the processing unit
gets all the left neighbors ofu before getting a right
neighbor. Hence, it makes exactlyd−(u) + 1 requests
to decide thatu is in the cover; otherwise, ifu 6∈ CLL,
then we have to get all the neighbors ofu to decide
finally thatu is not in the cover (we don’t know it has no
right neighbor a priori), which generates exactlyd(u)
requests. The result follows by summing those values
for each vertexu of G.

Theorem 3. Let G be any graph. LetW
{

QA(G)
}

=

maxL∈L(G)W
{

QA(G,L)
}

be the maximum number of
requests made by algorithmA onG. One has

W
{

QA(G)
}

=m+ |Cmax
A | , (7)

where|Cmax
A | is the maximum size of cover returned by

algorithmA onG.

Proof. We give the proof forLL and for SLL. The
proof for

←−−SLL is similar to theSLL one.
Proof forLL. Let G = (V, L,E) be any labeled

graph andCLL the cover constructed byLL onG. We
can simplify (4) as follows.
∑

u6∈CLL
d(u) +

∑

u∈CLL
(d−(u) + 1) =m+ |CLL| (8)

since,∀u 6∈ CLL, d(u) = d−(u) and
∑

u∈V d−(u) =
m. Now, if we maximize (8) by considering all the
n! possible labelings ofL(G), we need to maximize
the size ofCLL. Hence, we obtainW

{

QLL(G)
}

=
m+ |Cmax

LL |.
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Proof forSLL. Let G = (V, L,E) be any labeled
graph andCSLL the cover constructed bySLL on G.
We can simplify (5) as follows.

∑

u6∈CSLL
d(u) +

∑

u∈CSLL
(dsup(u) + σ−(u) + 1) (9)

= m+ |CSLL|
since, ∀u 6∈ CSLL, d(u) = dsup(u) + σ−(u) and
∑

u∈V (dsup(u) + σ−(u)) = m. Now, if we maximize
(9) by considering all then! possible labelings ofL(G),
we need to maximize the size ofCSLL. Hence, we
obtainW

{

QSLL(G)
}

= m+ |Cmax
SLL|.

Corollary 1. The maximum number of requests made
by LL on any graphG (over all its labelingsL(G))
havingc connected components is

W
{

QLL(G)
}

=m+ n− c . (10)

Moreover,W
{

QA(G)
}

≤ m+ n− 1 for A = SLL or
←−−SLL.

Proof. The results forLL are derived from Theorem 3
and Lemma 2. ForSLL and

←−−SLL, note that any cover
CA cannot contain all the vertices ofG.

4.2. The Expected Number of Requests

In this subsection, we give exact formulas express-
ing the expected number of requests for the three algo-
rithms.
Lemma 4. Let G = (V, L,E) be any labeled graph.
We noteE

[

QA(G,L)
]

(resp.CA) the expected number
of requests made (resp. the cover constructed) by algo-
rithm A on the labeled graphG. One has

E
[

QLL(G,L)
]

=
∑

u6∈CLL
d(u) (11)

+
∑

u∈CLL

d(u) + 1

d+(u) + 1
,

E
[

QSLL(G,L)
]

=
∑

u6∈CSLL
d(u) (12)

+
∑

u∈CSLL

d(u) + 1

dinf(u) + σ+(u) + 1
,

E
[

Q←−−SLL(G,L)
]

=
∑

u6∈C←−−−
SLL

d(u) (13)

+
∑

u∈C←−−−
SLL

d(u) + 1

dsup(u) + σ−(u) + 1
.

We give the proof forLL. Proofs forSLL and
←−−SLL

are similar.

Proof. Let G = (V, L,E) be any labeled graph. Let
CLL be a cover constructed byLL on G. Let us con-
sider a vertexu of G. If u 6∈ CLL, then the algorithm
has to get all of itsd(u) neighbors; otherwise, it makes
d(u)+1
d+(u)+1 requests in expectation before getting one of

the d+(u) right neighbors ofu. This value can be ex-
plained as follows. If a player is to draw balls from a
bag containinga white balls andb black balls until he
draws a black ball, not replacing the ball drawn, then the
expected number of white balls he will draw isa

b+1 (see
for example [6]). Now, suppose that thed(u) neighbors
of u are balls in a bag, withd−(u) (resp.d+(u)) white
(resp. black) balls. Usinga = d−(u) and b = d+(u),

we obtain a
b+1 + 1 = d−(u)

d+(u)+1 + 1 = d(u)+1
d+(u)+1 requests

in average (including the one giving the “black ball”).
The result follows by using linearity of expectation.

Theorem 4. Let G be any graph. LetE
[

QA(G)
]

=
1
n!

∑

L∈L(G) E
[

QA(G,L)
]

be the expected number of
requests made by algorithmA onG, assuming that all
the labelings ofL(G) occur with the same probability.
For LL andSLL, we have

E
[

QLL(G)
]

=
∑

u∈V
H(d(u)) . (14)

E
[

QSLL(G)
]

(15)

=
∑

u∈V

d(u) + 1

σ(u) + 1

(

H(dinf(u) + σ(u) + 1)

−H(dinf(u))
)

−
∑

u|dinf(u)=0

1

σ(u) + 1
,

whereH(n) = 1 + 1
2 + 1

3 + · · ·+ 1
n

andH(0) = 0.
E
[

Q←−−SLL(G)
]

is obtained by replacingdinf(u) by
dsup(u) in (15).

Proof. We give the proof forLL and for SLL. The
proof for

←−−SLL is similar to theSLL one.
Proof forLL. Let G = (V,E) be any graph. We

calculate thecontribution of each vertexu ∈ V in
E
[

QLL(G)
]

. Let L ∈ L(G) be any labeling onG and
CLL the cover constructed byLL on the labeled graph
G = (V, L,E). Notice that for each vertexu ∈ V ,
u 6∈ CLL if and only if d+(u) = 0. Let βk(u) be the
proportion of labelingsL ∈ L(G) for whichd+(u) = k.
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Using (11), thecontributionof vertexu in E
[

QLL(G)
]

is

β0(u) · d(u) +
d(u)
∑

k=1

βk(u) ·
d(u) + 1

k + 1
. (16)

Let us compute the value ofβk(u). The value ofd+(u)
depends only on the label of vertexu compared to those
of its neighbors. There are exactly

(

n

d(u) + 1

)

· d(u)!× (n− (d(u) + 1))! (17)

labelings in whichd+(u) = k. Indeed, we assign labels
to vertices ofG as follows. First, we choosed(u) + 1
labels amongn andu gets the(k + 1)th largest label
in order to haved+(u) = k. Then, there remaind(u)!
possibilities for labeling neighbors ofu and(n−(d(u)+
1))! possibilities for the other vertices ofG. We obtain
βk(u) by dividing (17) byn!. Thus,∀k ∈ {0, . . . , d(u)},
βk(u) =

1
d(u)+1 . Now, we simplify (16) and we get

β0(u) · d(u) +
d(u)
∑

k=1

βk(u) ·
d(u) + 1

k + 1

=
d(u)

d(u) + 1
+

d(u)
∑

k=1

1

k + 1
=

d(u)

d(u) + 1
+

d(u)+1
∑

k=2

1

k

= 1 +

d(u)
∑

k=2

1

k
= H(d(u)) .

The result follows by using the linearity of expectation.
Proof forSLL. Let G = (V,E) be any graph. We

calculate thecontribution of each vertexu ∈ V in
E
[

QSLL(G)
]

. Let L ∈ L(G) be any labeling onG
and CSLL the cover constructed bySLL on the la-
beled graphG = (V, L,E). Notice that for each ver-
tex u ∈ V , u 6∈ CSLL if and only if dinf(u) = 0 and
σ+(u) = 0. Also, note that ifdinf(u) > 0, whatever the
labeling of vertices ofG, u is always selected bySLL.
Let β′k(u) be the proportion of labelingsL ∈ L(G) for
which σ+(u) = k.
(1) If dinf(u) > 0, whatever the value ofσ+(u) (be-

tween0 andσ(u) and denotedk by the following),
thecontributionof vertexu in E

[

QSLL(G)
]

is

β′k(u) ·
d(u) + 1

dinf(u) + k + 1
. (18)

(2) If dinf(u) = 0, then the fact thatu is in the cover
returned bySLL or not depends only on label ofu

compared to those of its neighbors having the same
degree. In this case, thecontributionof vertexu
in E

[

QSLL(G)
]

is











β′k(u) ·
d(u)+1
k+1 with k = 1, . . . , σ(u)

if u ∈ CSLL,

β′0(u) · d(u) otherwise.

(19)

We obtain the value ofβ′k(u) by using the same rea-
soning as forLL. We replaced(u) in βk(u) by σ(u)
and thus we have, for any vertexu, β′k(u) = 1

σ(u)+1 ,
∀k ∈ {0, . . . , σ(u)}. So, in order to simplify (18), we
apply this result for each vertexu such thatdinf(u) > 0:

σ(u)
∑

k=0

1

σ(u) + 1
· d(u) + 1

dinf(u) + k + 1
(20)

=
d(u) + 1

σ(u) + 1

σ(u)+1
∑

k=1

1

dinf(u) + k

=
d(u) + 1

σ(u) + 1

(

H(dinf(u) + σ(u) + 1)−H(dinf(u))
)

,

and we apply this result on (19), for each vertexu

such thatdinf(u) = 0:

d(u)

σ(u) + 1
+

σ(u)
∑

k=1

1

σ(u) + 1
· d(u) + 1

k + 1
(21)

=
d(u)

σ(u) + 1
+

d(u) + 1

σ(u) + 1





σ(u)+1
∑

k=1

1

k
− 1





=
−1

σ(u) + 1
+

d(u) + 1

σ(u) + 1

σ(u)+1
∑

k=1

1

k

=
d(u) + 1

σ(u) + 1
·H(σ(u) + 1)− 1

σ(u) + 1
.

The result follows by summing (20) and (21) for each
vertex ofG.

Corollary 2. The expected number of requests made by
LL, SLL and

←−−SLL on a∆-regular graph isn ·H(∆),
that tends ton · log∆ when∆ tends to+∞.

Proof. As in G for all u ∈ V we haved(u) = ∆,
the result forLL immediately follows and we also get
dinf(u) = dsup(u) = 0 andσ(u) = d(u). Using these
values, we can simplify (15) and get the result forSLL
and
←−−SLL.

Theorem 5. AmongLL, SLL and
←−−SLL, no algorithm

can be elected as the best one: there exist graphs for



Eric Angel et al. – Algorithmic Operations Research Vol.6 (2011) 56–67 65

which each algorithm makes an expected number of
probes to the instance smaller than the two others.

Proof. Here, we apply formulas given in Theorem 4
to show that, for each algorithm, there exist graphs for
which it can be the best in expectation.
• Let Sn be a star withn vertices. If we apply resp.

(14), (15) and (15) by replacingdinf(u) by dsup(u),
for all n > 2, we have

E
[

QLL(Sn)
]

= H(n− 1) + n− 1 .

In a starSn such thatn > 2, no vertex has a neighbor
having the same degree as it.

ForSLL, then−1 leaves ofSn have no neighbor
with a smaller degree. The center ofSn hasn − 1
neighbors (the leaves) having a degree smaller than
it. Thus, we have

E
[

QSLL(Sn)
]

= (n− 1) · 2 + n
(

H(n)−H(n− 1)
)

− (n− 1)

= n .

For
←−−SLL, the center ofSn has no neighbor having a

degree greater than it. Each leaf ofSn has a neighbor
(the center) with a greater degree. Thus, we have

E
[

Q←−−SLL(Sn)
]

= n+ (n− 1) · 2
(

H(2)−H(1)
)

− 1 = 2n− 2 .

Thus, we can easily see that
E
[

QSLL(Sn)
]

< E
[

QLL(Sn)
]

< E
[

Q←−−SLL(Sn)
]

.
• LetKa,b = (X ∪Y,E) be a complete bipartite graph

with n = a+b vertices (wherea = |X | andb = |Y |).
Assuming thata > b > 4, we have

E
[

QLL(Ka,b)
]

= a ·H(b) + b ·H(a) .

In a complete bipartite graphKa,b such thata 6= b,
no vertex has a neighbor having the same degree as it.

For SLL, the a vertices ofX have no neighbor
with a smaller degree. Each vertex ofY hasa vertices
(those ofX) having a degree smaller than it. Thus,
we have

E
[

QSLL(Ka,b)
]

= a(b+ 1) + b(a+ 1)
(

H(a+ 1)−H(a)
)

− a

= ab+ b .

For
←−−SLL, theb vertices ofY have no neighbor with a

greater degree. Each vertex ofX hasb vertices (those
of Y ) having a degree greater than it. Thus, we have

E
[

Q←−−SLL(Ka,b)
]

= b(a+ 1) + a(b + 1)
(

H(b+ 1)−H(b)
)

− b

= ab+ a .

We can easily see thatSLL is better than
←−−SLL

(becausea > b). We compareLL with SLL:

E
[

QSLL(Ka,b)
]

− E
[

QLL(Ka,b)
]

= ab+ b− a ·H(b)− b ·H(a)

=
ab

2
− a ·H(b) +

ab

2
− b ·H(a) + b > 0

becauseb2 > H(b) whenb > 4 and a
2 > H(a) when

a > 4.
Therefore, whena > b > 4, LL produces, in

expectation, a smaller number of requests thanSLL
and
←−−SLL.

• Let CKl,w be anecklacewith n = l × w vertices.
A necklaceCKl,w is a cycle ofl complete graphs
where each complete graphKi (i ∈ {1, . . . , l}) hasw
vertices:w−2 vertices of degreew−1 and2 distinct
verticesai and bi of degreew, called connectors,
which connectKi to its previous and to its following
neighbors in the cycle (see Fig. 4 for an illustration).

Assuming thatl > 1 andw > 4, we have

E
[

QLL(CKl,w)
]

= l(w − 2) ·H(w − 1) + 2l ·H(w)

= n ·H(w − 1) +
2l

w
.

In a necklaceCLl,w, each vertex belonging to the
l complete graphs except the2l connectorsai and
bi hasw − 3 neighbors having the same degree as
it. Each connector has 2 neighbors having the same
degree as it.

For SLL, the l(w − 2) different vertices of the
connectors have no neighbor with a smaller degree.
Each connector hasw − 2 neighbors (the vertices
of the complete graph it belongs) having a degree
smaller than it. Thus, we have

E
[

QSLL(CKl,w)
]

= l(w − 2) · w

w − 2
·H(w − 2)

+2l · w + 1

3

(

H(w + 1)−H(w − 2)
)

− l(w − 2)

w − 2

= n ·H(w − 2) +
2l

3
· 3w2 − 1

w(w − 1)
− l .

For
←−−SLL, the2l connectors have no neighbor with a

greater degree. Each vertex (except the connectors)
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has2 neighbors (the connectors of the complete graph
it belongs) having a degree greater than it. Thus, we
have

E
[

Q←−−SLL(CKl,w)
]

= 2l · w + 1

3
·H(3)

+l(w − 2) · w

w − 2

(

H(w)−H(2)
)

− 2l

3

= n ·H(w) − 5n

18
+

5l

9
.

We compare them:

E
[

QLL(CKl,w)
]

− E
[

Q←−−SLL(CKl,w)
]

=
5n

18
+

2l

w
− 14l

9

=
l(5w2 − 28w + 36)

18w
> 0

whenw > 3, because the polynomial5w2−28w+36
has two roots:2 and3.6; and is positive∀w ≤ 2 and
∀w ≥ 3.6.

E
[

QSLL(CKl,w)
]

− E
[

Q←−−SLL(CKl,w)
]

=
5n

18
+

n

w − 1
− 2l

3w(w − 1)
− 23l

9

=
l(5w3 − 33w2 + 46w − 12)

18w(w − 1)
> 0

whenw > 4, because the polynomial5w3− 33w2+
46w− 12 has three roots:0.34, 1.48 and4.78; and is
positive∀w ∈ [0.34, 1.48] and∀w ≥ 4.78.

Hence, whenl > 1 andw > 4,
←−−SLL produces, in

expectation, a number of requests smaller thanLL
andSLL.

b

b b

bb

b

b

b b

bb

b

b

b b

bb

b

Figure 4. Example of a necklace withl = 3 andw = 6

5. Conclusion

We have presented and analyzed three algorithms
for the VERTEX COVER problem, which are suitable to
the severe constraints of our model: they don’t need to

modify the input graph, they don’t need a large mem-
ory on the processing unit, and they don’t need to read
and/or modify the solution computed during the execu-
tion. They are adapted to the construction of a vertex
cover in huge graphs on a basic computer.

If the degrees of the vertices are directly available, the
three algorithms can be used; otherwise, onlyLL can be
applied. To compare these three methods, in Sect. 3., we
have given exact (analytical) formulas for the expected
size of the cover returned by these algorithms (we also
proved that for any graph there exist labelings for which
LL give the optimal cover). We proved that, based on
this measure, no algorithm among these three can be
elected as the best one for all graphs.

To go further in the analysis, in Sect. 4., we have
given exact formulas expressing the maximum and the
expected number of requests made by the three algo-
rithms (to the system containing the input data) to con-
struct the solution. Again, based on this running time
complexity measure, we have proved that none of the
three algorithms can be elected has the best (i.e. fastest)
one.

All our analytical formulas can help a user to choose
among our three algorithms based on potential knowl-
edges on the input graph (that may be given by the do-
main of application). They can be used to balance be-
tween precision and complexity.

We can also remark that the three algorithms can
easily be executed in parallel if each processing unit
manages a subset (not necessarily consecutive) of ver-
tices.

We believe thatSLL is the algorithm constructing
the smallest vertex cover in average for “almost all”
graphs4 if the degrees are available. A perspective is
to prove that; this is probably hard for all graphs; some
experiments results could also be helpful.
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