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Scheduling Weighted Packets with Deadlines over a Fading Channel

Zhi Zhang and Fei Li

Department of Computer Science, George Mason University, Fairfax, VA 22030

Abstract

We consider scheduling weighted packets with time constraints over a fading channel. Packets arrive at the transmitter
in an online manner. Each packet has a value and a deadline by which it should be sent. The fade state of the channel
determines the throughput obtained per time unit and the channel’s quality may change over time. In this paper, we
design both offline and online algorithms to maximize weighted throughput, defined as the total value of the packets sent
by their respective deadlines. We first present polynomial-time exact offline algorithms for this problem. We then present
online algorithms and their competitive analysis. We also show the lower bounds of competitive ratio.

Key words: online algorithms, competitive analysis, fading channel,scheduling algorithms

1. Introduction

Time-varying signal strength is a fundamental char-
acteristic of wireless channels. Scheduling packets over
fading wireless channels has received much attention
(see [19,10,9,18,21,4] and the references therein). A
scheduling algorithm can significantly improve the
communication performance by taking advantages of
the changing channel states. Specifically, the packets to
be scheduled are associated with deadlines. Time con-
straints (deadlines) are specified on packets to model
the possible network protocol timeouts and the time
sensitivity of the information carried by the packets. In
the previously studies, the objective is usually to max-
imize the totalnumberof packets delivered by their
deadlines. However, for many practical problems, it is
more reasonable to differentiate various packets and
take into account the amount and the significance level
of the information associated with the packets. Thus,
in this paper, we address the problem of optimizing
weighted throughputof packets with time constraints
in a fading wireless channel. Our results show that the
algorithmic solutions in maximizing weighted through-
put as well as their computational complexity are sig-
nificantly different from those optimizing throughput
of uniform-value packets.

Resource allocation for fading channels has been a
well-studied topic in the area of information theory. The
quantity to maximize is often the Shannon capacity, de-
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fined as the tightest upper bound of the amount of in-
formation (i.e., the total number of packets) that can be
reliably transmitted over a communication channel. Tse
and Hanly [19] have found capacity limits and optimal
resource allocation policies for such fading channels.
They also studied the greedy approach for channel al-
locations in multi-access fading channels, assuming all
packets arriving at the transmitter are successfully deliv-
ered. Prabhakar et al. [10] have considered proactively
adjusting the rate of packet transmission for saving en-
ergy where the quality of the fading channel is assumed
to be fixed and the consumed energy is a convex function
of the transmission speed. The discrete version of this
algorithm has been proposed in [20] in a more general
problem setting. In [9], the authors applied a dynamic
programming approach to get the optimal solution for
scheduling uniform-value packets under both time and
energy constraints. However, this algorithm [9] runs in
exponential-time in overloaded systems. A polynomial-
time optimal offline solution of scheduling packets with
hard deadlines was given in [18,21]. In their problem
settings, energy is minimized under the assumption that
all arriving packets are successfully delivered. An op-
timal offline algorithm maximizing throughput and a
heuristic online approach of scheduling uniform-value
packets with possibly different deadlines were given
in [4]. No theoretical analysis has been provided for
their heuristic online solution. Note that in these previ-
ous studies, packets have uniform values and their ar-
rivals at the transmitter are usually modeled by a Pois-
son distribution.

In the models discussed above, packets are distin-
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guished by their deadlines and release dates only; that
is, they have uniform values and sizes. However, packets
from different users and various applications may have
different significance levels of embedded information.
For the sake of being realistic and practical, we associate
packets withweights(values) that indicate the signifi-
cance of their embedded information. We also associate
packets with deadlines to represent the information’s
time sensitivity in real-time applications. None of the
previous algorithms for delivering packets can be gener-
alized to this problem setting, because a schedule with
the maximum throughput does not imply its optimal-
ity on maximizing weighted throughput. In this paper,
we design efficient scheduling algorithms to maximize
weighted throughput for packets with time constraints
over a fading channel. Our contributions include:
(1) offline algorithms for this model (Section 3.1.).
(2) competitive online algorithms and lower bounds of

competitive ratios for this model and its variants
(Section 3.2.).

2. Model

We consider scheduling weighted packets with dead-
lines over a wireless fading channel. In this model, time
is assumed to be discrete. Thet-th time steprepresents
the time period(t− 1, t]. A few consecutive time steps
are called atime interval. Packets are released over time.
All packets are with the same lengthL ∈ R

+ (L is a
constant). Each packetp has an integerrelease time(ar-
riving time) rp ∈ Z

+, a positive real valuevp ∈ R
+ to

represent itsweight (value), and an integer hard dead-
line dp ∈ Z

+ to denote the time by which it should be
delivered. The time required to send a packet depends
on thestate qualityqt (qt ∈ [qmin, qmax]) of the fading
channel during a time stept, whereqmin andqmax are
two constants. Without loss of generality, we assume
L = 1, qmin > 0, qmax = 1, and the fade state in a sin-
gle time step keeps unchanged. If the fading channel is
at its highest qualityqmax, one packet can be sent in a
time step. A packet has to be sent in consecutive time
steps. Successfully sending a packetp takest(p) steps
wheret(p) = t2 − t1 subject to

t2
∑

t=t1

qt ≥ 1 andt2 ≤ dp, t1, t2 ∈ Z
+.

Two or more packets cannot share (i.e., to be sent in)
the same time step. If a packetp is sent by its deadline
dp, its weightvp is contributed to our objective. Our

goal is to maximize weighted throughput subject to the
deadline constraints of packets and the varying fading
channel qualities.

We design two kinds of algorithms:offline algorithms
andonline algorithms. All input information (including
the fading channel states and the packets’ characteris-
tics) is known to an offline algorithm in advance. For
an online algorithm, the packet input sequence is un-
known and each packet’s characteristics are known to
the algorithm only at the time when the packet actually
arrives at the transmitter. The fade state of the channel
is unknown or partially known to an online algorithm,
which depends on the assumptions in the variants of
the online version of this problem. Note that essentially,
delivering packets with deadlines in a wireless channel
is an online decision making problem. We address the
online version in the following two settings.

• In thenon-preemption setting, a packet, once it is
being delivered, is committed to be sent without
being preempted until it is sent.

• In the preemption-restart setting, an online algo-
rithm is allowed to abort a packet during its trans-
mission, and the aborted packet can be restarted
(from scratch) and sent later.

In either setting, the online algorithm gets credits only
from the packets that are successfully sent in consecu-
tive steps by their deadlines.

Our model can be anoverloaded systemin which
it is feasible that due to packets’ deadline constraints,
no algorithm can deliver all packets in the input in-
stance. Note that in anunderloaded system, the offline
solution is relatively trivial. The classic algorithm EDF
(Earliest-Deadline-First) delivers all the packets non-
preemptively by the increasing deadline order and it
achieves the optimal weighted throughput.

We have realized the connection between this prob-
lem and the well-studiedbounded-delay modelin buffer
management. The bounded-delaymodel [15,13,16,8,17]
implicitly applies an assumption of ideal channel qual-
ity at all the time such that in every time step, one
packet can be delivered. The offline version of the
bounded-delay model has been solved optimally via
maximizing a weighted bipartite matching. The online
version still remains a very intriguing open problem.

3. Algorithms and Analysis

We classify our algorithms and present them as of-
fline algorithms and online algorithms in Section 3.1.
and Section 3.2. respectively. Note that in designing
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offline algorithms, there is no difference between the
non-preemption setting and the preemption-restart set-
ting: An optimal offline algorithm can always be non-
preemptive.

Let the input sequence beI and|I| = n. All packets
have the same length1.

3.1. Offline algorithms

In this section, we present a few exact algorithms
running in polynomial time for several variants of the
problem, assuming all input information is known.
Theorem 1. [11] Assume the fading channel has a fixed
qualityq ∈ [0, 1] during all time steps. If all packets are
with the same value (but they are allowed to have arbi-
trary deadlines), then there exists an exact polynomial-
time optimal algorithm running in timeO(n logn).

We consider an important variant in which packets
are withagreeable deadlines, i.e., for any two packets
pi andpj , rpi

< rpj
impliesdpi

≤ dpj
. This variant al-

lows an optimal algorithm running in an online manner.
Here, we look at EDF: If there is no packet being sent,
schedule the earliest-deadline pending packet until it is
finished. We have
Theorem 2. Assume the fading channel has a fixed
quality q ∈ (0, 1] during all time steps. If all packets
are with the same value and if they are with agreeable
deadlines, then EDF is an exact polynomial-time opti-
mal algorithm running in linear timeO(n).

Proof. To prove Theorem 2, it is sufficient to show that
at any timet (t does not have to be an integer), EDF
finishes no fewer packets than any algorithm ALG. We
useA(I) to denote the number of packets delivered by
their deadlines in the algorithm A.

The proof consists of proving the following two parts:
(1) Given any algorithm ALG and the set of packets

I ′ (⊆ I) that ALG schedules, we can create an
earliest-deadline-first scheduler EDF′ finishing all
packets inI ′ by their deadlines; that is,

EDF ′(I ′) = |I ′| = ALG(I). (1)

(2) Given the inputI for EDF and the inputI ′ for
EDF′, EDF is no worse than EDF′ in finishing as
many as packets by their deadlines at any timet;
that is,

EDF (I) ≥ EDF ′(I ′). (2)

Equation (1) and Equation (2) implyEDF (I) ≥
ALG(I).

Given the set of packetsI ′ that is finished by an
algorithm ALG as the input of EDF′, we can use the
exchange argumentto show that EDF′ can finish the
packets inI ′. Note that if the fading channel is at a fixed
quality, for any unit-length packetp, it takes⌈q−1⌉ time
steps to deliverp. Since all packets are with the same
value and the same processing time, we can always
replace the packets∈ I ′ using packets∈ I \I ′ with no
later release dates or deadlines. Thus, the second part
of the proof is true as well.

The running time analysis is as follows. If packets are
with agreeable deadlines, newly arriving packets can be
appended at the end of the packet queue. EDF sends the
first pending packet which has not expired yet in the
next⌈q−1⌉ time steps when there is no packet currently
being sent. The scheduling algorithm runs in linear time
O(n). Theorem 2 is proved.

In the following, we can prove that there exists an
optimal offline policy for the general problem. First,
we assume that the channel quality’s is a fixed constant
number. Then, we apply the algorithm into the general
setting in which the fade states of the channel vary.
Theorem 3. Assume the fading channel has a fixed and
constant qualityq ∈ [0, 1] during all time steps. There
exists an optimal algorithm in maximizing weighted
throughput.

Proof. We would like to point out that since it may not
be feasible to deliver all packets ever arrive at the trans-
mitter in an overloaded system, the optimal solutions
in the previously studied models in [9,4,14] cannot be
directly applied to our model.

We design an exact algorithm that depends on the fol-
lowing two critical observations on the matroidal struc-
ture of the model.

Remark 1. Given a setS of packets, any feasible
schedule onS can be converted to an earliest-deadline-
first schedule wherethe earliest-deadline packet∈ S is
scheduled as long as it is available.

Remark 2. DenoteS∗ as both the optimal solution
maximizing the weighted throughput and the set of pack-
ets delivered. If a packetpj ∈ S∗ is pending at time
t and it is not scheduled at timet, there must exist a
packetpi ∈ S∗ such thatrpi

≤ t + ⌈q−1⌉ and pi is
scheduled at timerpi

.

Let the set of packets arriving at the transmitter be
{p1, p2, . . . , pn}. As the channel quality is a fixed
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numberq, it takes⌈q−1⌉ consecutive time steps to de-
liver one packet. The set of time steps that a packet can
be sent is a subset of all the time stepsT

T :=
⋃

i

[rpi
, rpi

+ n⌈q−1⌉],

whereq is the constant channel quality. Let the time
steps inT be t1, t2, . . . , tm, where

|T | ≤ n · n⌈q−1⌉ ≤ n2 + n2 · q−1.

We have a greedy algorithm as follows. Based on
Remark 1 and Remark 2, we know that if there are
two pending packets available for delivery, we can al-
ways pick the one with the earlier deadline to send in
a time step∈ T . We call this order acanonical or-
der. Our following algorithm is based on the matroidal
property of the model. The generated schedule inP ′ is

Algorithm 1 Optimal-Offline-Algorithm

1: Initialize the set of packets to be sentP ′ = ∅.
Initialize the set of packets to be consideredP = I
(= {p1, p2, . . . , pn}).

2: Sort all packets inP in decreasing order of values.
3: while |P ′| ≤ n and there are packets left inP do
4: remove the maximum-value packetp from P ;
5: if the setP ′ ∪ {p} can be feasibly scheduled in

time stepsT under the canonical order (i.e., all
packets can be sent by their deadlines)then

6: insert the packets inP ′ and updateP ′ asP ′∪
{p}.

7: end if
8: end while
9: return P ′.

the optimal solution and its correctness is based on the
fact that feasible schedules form a matroid. The run-
ning time of this algorithm isO(n log n+n logn|T |) =
O(n3 logn · q−1), where the factorO(n logn) for |T |
is the time spent on sorting packets inP ′ in decreasing
order of weights. For each packetp, it takes timeO(|T |)
to verify the feasibility of addingp into the existing
schedule. For this variant, our result improves the algo-
rithm in [2], whose running time isO(n10) and which
also holds whenq is fixed but not a constant number.
Theorem 3 is proved.

Following the proof of Theorem 3, we immediately
have

Corollary 1. Consider scheduling weighted packets
with deadlines in a fading channel. There exists an
optimal algorithm in maximizing weighted throughput
in timeO(n log n ·m), wherem is the number of time
steps that we consider.

In our model, as long as each interval with time steps
[t1, t2] has

∑t2
t=t1

qt ≥ 1, a packet can be sent. For each
release timerp, we seek the followingn consecutive
time intervals such that for each time interval[ts, te],
∑te

t=ts
qt ≥ 1. Let the union of all such time steps be

T ′. Then, the numberm in Corollary 1 hasm = |T ′|.
Note that our proofs depend on the following three

assumptions that (1) all packets have the uniform length,
(2) packets are sent in consecutive steps, and (3) packets
do not share a time step. If any one of these assumptions
does not hold, it is easy to conclude that the offline
version of this problem is a NP-complete one, via the
reduction from the NP-completeBin-Packingproblem
or the NP-completeSet-Partitionproblem.
Theorem 4. Consider packet scheduling in fading
channels. Assume a packet can be preempted before the
transmitter finishes it. Only unfinished part of the packet
is resumed later. Then, maximizing (weighted) through-
put is a NP-complete problem, even if all packets share
a common release date and a common deadline.

Proof. To show that one problem is NP-completeness,
it is sufficient to show that we can reduce a well-known
NP-complete problem to our problem in polynomial
time and a candidate solution can be verified in polyno-
mial time. Verifying a candidate solution can be done
in linear time. To prove Theorem 4, the remaining work
is to reduce the known NP-complete Set-Partition prob-
lem to our problem.

The Set-Partition problem is defined as follows.
Given an instance that has a finite setI and a size
si ∈ Z

+ for i ∈ I, the objective is to find out if there ex-
ists a subsetI ′ ⊆ I such that

∑

i∈I′ si =
∑

i∈I\I′ si.
This problem is proved NP-complete [12].

Now we introduce the reduction. Given any instance
I of the Set-Partition problem, we normalizeI such
that

∑

i∈I si = 2. Then we generate the channel qual-
ity qi = si for each i ∈ I and we have only two
unit-value packets whose deadlines are

∑

i∈I si = 2
in our input instance. This conversion takes polyno-
mial time. Consider any algorithm ALG. If ALG re-
turns a throughput of2, ALG returns two sets of fad-
ing states such that each of them is with a total qual-
ity

∑

j qj = 1. The time step of delivering one packet
(respectively, the other packet) consists of one parti-
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tion set (respectively, the other partition set) for the
Set-Partition problem. Since the Set-Partition problem
is NP-complete, ALG cannot schedule two packets by
their deadlines optimally in polynomial-time. Hence,
maximizing (weighted) throughput with time varying
quality, is NP-complete. Theorem 4 is proved.

3.2. Online algorithms

Scheduling packets with deadlines (even in a fad-
ing channel whose quality is always at its maximum)
is essentially an online decision problem. In order to
evaluate the worst-case performance of an online algo-
rithm lacking of future input information, we compare
it with an optimal offline algorithm. The offline algo-
rithm is a clairvoyant algorithm, empowered to know
the whole input sequence (including the fading states of
the channel, the packet sequence, and all packets’ char-
acteristics) in advance to make its decision.In contrast
to stochastic algorithms that provide statistical guaran-
tees under some mild assumptions on input sequences,
competitive online algorithms guarantee their worst-
case performance.
Definition 1. Competitive ratio[3]. Consider any finite
input instance. A deterministic online algorithm ON is
called ρ-competitiveif the weighted throughput of an
optimal offline algorithm on this instance is at mostρ
times of the online algorithm’s weighted throughput on
the same instance.

ρ := max
I

OPT (I)− δ

ON(I) ,

whereδ is a constant andOPT (I) is the optimal offline
solution of an inputI. The parameterρ is known as the
online algorithm ON’scompetitive ratio.

Theupper boundsof competitive ratios are achieved
by some known online algorithms. A competitive ratio
less than thelower boundis not reachable by any on-
line algorithm. An online algorithm is said to beoptimal
if its competitive ratio reaches the lower bound. If the
additive constantδ is no larger than0, the online algo-
rithm ON is calledstrictly ρ-competitive. Competitive-
ness has been widely accepted as the metric to measure
an online algorithm’s worst-case performance in theo-
retical computer science and operations research [3]. In
this section, we design and analyze some competitive
online scheduling algorithms for maximizing weighted
throughput in a fading channel.

We investigate the challenge of designing efficient
online algorithms for this problem. Without time con-

straints on packets, (weighted) throughput is maxi-
mized by simply delivering all packets that ever arrive
at the transmitter. When time constraints are enforced
on uniform-valuepackets, the objective of this problem
becomes to send as many packets as possible before
their respective deadlines — this variant is as the same
problem of online scheduling equal-length jobs [7].
A 2-competitive deterministic algorithm and a1.5-
competitive deterministic algorithm have been given
for this variant in the non-preemption setting and the
preemption-restart setting respectively [7]. Both online
algorithms’ competitive ratios are tight.

Though optimal competitive online algorithms have
been proposed in [7] for a variant in which throughput is
maximized, scheduling packets with deadlines is open
and becomes more interesting and complicated when
packet weights are considered. Now we present an in-
stance in which the fade state of the channel is ideal (i.e.,
qt = qmax = 1, ∀t) but packets have weights. Consider
an overloaded system. At time1, there are two packets
p1 andp2 with dp1

= 1 < dp2
= 2 andvp1

< vp2
. Note

that the transmitter has no knowledge of future arriv-
ing packets. Sending the packetp1 in the first time step
may causep2 not to be sent anymore if we assume that
another packetp3 with dp3

= 2 andvp3
> vp2

arrives
at time 2 (sincep2 and p3 cannot be sent simultane-
ously at step2 successfully by their deadlines). A better
(clairvoyant) way is to sendp2 in the first time step and
sendp3 in the second time step. One the other hand, if
the online algorithm picksp2 to send in the first time
step, it potentially leads to the expiration of the packet
p1. In case no packetp3 is released at step2 in the ac-
tual input sequence, the online algorithm loses the value
of p1 — it is better to sendp1 andp2 in the first two
consecutive time steps clairvoyantly. In summary, the
challenge of designing efficient online algorithms who
are lacking of information about future input is to bal-
ance wisely between sending an earliest-deadline packet
and a largest-weight packet. Our proposed online algo-
rithms are based on this intuition. Another challenge of
this model is due to the uncertainty of the fade states
of the wireless channel. We will address more on these
challenges and present our solutions in the following.

We consider non-preemption and preemption-restart
settings separately. We also call the optimal offline al-
gorithmadversary. Let vmax andvmin denote the max-
imum and the minimum value of a packet in the input
sequenceI respectively. We can always scale packet
values such thatvmin = 1. Thus, vmax

vmin
= vmax.
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3.2.1. In the non-preemption setting
We first show a negative result and then show an

optimal online algorithm for a variant of this model.
Theorem 5. In the non-preemption setting, no online
algorithm has a constant competitive ratio, even if the
fade state is a fixed numberq (q < qmax = 1) and
even if packets are with agreeable deadlines. The lower
bound of competitive ratios can be up tovmax.

Proof. We set the channel’s qualityq = 0.5. Any packet
can be sent in consecutive2 time steps. Let an online
algorithm be ON. We use(v, d) to denote a packet with
valuev and deadlined.

In the first time step, a packet(vmin = 1, 2) is re-
leased. The adversary keeps releasing a packet(1, 2i)
in each time step2i until one of the events happens: (1)
ON picks up a packet(1, 2k) to send, or (2) the adver-
sary has releasedx such packets with valuevmin = 1,
and ON has not picked up any one of them to send.

For the second case, the adversary stops releasing
new packets and it schedules all packets ever released
with a total gain ofx. On the other side, ON gains
nothing overall. For the first case, when ON picks up a
packet(1, 2k) to send, the adversary releases a packet
(vmax, 2k + 3) at time2k + 1. Note that in the non-
preemption setting, ON cannot stop sending the packet
(1, 2k) till the time2k+2 when this packet is finished.
Thus, ON cannot execute the packet(vmax, 2k+ 3) at
time 2k + 1 to get it finished by its deadline. After re-
leasing the packet(vmax, 2k+3), the adversary releases
nothing. Overall, the optimal offline algorithm will send
all packets(1, 2 · 1), (1, 2 · 2), . . . , (1, 2(k − 1)), and
(vmax, 2k + 3). On the other side, ON executes only
one packet(1, 2k). The competitive ratio is

(k − 1)1 + vmax

1
= k − 1 + vmax ≥ vmax.

Then, ON is no better thanvmax-competitive. Theo-
rem 5 is proved.

Note that if packets are with the uniform value and
the if the fading channel has a fixed quality (but packets
can have arbitrary deadlines), EDF is2-competitive [7].
Thus, associating values to packets complicates the
model. To complement Theorem 5, we note
Theorem 6. [1] In the non-preemption setting, no on-
line algorithm has a constant competitive ratio, if the
fade state is ideal (q = qmax = 1). The lower bound of
competitive ratios can be up to

√
vmax.

Given the assumptions that the channel state is a fixed
number and packets are with agreeable deadlines, we

have proved that for any timet, EDF finishes no fewer
packets than any algorithm (see the proof of Theorem 2).
Given an inputI, we assume EDF finishess packets
with a total valueW ≥ s · vmin = s. Any algorithm
finishes no more thans packets with a total value≤
s · vmax ≤ W · vmax. Thus, we immediately have
Corollary 2. In the non-preemption setting, if the fade
state is a fixed number and if packets are with agreeable
deadlines, EDF is an optimal online algorithm.

If the fade state is at its maximum all the time (such
that a packet is sent in a single time step), this vari-
ant of the online problem is same as the bounded-delay
model [15,13,16,8,17]. An optimal online algorithm has
been proposed for the agreeable deadline case [16]. For
the general case, the best known lower bound of com-
petitive ratios isφ := 1+

√
5

2
≈ 1.618 [13] and the

best known upper bound is1.832 [8]. Closing the gap
[1.618, 1.832] is still an intriguing open problem [6].

3.2.2. In the preemption-restart setting
In the preemption-restart setting, we first provide a

bad example to show that if the fading states are un-
known to the online algorithms, no online algorithm can
have a competitive ratio better thanvmax.
Theorem 7. If the fading states are unknown to online
algorithms, no online algorithm can have a competitive
ratio better thanvmax.

Proof. Consider time0 and two packets are released.
We use(v, d) to represent a packetp with valuev and
deadlined. Let an online algorithm be ON. The fading
state at time0 is 0.5. A packetp1 := (vmin = 1, 2) is
released at time0.

The fade state keeps its quality0.5 since time0 to
time2. At time 1, a packetp2 := (vmax, 3) is released.
If ON schedulesp1, we keep the fading state at0.5 till
time 3 and ON cannot finishp2 by its deadline. The
optimal offline algorithm will schedulep2 instead and
the competitive ratio isvmax. On the other hand, if ON
schedulesp2 at its arrival, the fade state sharply changes
to 0 at the end of time2 and keeps0 eventually. Thus,
even ON starts to schedulep2, it cannot finish it though.
Instead, the optimal offline algorithm schedulesp1 and
the competitive ratio can be an arbitrarily large number.
Theorem 7 is proved.

Based on Theorem 7, we know that if the fade states
are unpredictable, without one step of look-ahead, no
online algorithm can have a competitive ratio better than
vmax. Again, EDF is optimal in this setting. In the fol-
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lowing, we consider a practical scenario and make the
following assumption that is well-known:
Condition 1. [19,18,21] The online algorithms have
the ability of looking one-step ahead of knowing the
fade states of the wireless channel. At the time when an
online algorithm starts to schedule a packet, this “com-
mitted” packet can be scheduled based on the future
fading states. However, note that the online algorithm
is allowed to preempt-restart this packet later.

Assumption 1 applies to all the variants that we con-
sider in the following.

In [7], an optimal1.5-competitive deterministic algo-
rithm has been proposed for a variant in which the fade
state is a fixed number (the lower bound of competitive
ratios for that variant is1.5). We note the lower bound
can be improved toφ for the weighted version of this
problem.
Theorem 8. [5] Assume the channel’s quality is fixed
at qmax = 1. The lower-bound of competitive ratios for
this variant isφ := 1+

√
5

2
≈ 1.618. This lower bound

holds even for agreeable deadline instances.
Theorem 9. [7] Assume the channel’s quality is fixed
at q < 1. The lower-bound of competitive ratios for
deterministic online algorithms is2. This lower bound
holds even for maximizing the number of packets sent
by their deadlines.

From Theorem 8, we know that the variant (in which
the fade state is a constant) has the lower bound of2.
For this invariant (we also called it a bounded-delay
model), given a set of pending packetsS, an online al-
gorithm can calculate theoptimal provisional schedule
S∗ (S∗ is the one that achieves the maximum total value
of packets among all provisional schedules on pending
packetsS) and send one packet fromS∗. Note thatS∗

can be calculated only if the channel’s quality is known
beforehand. Since the fade state of the channel is un-
predictable, all prior online algorithms on the bounded-
delay model cannot be applied to our model.

Assume the fade states and future input informa-
tion are unknown.

Here, we study an algorithm called SEMI-GREEDY
with a parameterα ≥ 1. In each time step, the
maximum-value pending packetp aborts the currently
running packetsi, if vp ≥ α · vi. This algorithm is
described in Algorithm 2.

Before we prove the competitive ratio for the algo-
rithm SEMI-GREEDY, we define a concept that is use-
ful to the proof.
Definition 2. Packet chain. We define a packet chain

Algorithm 2 SEMI-GREEDY(α > 1)

1: Let the maximum-value pending packet with the
earliest deadline bep and let the currently being
sent packet bei. If p (or i) does not exist, we set
vp = 0 (or vi = 0).

2: if vp ≥ α · vi then
3: aborti and sendp.
4: end if

C of k packets as

C := {p1, p2, p3, . . . , pk},

with the following property (α > 1),

vpi
≤ vpi+1

α
, ∀i = 2, 3, . . . , k − 1.

We useW (C) to represent the total value of the packets
of C.
Lemma 1. Given a chainC of k ≥ 2 packets
p1, p2, . . . , pk, we have

W (C) ≤ 1

α− 1
· α

n+1 − 1

αn
· vpk

. (3)

Proof.

W (C)

vpk

=

∑k

i=1
vpi

vpk

=
vp1

+ vp2
+ · · ·+ vpk−1

+ vpk

vpk

=
vp1

+ vp2
+ · · ·+ vpk−1

+ α · vpk−1
+ ǫ

α · vpk−1
+ ǫ

≤ 1 +
1

α
· vp1

+ vp2
+ · · ·+ vpk−1

vpk−1

≤ 1 +
1

α

(

1 +
1

α
· vp1

+ vp2
+ · · ·+ vpk−2

vpk−2

)

= 1+
1

α
+

1

α2
· vp1

+ vp2
+ · · ·+ vpk−2

vpk−2

≤ . . .

≤ 1 +
1

α
+

1

α2
+ · · ·+ 1

αk−2
+

1

αk−1
+

1

αk

=
1

α− 1
· α

k+1 − 1

αk
.

Theorem 10. The SEMI-GREEDY algorithm has a
competitive ratiomax{1 + α, 1

α−1
· αn+1−1

αn }. It is
(φ2 ≈ 2.618)-competitive whenα = φ ≈ 1.618.
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Proof. We use a charging scheme to prove Theorem 10.
Let the subset of packets chosen by the adversary
(= an optimal offline algorithm) (respectively, SEMI-
GREEDY) beΠ1 (respectively,Π2). Without loss of
generality, we assume the adversary sends packets in
a canonical order, i.e., for any two pending packetspi
andpj , the adversary sends the packet with an earlier
deadline. We are going to prove that

∑

pj∈Π1
vpj

∑

pi∈Π2
vpi

≤ max{1 + α,
1

α− 1
· α

n+1 − 1

αn
}.

The proof depends on the following two observations:
(1) Consider a set of pending packetsS at timet. We

assume that an online algorithm starts to schedule
a packetpi ∈ S at timet.

We consider timet′ > t. Since all packets are
with the same length, if the packetpi cannot be
finished by timet′, then any packet inS cannot
be finished completely by timet′, no matter what
the fade state of the channel is.

(2) Consider a set of pending packetsS at timet. We
assume that the SEMI-GREEDY algorithm starts
to schedule a packetpi ∈ S at time t. We have
α · vpi

≥ maxpj∈S vpj
.

If pi is aborted at timet′ > t by a packetpk,
then we haveα·vpi

< vpk
andpk /∈ S (pk must be

released after timet). If the preempting packetpk
is not sent by the algorithm SEMI-GREEDY, then
pk must be aborted by another packet which has
the potential of being sent. So on and so forth, we
regard all aborted packets and the last-sent packet
pl as a chain. From Lemma 1, all ever-aborted
packets have a total value≤ vpl

· 1

α−1
· αn+1−1

αn

(see Lemma 1). Note that no chains share a same
packet.

For any packetp ∈ Π1 \ Π2 sent by the optimal of-
fline algorithm, eitherp expires before SEMI-GREEDY
sends it orp is sent, aborted before it is finished, and is
never completed by its deadline. Ifp expires, any packet
that SEMI-GREEDY sends since timerp has a value
≥ vp · α−1 (from the algorithm).

We examine the time intervals (a single packet is sent
in such an interval) for the optimal offline algorithm and
this online SEMI-GREEDY algorithm in a sequential
order. Our charging scheme works as follows:
(1) Consider any packetp ∈ Π1 \ Π2 that SEMI-

GREEDY has not ever run.
We charge it to the corresponding time interval

that SEMI-GREEDY sends a packet. We note that
SEMI-GREEDY must have one pending packet

to send in this time step since this packetp is a
candidate. The packet that SEMI-GREEDY sends,
let it bep′, in this corresponding time interval has a
value no less thanvp ·α−1. Also, SEMI-GREEDY
finishesp′ no later than the adversary finishesp
sincep andp′ have the same processing time and
p andp′ are being executed in corresponding time
steps when both algorithms send packets.

(2) Consider any packetp ∈ Π1 \ Π2 that SEMI-
GREEDY ever sends but aborts it later.

We know that (from above observations) thatp
belongs uniquely to a chain and the last element
of this chain, sayp′, is sent by SEMI-GREEDY.
Thus, we chargevp to the time interval whenp′ is
sent by SEMI-GREEDY.

(3) Consider any packetp ∈ Π1 ∩Π2.
We chargevp to the time interval when SEMI-

GREEDY sendsp. Clearly, for any packet acting
as the last-element of a chain, this charging scheme
results that the value ratio is bounded by1

α−1
·

αn+1−1

αn (see Lemma 1).
The remaining part of the proof is to argue that when

we charge a packetp ∈ Π1 \ Π2 that SEMI-GREEDY
has not ever run yet, in the corresponding time interval,
SEMI-GREEDY sends a packetp′, α · vp′ ≥ vp. This
claim is easy to prove since SEMI-GREEDY chooses
the earliest-deadline-first qualified packet to send. Ifα ·
vp′ < vp, thenp′ will be aborted byp immediately at
the time whenp arrives. Thus, for each packetp that
SEMI-GREEDY sends, the charged value top for the
adversary is bounded by1 + α and 1

α−1
· αn+1−1

αn and
all packets that the adversary sends have been charged.
Theorem 10 is proved.

Closing or shrinking the gap[2, 2.618] is still an
open problem.

Assume the fade states are known to the online
algorithms, but the packet input sequence are un-
known.

We note at first that given the channel quality keep-
ing at its maximum, delivering uniform-value packets
in a greedy manner (which runs in an online manner)
achieves the best throughput for any algorithms. How-
ever, if the channel quality is less thanqmax, the lower
bound of competitive ratios for any deterministic on-
line algorithms is2 [7]. For this, we conclude that a
ρ-competitive algorithm for the variant with consistent
channel qualityqmax does not imply aρ-competitive
algorithm for the variant in which the fade states are
known to the online algorithms. The latter variant has
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its own interests and difficulties.
Now we present an instance in which the fade state

of the channel is withqt = 0.5, vpi
= 1, and∀t, i

to illustrate the challenge. Consider one packetp1 with
deadline5 at time1. If an online algorithm executes it,
the adversary releases another packetp2 with deadline
3 at time2. So, the online algorithm cannot finish both
jobs and the competitive ratio is2, given the adversary
finishing both in order of packetsp2 andp1. If the on-
line algorithm abortsp1 but executesp2, the adversary
releases another packetp3 at time 2 with deadline4.
Here, the online algorithm cannot finish bothp2 andp3,
but the adversary can finishp1 andp3 by their deadlines
in order. Thus, the lower bound of competitive ratios for
this variant (vpi

= 1, ∀i and fade states keep the same)
is 2. It is intuitive to abort a running packet if it can be
sent later with the given set of pending packets and fade
states of the channel. Our proposed online algorithms
are based on this intuition.

We provide an algorithm similar to EDF and this algo-
rithm is called EDFβ . We usepmax to denote the packet
with the maximum valuevmax at timet. Since the fade
states are known, there exists an efficient algorithm in
calculating the provisional schedule, a feasible sched-
ule of sending a subset of the pending packets by their
deadlines. We calculate the optimal provisional sched-
ule, which is with the maximum total value among all
provisional schedules, at timet. Let the earliest-deadline
pending packet bepe. We either schedulepe or another
packetpf satisfyingvpf

≥ max{β · vpe
,

vpmax

β
}.

Theorem 11. Assume fade states are known to on-
line algorithms. Algorithm EDFβ is max{2, β, 1

β−1
·

βn+1−1

βn }-competitive in scheduling packets with dead-
lines by one transmitter with restarts. EDFβ is 2-
competitive whenβ = 2.

Proof. We use a potential function method to prove
Theorem 11. We compare our algorithm EDFβ with the
adversary ADV. LetΦADV

t andΦEDF
t denote the po-

tentials of the adversary and EDFβ at timet respectively.
Specifically,ΦADV

t denotes the total value achieved
since timet from the pending packets at timet for the
adversary. Let this set of packets beS∗

t . LetΦEDF
t de-

note the total value of the optimal provisional schedule
of the pending packets at timet for EDFβ. We usept
andp′t to denote thet-th packet sent by EDFβ and ADV
respectively. If such a packet does not exist,pt (or p′t)
is a null packet with value0. To prove Theorem 11, we
need to show that for anyt, we always have

c · vpt
+∆ΦEDF

t ≥ vp′

t
+∆ΦADV

t .

Algorithm 3 EDFβ

1: Abort the currently running packetp only if the new
arrival with value≥ β · vp, ties are broken in favor
of the packet with the earliest deadline.

2: if there is no currently running packetthen
3: calculate the optimal provisional schedule, based

on the set of pending packets and the known fade
states.

4: if vpe
≥ vpmax

β
then

5: executepe;
6: else
7: execute a packetpf satisfying

vpf
≥ max{β · vpe

,
vpmax

β
},

where ties are broken in favor of the earliest-
deadline packet. Notepmax itself is a candidate
for pf .

8: end if
9: end if

wherec := max{2, β, 1

β
· βn+1−1

βn }. We provide the
following invariants and prove their correctness by case
study.

• Denote the pending packets at timet for ADV and
EDFβ asP ′

t andPt. P ′
t ⊆ Pt. Note that EDFβ

may not deliver all the packets inPt.
• For each packet sent, the sum of the actual gain

and the credit change is calledamortized gain. We
prove that for thei-th packet sent, ADV’s amor-
tized gain is no more thanc times of EDFβ ’s amor-
tized gain.

c · vpt
+∆ΦEDF

t ≥ vp′

t
+∆ΦADV

t .

For arrivals, with the first invariant, the invariants are
easy to prove. Notevpt

= vp′

t
= 0. In the following, we

consider packet deliveries only. Let the packet EDFβ

chooses to send in this duration bep. One fact that we
will use is: Given two packetp and a packetp∗ with
dp ≤ dp∗ , if p is not in the optimal provisional schedule,
butp∗ is, thenvp∗ ≥ vp. This fact further implies that if
p is the packet EDFβ is currently sending, any packet not
in the optimal provisional schedule has a value≤ β ·vp.
(1) Assume ADV sends a packetp′. Assumep is sent

successfully.
Based on the invariants,vp′ , vp ≤ vpmax

. From
the algorithm itself,β ·vp ≥ vpmax

. Since all pack-
ets have the same length, under any fade states,
EDFβ finishesp no later than ADV finishesp′. If
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dp′ < dp, we havevp′ < vp in the optimal provi-
sional schedule. Then we chargevp′ + vp to the
adversary and we have

vp′ + vp ≤ 2vp.

If dp′ > dp, p will not be sent by the adversary.
Then we chargevp′ to ADV and we have

β · vp ≥ vpmax
≥ vp′ .

(2) Assume ADV sends a packetp′. Assumep is
aborted before it is finished.

If the adversary will sendp, we will chargevp
to the packet that preempts it. Like the chain that
we have calculated in Lemma 1, the value gained
by sending the last packet of the chain is at least
(β − 1) · βn

βn+1−1
times of the total value that we

charge to the adversary.
(3) Assume ADV has nothing to send from the cur-

rently pending packets for EDFβ.
We claim that eitherp has been sent by ADV

or ADV must have one new arrival before EDFβ

finishes the packetp it chooses to send. Otherwise,
ADV can get more credit by deliveringp. It does
not hurt if we have runp till new arrivals come.
This analysis is similar to what we have had for
the above cases.

Theorem 11 is proved.

Theorem 11 implies that extra information (fade
states) helps improve the competitive ratio from2.618
to 2.

Assume the fade states are unknown, but the
packet input sequence is known.

We first provide the lower boundφ ≈ 1.618 of com-
petitive ratio for deterministic online algorithms for this
variant. Then we provide competitive algorithms for it.
Theorem 12. Consider a variant in which the fade
states are unknown, but the packet input sequence is
known to online algorithms. The lower bound of com-
petitive ratio for deterministic online algorithms isφ ≈
1.618.

Proof. An instance is easy to construct. Assume there
are two packets in the input sequence only. One packet
p1 is with value1 and deadline2. The other packetp2
is with valueφ and deadline3. These two packets are
released at time0. Let an online algorithm be ON.

If ON schedulesp1, the optimal offline algorithm
schedulesp2 and the fade states are0.5 from time0 to

3. Note here Assumption 1 still holds. Then the com-
petitive ratio isφ. If ON schedulesp2, then the optimal
offline algorithm schedules bothp1 andp2, given the
fading states are0.5 from 0 to 4. Thus, the competitive
ratio is 1+φ

φ
= φ. Theorem 12 is proved.

4. Conclusion

Closing or shrink the gap of competitive ratios
[1.618, 1.832] for the classic bounded-delay model is
an intriguing problem. There are gaps[1.618, 2.618]
of competitive ratio for our general packet scheduling
under a fading channel and[1.618, 2] of competitive
ratio for the variant in which fading states are known.
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