ChatGPT and medical education: A new frontier for emerging physicians

ChatGPT et l’éducation médicale : une nouvelle frontière pour les médecins émergents

Ethan Waisberg, Joshua Ong, Mouayad Masalkhi, Nasif Zaman, Sharif Amit Kamran, Prithul Sarker, Andrew G Lee and Alireza Tavakkoli

Volume 14, Number 6, 2023

URI: https://id.erudit.org/iderudit/1108936ar
DOI: https://doi.org/10.36834/cmej.77644

Cite this document

ChatGPT and medical education: a new frontier for emerging physicians
ChatGPT et l’éducation médicale : une nouvelle frontière pour les médecins émergents

Ethan Waisberg,1,2 Joshua Ong,3 Mouayad Masalkhi,4 Nasif Zaman,5 Sharif Amit Kamran,5 Prithul Sarker,5 Andrew G Lee,6,7 Alireza Tavakkoli5

1Department of Ophthalmology, University of Cambridge, Cambridge, United Kingdom; 2Moorfields Eye Hospital, NHS Foundation Trust, London, United Kingdom; 3Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Michigan, USA; 4University College Dublin School of Medicine, Belfield, Dublin, Ireland; 5Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Nevada, USA; 6The Houston Methodist Research Institute, Houston Methodist Hospital, Texas, USA; 7Center for Space Medicine, Baylor College of Medicine, Texas, USA

Correspondence to: Ethan Waisberg, University of Cambridge, Cambridge, United Kingdom; email: ethan.waisberg@qehkl.nhs.uk
Edited by: Marcel D’Eon (editor-in-chief)
Published ahead of issue: Aug 23, 2023; published: Dec 30, 2023. CMEJ 2023, 14(6) Available at https://doi.org/10.36834/cmej.77644
© 2023 Waisberg, Ong, Masalkhi, Zaman, Sarker, Lee, Tavakkoli; licensee Synergies Partners. This is an Open Journal Systems article distributed under the terms of the Creative Commons Attribution License. (https://creativecommons.org/licenses/by-nc-nd/4.0) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is cited.

Introduction
Since its release in late November 2022, ChatGPT (Open AI, USA) has rapidly gained attention for its detailed answers and human-like writing ability (Figure 1).1 GPT refers to a generative pre-trained transformer architecture, in which a transformer neural network generates text. ChatGPT is a large language model (LLM) which generates human-like text from deep-learning techniques, in which a large dataset is analyzed to infer the relationship of words. ChatGPT has already been capable of tasks such as generating artificial intelligence (AI algorithms), or generating images based on patient descriptions of complex neuro-ophthalmic visual phenomena.2

Figure 1. Worldwide Google searches for ChatGPT. Since its November 2022 release, searches for ChatGPT and its uses have grown exponentially.

AI is any technique leveraging machines to mimic human intelligence.3 AI technologies are rapidly evolving and are expected to revolutionize the field of medicine. AI can make medicine more efficient and safer when applied correctly: such as with precision medicine, improved diagnostic imaging or preventing medication errors. As these technologies reach clinical use, skills to interpret and use AI in a medical setting will become essential for doctors. The World Medical Association now advocates for the medical curriculum to foster an improved understanding of healthcare AI for medical students.4 This knowledge will allow for a more rapid and informed implementation of AI technologies in the future. As well, physicians must be informed for the potential biases and errors that AI algorithms can produce and how to mitigate these effects.

We asked ChatGPT to advise on how to build an AI to classify optical coherence tomography (OCT) images (Figure 2). As a combined health and computer science team that conducts NASA-funded machine learning research, we examined this recommendation.5–7 The general recommended steps to design an AI to classify OCT images are correct, which includes: collecting the OCT images, preprocessing data, labelling, splitting, training, testing, refining and deploying the AI.
To build an AI to classify Optical Coherence Tomography (OCT) images, you can follow these general steps:

1. Collect OCT images: The first step is to gather a large dataset of OCT images. You will need to obtain a variety of OCT images for different types of eye diseases, including healthy tissues. You can collect these images from various sources such as medical databases, research institutions, or by collaborating with hospitals and clinics.

2. Preprocess the data: Once you have collected the OCT images, you need to preprocess them to ensure that they are suitable for training an AI model. This can include steps such as resizing the images, converting them to grayscale, and normalize the pixel values.

3. Label the data: After preprocessing the data, you need to label the images to indicate whether they represent healthy tissue or a scan of an eye disease. You can use manual labeling or use automated labeling tools such as computer vision algorithms to speed up the process.

4. Split the data: Next, you need to split the labeled data into training, validation, and testing sets. The training set is used to train the AI model, the validation set is used to tune the model’s hyperparameters, and the testing set is used to evaluate the model’s performance.

5. Train the model: The next step is to train the AI model using a deep learning framework such as TensorFlow or PyTorch. You can use a convolutional neural network (CNN) to classify OCT images. CNNs are particularly effective for image classification tasks because they can learn hierarchical representations of image features.

6. Test the model: Once you have trained the model, you need to test it on the testing set to evaluate its performance. You can use metrics such as accuracy, precision, recall, and F1-score to measure the model’s performance.

7. Refine the model: If the model’s performance is not satisfactory, you can refine the model by tuning its hyperparameters, adding more layers to the network, or changing the architecture of the network.

8. Deploy the model: Once the model is performing well, you can deploy it in a clinical setting where it can assist clinicians in diagnosing eye diseases. You can create a web-based or mobile application that allows doctors to upload OCT images and get a quick diagnosis from the AI model.

Overall, building an AI to classify OCT images requires expertise in deep learning and computer vision. It is a complex task that requires careful attention to detail.

ChatGPT coded a convolutional neural network with two fully connected layers and four convolutional layers to analyze mammography images and predict whether breast cancer is present in a scan. While this is a sample code and would need further adaptations prior to being implemented clinically, this represents an amazing start for a medical student’s AI journey.

ChatGPT has certain restrictions and drawbacks as an AI language model. Since a large corpus of material, including web pages, books, and other sources, was used to train ChatGPT, it may provide replies that are completely or partially identical to already published writings.

Furthermore, ChatGPT may not have been trained with the most recent data and may provide replies that are inaccurate or outdated. It is also possible that the model will not be able to comprehend the context of a query or discussion, which might result in misunderstandings and mistakes.

Other ChatGPT pitfalls have also been outlined in a previous study; those include self-plagiarism when asked a question many times, and a high degree of direct or “word-for-word” plagiarism from internet sources such as Wikipedia and LinkedIn. A number of actions that may be taken in order to prevent or lessen these pitfalls. This includes validating the results obtained from ChatGPT by comparing it with the most up-to-date clinical guidelines/resources, giving more context when posing questions to or conversing with ChatGPT so that the model can better comprehend the context of the query.

Finally, despite the efforts to increase AI teaching worldwide, artificial intelligence is yet to be incorporated in the medical education process. In a study examining the exposure to artificial intelligence in Canadian medical education, 85% of respondents indicated that there was no formal educational opportunities regarding AI. All things considered, ChatGPT can potentially be a useful tool in medical education to improve students’ understanding of AI, but employing it beyond educational purposes should be approached with caution.

Conflicts of Interest: The authors declare no conflicts of interest.


Figure 2. Generated from ChatGPT from the text prompt “how can I build an AI to classify OCTs.”

Figure 3. Generated from ChatGPT from the text prompt “write code for an AI to analyze mammography scans.”
References


5. Waisberg E, Ong J, Kamran SA, et al. Transfer learning as an AI-based solution to address limited datasets in space medicine.


