The Origin of Laurentia
Rae Craton as the Backstop for Proto-Laurentian Amalgamation by Slab Suction

Paul F. Hoffman

Article abstract
Proto-Laurentia (i.e. pre-Grenvillian Laurentia) is an aggregate of six or more formerly independent Archean cratons that amalgamated convulsively in geons 19 and 18 (Orosirian Period), along with non-uniformly distributed areas of juvenile Paleoproterozoic crust. Subduction polarities and collision ages have been provisionally inferred between the major cratons (and some minor ones), most recently between the Rae and Hearne cratons. The oldest Orosirian collisions bound the Rae craton: 1.97 Ga (Taltson-Thelon orogen) in the west, and 1.92 Ga (Snowbird orogen) in the southeast. All other Orosirian collision ages in proto-Laurentia are < 1.88 Ga. The Rae craton was the upper plate during (asynchronous) plate convergence at its western and, tentatively, southeastern margins. Subsequent plate convergence in the Wopmay and Trans-Hudson orogens was complex, with the Rae craton embedded in the lower plate prior to the first accretion events (Calderian, Reindeer and Foxe orogenies), but in the upper plate during major subsequent convergence and terminal collisions, giving rise to the Great Bear and Cumberland magmatic arcs, respectively. The ‘orthoversion’ theory of supercontinental succession postulates that supercontinents amalgamate over geoidal lows within a meridional girdle of mantle downwellings, orthogonal to the lingering superswell at the site of the former supercontinent. If the downwelling nodes develop through positive feedback from the descent of cold oceanic slabs, then viscous traction should contribute to drawing the cratons together over the downwelling node. Viewed in this way, the Rae craton was the first to settle over the downwelling node and became the backstop for the other cratons that were drawn towards it by subduction. It was, literally, the origin of Laurentia. Whether the Rae craton was also the origin of Nuna, the hypothetical cogenetic supercontinent, depends on ages and subduction polarities of Orosirian sutures beyond proto-Laurentia.
The Origin of Laurentia: Rae Craton as the Backstop for Proto-Laurentian Amalgamation by Slab Suction

Paul F. Hoffman

1216 Montrose Ave
Victoria, British Columbia
V8T 2K4, Canada
E-mail: paulhoffman@gmail.com

SUMMARY
Proto-Laurentia (i.e. pre-Grenvillian Laurentia) is an aggregate of six or more formerly independent Archean cratons that amalgamated convulsively in geons 19 and 18 (Orosirian Period), along with non-uniformly distributed areas of juvenile Paleoproterozoic crust. Subduction polarities and collision ages have been provisionally inferred between the major cratons (and some minor ones), most recently between the Rae and Hearne cratons. The oldest Orosorian collisions bound the Rae craton: 1.97 Ga (Taltson-Thelon orogen) in the west, and 1.92 Ga (Snowbird orogen) in the southeast. All other Orosiran collision ages in proto-Laurentia are < 1.88 Ga.

The Rae craton was the upper plate during (asynchronous) plate convergence at its western and, tentatively, southeastern margins. Subsequent plate convergence in the Wopmay and Trans-Hudson orogens was complex, with the Rae craton embedded in the lower plate prior to the first accretion events (Calderian, Reindeer and Foxe orogenies), but in the upper plate during major subsequent convergence and terminal collisions, giving rise to the Great Bear and Cumberland magmatic arcs, respectively.

The ‘orthoversion’ theory of supercontinental succession postulates that supercontinents amalgamate over geoidal lows within a meridional girdle of mantle downwellings, orthogonal to the lingering superswell at the site of the former supercontinent. If the downwelling nodes develop through positive feedback from the descent of cold oceanic slabs, then viscous traction should contribute to drawing the cratons together over the downwelling node. Viewed in this way, the Rae craton was the first to settle over the downwelling node and became the backstop for the other cratons that were drawn towards it by subduction. It was, literally, the origin of Laurentia.

Whether the Rae craton was also the origin of Nuna, the hypotheti-
cal cogenetic supercontinent, depends on ages and subduction polarities of Orosirian sutures beyond proto-Laurentia.

SOMMAIRE
La proto-Laurentie (c.-à-d. la Laurentie pré-grenvillienne) est un agrégat d’au moins six cratons archéens indépen-
dants qui se sont amalgamés convul-
sivement durant les géons 19 et 18
(Orosirien), le long de zones de croûtes
juvéniles paléoproterozoïques réparties
de manière hétérogène. Les polarités
de subduction et les âges de collision
entre les grands cratons (et d’autres
moins grands) ont été provisoirement
déduits, le plus récemment entre le cra-
ton de Rae et le craton de Hearne. Les
plus anciennes collisions orosiriennes
ont soudé le craton de Rae : 1,97 Ga
(orogène de Taltson-Thelon) dans
l’ouest, et 1,92 Ga (orogène de Snow-
bird) dans le sud-est. Tous les autres
âges de collision en proto-Laurentie
sont inférieurs à 1,88 Ga.

Le craton de Rae constituait la
plaque supérieure durant la conver-
gence de plaque (asynchrone) à sa
marge ouest, et peut-être aussi à ses
marges sud-est. La convergence de
plaque subséquente dans les orogènes
de Wopmay et Trans-Hudson a été
complexe, le craton de Rae étant enca-
stré dans la plaque inférieure avant les
premiers événements d’accrétion
(orogènes caldérienne, de Reindeer
de Fox), puis dans la plaque supérieure
durant la grande convergence sub-
subéquente et les collisions terminales, ce
qui a créé les arcs magmatiques de
Great Bear et de Cumberland respect-
ivement.

La théorie de « l’orthoversion » de la succession des supercontinents présuppose que les supercontinents s’amal-
gament au-dessus de creux géo-
daux en deça d’une gaine méridienne
de convections mantéliques descen-
dantes, à angle droit d’un super-renfel-
ment persistant au site d’un ancien
supercontinent. Si le nœud de convec-
tion descendante s’établit par rétroaction positive de la descente de plaques océaniques froides, la traction visqueuse devrait contribuer à entraîner les cratons ensembles au-dessus du nœud de convection descendante. Vu de cette façon, le craton de Rae a été le premier à s’établir au-dessus du nœud de convection descendante, ce qui en a fait la butée des autres cratons entraînés par la subduction. Littéralement, telle a été l’origine de la Lauren-tie.

Quant à savoir si c’est le craton de Rae qui a été à l’origine de Nuna, cet hypothétique supercontinent, cela dépend des âges et des polarités de subduction des sutures orosiriennes au-delà de la proto-Laurentie.

INTRODUCTION

In his postcards showing the tectonic elements of the North American continent, Hank Williams divided the Churchill Province roughly in half along a hypothetical suture, the Snowbird tectonic zone, separating what he called the North and South Keewatin cratons (Williams et al. 1991). With the disappearance of the District of Keewatin as a political entity, Hank’s cratons reverted to their synonyms, the Rae and Hearne cratons respectively (Hoffman 1988; Eglington et al. 2013). The collision zone between the two cratons, originally inferred from reconnaissance geology, gravity gradient maps, aeromagnetic discontinuities, and seismic soundings (Taylor 1963; Sharp-ton et al. 1987; Hoffman 1990; Ross et al. 1995), has been confirmed in the last decade by inter-cratonic comparative geology, igneous petrology, metamorphic thermobarometry, and U–Pb geochronology (Mahan et al. 2006; Berman et al. 2007; Martel et al. 2008).

Table 1. Estimated collision ages and subduction polarities for Orosirian sutures in proto-Laurentia

<table>
<thead>
<tr>
<th>Orogen</th>
<th>Collision</th>
<th>Upper plate</th>
<th>Lower plate</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thelon - Talton</td>
<td>1.97 Ga</td>
<td>Rae</td>
<td>Slave</td>
<td>van Breemen et al. (1987); Bostock et al. (1987); James et al. (1988); van Breemen and Henderson (1988); Grotzinger and Royden (1990); Tirrul and Grotzinger (1990); Bowring and Grotzinger (1992); Thériault (1992); McDonough et al. (2000)</td>
</tr>
<tr>
<td>Snowbird</td>
<td>1.92 Ga</td>
<td>Rae</td>
<td>Hearne</td>
<td>Berman et al. (2007); Martel et al. (2008)</td>
</tr>
<tr>
<td>Wopmay</td>
<td>1.88 Ga</td>
<td>Hottah</td>
<td>Slave</td>
<td>Hildebrand et al. (2010); Hoffman et al. (2011)</td>
</tr>
<tr>
<td>Foxe - Rinkian</td>
<td>1.88 Ga</td>
<td>Rae</td>
<td>Meta Incognita-Disco</td>
<td>Connelly et al. (2006); St-Onge et al. (2007)</td>
</tr>
<tr>
<td>Great Falls</td>
<td>1.87 Ga</td>
<td>Medicine Hat</td>
<td>Wyoming</td>
<td>Mueller et al. (2002)</td>
</tr>
<tr>
<td>Tornagat - Nagssugtoqidian</td>
<td>1.86 Ga</td>
<td>North Atlantic</td>
<td>SE Churchill-Disco</td>
<td>Scott (1998); van Gool et al. (2002); Kolb (2014)</td>
</tr>
<tr>
<td>Penokean</td>
<td>1.85 Ga</td>
<td>Marshfield</td>
<td>Superior</td>
<td>Schulz and Cannon (2007)</td>
</tr>
<tr>
<td>Vulcan</td>
<td>1.84 Ga</td>
<td>Medicine Hat</td>
<td>Hearne</td>
<td>Eaton et al. (1999)</td>
</tr>
<tr>
<td>Wopmay</td>
<td>1.84(?) Ga</td>
<td>Hottah</td>
<td>Nahanni</td>
<td>Cook (2011)</td>
</tr>
<tr>
<td>Trans-Hudson (southern)</td>
<td>1.83 Ga</td>
<td>Hearne</td>
<td>Superior</td>
<td>Corrigan et al. (2009); Maxeiner and Rayner (2011)</td>
</tr>
<tr>
<td>New Quebec</td>
<td>1.82 Ga</td>
<td>SE Churchill</td>
<td>Superior</td>
<td>Wardle et al. (2002)</td>
</tr>
<tr>
<td>Trans-Hudson (northern)</td>
<td>1.82 Ga</td>
<td>Rae</td>
<td>Superior</td>
<td>Machado et al. (1993); St-Onge et al. (2006, 2007); Berman et al. (2013)</td>
</tr>
</tbody>
</table>

Outside of largely ice-covered Greenland, the Snowbird tectonic zone was the last of the major Orosirian (2.05 – 1.80 Ga, Gradstein et al. 2012) geosutures in proto-Laurentia to be dated. The age sequence and inferred subduction polarity of sutures can now be tabulated (Table 1 and Fig. 1). Subduction polarity refers to the time of large ocean closure leading to craton–craton collision, not to earlier arc- and continental ribbon-accretion events that typically involve subduction flips (e.g. Suppe 1984), nor to post-collisional convergence when structural vergence may flip as a result of *retrocharriage* (Roeder 1973). The suture sequence and polarity patterns shed light on the dynamics of cratonic convergence and amalgamation (Faccenna et al. 2013; see also Hager and O’Connell 1978; Hager et al. 1983). If plate convergence was driven primarily by ‘slab rollback’ (Fig. 2A), we should expect that suture ages would decrease with distance from the Superior craton, which was the lower plate with respect...
to the adjacent cratons. Alternatively, if the cratons were drawn together by ‘slab suction’ (Fig. 2B), suture ages should decrease with distance from the Rae craton, which was the upper plate with respect to its neighbours. All other cratons are known to have mixed polarities with respect to adjacent cratons (Fig. 1).

OROSIRIAN COLLISION AGES AND SUBDUCTION POLARITIES

Collision ages can be constrained by the chronology of the lower plate, the upper plate, or preferably the consilience of both. On the lower plate, the onset of foredeep subsidence marks the arrival of a passive margin at a subduction zone (Bradley 2008). For typical foredeep widths (trench axis to forebulge crest) of 100–200 km and plate convergence rates of 2–10 cm yr⁻¹, foredeep subsidence at any point begins 1–10 Myr before its passage beneath the leading edge of the upper plate (the trench axis). The onset of foredeep subsidence is sedimentologically most apparent when the outer shelf of a passive margin enters the trench, by which time the continental rise will have already passed beneath the trench axis in most cases. Passive-margin shelf-to-foredeep transitions of Orosirian age have been recognized throughout proto-Laurentia (Hoffman 1987; Partin et al. 2014) and some are tightly constrained chronometrically from U–Pb dating of tuffs (Bowring and Grotzinger 1992). Metamorphic dates from passive-margin protoliths provide minimum constraints on collision age. On the upper plate, collision is marked by the change from steady-state arc magmatism to short-lived slab-breakoff magmatism (Davies and von Blanckenburg 1995), followed by post-collisional crustal anatexis, often accompanied by rapid tectonic exhumation through gravitational collapse and lateral extrusion of tectonically thickened crust.

Snowbird Tectonic Zone

As described in the Introduction, the Rae craton is bounded on the southeast by the Snowbird suture zone, with an estimated collision age with the Hearne craton of 1.92 Ga based on dates of high-pressure metamorphism followed by high-temperature exhumation (orogenic collapse) around 1.90 Ga (Mahan et al. 2006; Berman et al. 2008).
convergence and accretion.

batholith, accommodated subsequent by the Cumberland-Prøven arc ward-directed subduction, manifested Meta Incognita terrane), northwestward prior to the first arrivals (e.g. although subduction dipped southeastwards from the Rae craton and, ~1.82 Ga. Accretion progressed out-the arrival of the Superior craton, arc terrane (Narsajuaq arc). Last was the addition of a juvenile arc-fore- to the Rae craton. Second, ~1.845 Ga, to the southeast-facing forearc of the Hearne– North Atlantic, Nahanni and Superior cratons. These patterns suggest that slab suction (Faccenna et al. 2013), rather than slab rollback, drove the amalgamation of proto-Laurentia (Fig. 2).

Trans-Hudson Orogen

Beyond the northeastern limit of the Hearne craton, the Rae craton is bounded by the Trans-Hudson orogen of Southampton and southern Baffin islands, and central West Greenland. This segment of the orogen includes three episodes of collision (Wardle et al. 2002; van Gool et al. 2002; St-Onge et al. 2006, 2007; Berman et al. 2013; Corrigan et al. 2009; Corrigan 2013; Eglington et al. 2013; Pehrsson et al. 2013a; Partin et al. 2014). The first, ~1.88–1.86 Ga, involved the accretion of Archean microcontinents (Sugluk, Meta Incognita, Southeast Churchill Core Zone, Disco and North Atlantic) to the Rae craton. Second, ~1.845 Ga, was the addition of a juvenile arc-fore-arc terrane (Narsajuaq arc). Last was the arrival of the Superior craton, ~1.82 Ga. Accretion progressed outwards from the Rae craton and, although subduction dipped southeastward prior to the first arrivals (e.g. Meta Incognita terrane), northwestward-directed subduction, manifested by the Cumberland-Proven arc batholith, accommodated subsequent convergence and accretion.

South of Hudson Bay, the Trans-Hudson orogen borders the Hearne craton (St-Onge et al. 2006; Corrigan et al. 2009; Maxeiner and Rayner 2011; Corrigan 2013). The first accretion event, the Reindeer orogeny ~1.88 Ga, an arc-continent collision involving the juvenile La Ronge – Lynn Lake island arc. The Rae craton, conjoined with the Hearne craton, was in the lower plate with respect to this arc-continent collision. Following arc-accretion, subduction flipped to north-westward-dipping beneath the Hearne-Rae cratons, accommodating convergence and collision of a second juvenile terrane, the Flin Flon – Glennie complex, ~1.85 Ga. The arrival of the western Superior craton ~1.83 Ga was preceded by the accretion of an Archean microcontinent, Sask craton, to the southeast-facing forearc of the Flin Flon – Glennie complex ~1.84 Ga.

Wopmay Orogen

In the Wopmay orogen, west dipping subduction led to collisional accretion of the Hottah terrane on the present western margin of the Slave craton at 1.88 Ga (Hildebrand et al. 2010), based on a U–Pb (ID–TIMS) zircon date of 1882.50 ± 0.95 Ma from a tuff in the basal part of the Recluse foredeep on the Slave margin (Bowring and Grotzinger 1992; Hoffman et al. 2011). Hottah accretion was immediately followed by eastward subduction, producing the epi-orogenic Great Bear magmatic arc, active between 1.88 and 1.84 Ga (Hildebrand et al. 2010; Cook 2011, 2013; Hayward and Oneschuk 2011). Terminal collision in Wopmay orogen involved accretion of the buried Nahanni – Fort Simpson terrane ~1.84 Ga, also as a consequence of east-dipping subduction as inferred from seismic profiling (Cook 2011, 2013).

In summary, Orosirian collisions become younger with distance from the center of the Rae craton (Fig. 3B). No such age relation exists with respect to the Superior craton (Fig. 3A). Except for the first accretion events in the Trans-Hudson and Wopmay orogens, the Rae craton was predominantly on the upper plate during convergence of the Slave, Hearne, North Atlantic, Nahanni and Superior cratons. These patterns suggest that slab suction (Faccenna et al. 2013), rather than slab rollback, drove the amalgamation of proto-Laurentia (Fig. 2).

DISCUSSION

The Rae craton was the founding craton, the ‘origin’ around which the other cratons amalgamated (Fig. 3). There are, of course, older pre-Orosirian (mostly Neoarchean) sutures within the constituent cratons, inherited from older episodes of amalgamation (e.g. Pehrsson et al. 2013b), but they are not relevant to the Orosirian assembly of proto-Laurentia.

Contrasting modes of super-continental reassembly have been described. Introversion and extraver- sion are kinematic end-members (Mur- phy and Nance 2004). Introversion predicts that the present Atlantic and Indi- an oceans will close and the ghost of Pangea will reappear, with modifica- tion. Extraversion predicts a future Atlantic-Indian Panthalassa at the expense of the remaining half of the Pacific. Like plate tectonics, these are kinematic theories only. They do not address dynamics, nor are they explicitly tied to the geoidal coordinates of first-order mantle convection.

Figure 2. Four time steps (t1 to t4) in multicratonic assembly by slab rollback (A), in which slabs sink gravitationally into a passive medium, and slab suction (B), in which convergent mantle flow (downwelling) has traction with the plates. In each case, the founding craton of the assembly is tracked by the open diamonds. In A, the founding craton remains on the lower plate and subduction zones dip away from it. In B, the founding craton remains on the upper plate and subduction zones dip toward it. The amalgamation of proto-Laurentia is better described by (B).

2007; Martel et al. 2008).
Orthoversion (Mitchell et al. 2012; Evans 2003; Li and Zhong 2009) by contrast is a dynamical theory of supercontinental reassembly coupled with large-scale mantle convection. As a dynamical theory, it can and has been tested with numerical simulations (e.g. Zhong et al. 2007), as well as by paleomagnetic data (Mitchell et al. 2012). Paleomagnetic testing requires additional constraints on paleolatitude, which can be obtained from Cenozoic–Mesozoic plume trails and Paleozoic–Proterozoic true-polar-wander rotation axes (Steinberger and Torsvik 2008; Mitchell et al. 2012). Orthoversion postulates that long-lived supercontinents bring about their own destruction through the mantle superswell engendered by continental insulation and absence of slab injections. This was basically Arthur Holmes’ (Holmes 1928, 1931, 1944) dynamical explication of the breakup of Wegener’s Pangea, ruled inadmissible by the many who claimed no mechanism existed for continental drift. According to orthoversion, in order-1 convection the supercontinental fragments go with the flow and reassemble above the mantle downwelling located approximately 180° distant. In order-2 convection, like the present, the fragments reassemble somewhere along the meridional girdle of mantle downwelling, today the circum-Pacific ring, approximately 90° from the center of the former supercontinent and its lingering superswell. If the reassembly occurs away from the paleoequator, then superswell development will incite true polar wander to restore inertial stability. If the reassembly is equatorial, true polar wander is unnecessary.

In orthoversion, superswells are long-lived (100s Myrs) but impermanent. This contrasts with the neofixist view that the antipodal superswells of today have persisted since the Moon-forming impact (Burke et al. 2012). Whether order-1 or order-2, prone to true polar wander or not, orthoversion predicts that supercontinents assembled over first-order mantle downwellings. Such downwellings must develop in areas of long-lived subduction through positive feedback between cold slabs and thermal convection.

Orthoversion assumes that mantle flow plays an active role in plate motions. It predicts the style of multicratonic amalgamation described as ‘slab suction’ (Faccenna et al. 2013), where the cratonic backstop is an upper plate and subduction plunged inward beneath the founding craton (Fig. 2B). Conversely, dominance of slab rollback, where slabs collapse gravitationally into a passive medium, predicts a lower plate as the cratonic backstop and outward dipping subduction (Fig. 2A). In proto-Laurentia, suture chronology (Fig. 3) and subduction polarities (Fig. 1) support slab suction as the dominant assembly mechanism.

In one sense, it is an unfair comparison: negative buoyancy of old oceanic slabs operates in both regimes (Fig. 2A and B). Slab suction is simply slab rollback with the addition of mantle flow and significant plate-mantle traction. Viewed this way, proto-Laurentian amalgamation history implies long-lived convergent (downwelling) mantle flow and significant plate traction. A lingering manifestation of this mantle supersucker was dynamic subsidence, accommodating widespread post-orogenic sheet sandstones in proto-Laurentia (e.g. Thelon, Athabasca, Hornby Bay and Baraboo sandstones) and beyond.

Proto-Laurentia is a megacontinent, arguably cogenetic with the supercontinent Nuna (Zhang et al. 2012). Whether the Rae craton was also the founding craton of Nuna depends on the Orosirian subduction polarities and collision ages throughout Nuna as a whole (Zhang et al. 2012).

CONCLUSIONS

The collision age and subduction polarity of each of the major Orosirian geosutures in proto-Laurentia have been estimated. The oldest sutures bound the Rae craton and sutures become progressively younger with distance from its center. Subduction in both the bounding orogens dipped (asynchronously) beneath the Rae craton, which remained on the upper plate essentially for the duration of proto-Laurentia’s Orosirian amalgamation. From the patterns of suturing and subduction polarity I infer that the Rae craton was captured above a long-lived, subduction-induced, downwelling in the mantle, after which it served as the backstop for other cratons swept in by continued subduction beneath it.

An active role for mantle convection in cratonic drift is implied: slab suction prevailed over slab rollback. Whether the Rae craton and slab suction played the same roles in the assembly of supercontinent Nuna remains unanswered. An active role for mantle convection and plate traction is also consistent with orthoversion dynamics of
supercontinental reassembly. However, it remains uncertain if Nuna assembled under order-1 or order-2 convection, or if it was ever preceded by a continental assembly large enough to grow a superswell. It appears possible that these questions may be answerable.

ACKNOWLEDGEMENTS

This paper originated with an invitation from Christian Böhm as Technical Program co-chair to attend the 2013 GAC-MAC Joint Annual Meeting in Winnipeg. Cees van Staal encouraged me to write it up as a tribute to Hank Williams, who I first knew as a noon-hour table-tennis hustler with GSC in Ottawa, and later as a fiddler whose playing grew more assured with each

REFERENCES

Hoffman, P.F., 1988, United plates of America, the birth of a craton: Early Proterozoic assembly and growth of

Suppe, J., 1984, Kinematics of arc-continent collision, flipping of subduction, and back-arc spreading near Taiwan: Geological Society of China (Taipei), Memoirs, 6, p. 21–33.

Received February 2014
Accepted as revised August 2014