Igneous Rock Associations 19. Greenstone Belts and Granite–Greenstone Terranes
Constraints on the Nature of the Archean World

P. C. Thurston

Volume 42, Number 4, 2015

URI: https://id.erudit.org/iderudit/1034682ar

See table of contents

Publisher(s)
The Geological Association of Canada

ISSN
0315-0941 (print)
1911-4850 (digital)

Explore this journal

Cite this article

Article abstract
Greenstone belts are long, curvilinear accumulations of mainly volcanic rocks within Archean granite–greenstone terranes, and are subdivided into two geochemical types: komatiite–tholeiite sequences and bimodal sequences. In rare instances where basement is preserved, the basement is unconformably overlain by platform to rift sequences consisting of quartzite, carbonate, komatiite and/or tholeiite. The komatiite–tholeiite sequences consist of km-scale thicknesses of tholeiites, minor intercalated komatiites, and smaller volumes of felsic volcanic rocks. The bimodal sequences consist of basal tholeiitic flows succeeded upward by lesser volumes of felsic volcanic rocks. The two geochemical types are unconformably overlain by successor basin sequences containing alluvial–fluvial clastic metasedimentary rocks and associated calc-alkaline to alkaline volcanic rocks. Stratigraphically-controlled geochemical sampling in the bimodal sequences has shown the presence of Fe-enrichment cycles in the tholeiites, as well as monotonous thicknesses of tholeiitic flows having nearly constant MgO, which is explained by fractionation and replenishment of the magma chamber with fresh mantle-derived material. Geochemical studies reveal the presence of boninites associated with the komatiites, in part a result of alteration or contamination of the komatiites. Within the bimodal sequences there are rare occurrences of adakites, Nb-enriched basalts and magnesian andesites. The greenstone belts are engulfed by granitoid batholiths ranging from soda-rich tonalite–trondhjemite–granodiorite to later, more potassic granitoid rocks. Archean greenstone belts exhibit a unique structural style not found in younger orogens, consisting of alternating granitoid-cored domes and volcanic-dominated keels. The synclinal keels are cut by major transcurrent shear zones. Metamorphic patterns indicate that low-pressure metamorphism of the greenstones is centred on the granitoid batholiths, suggesting a central role for the granitoid rocks in metamorphosing the greenstones. Metamorphic patterns also show that the proportion of greenstones in granite–greenstone terranes diminishes with deeper levels of exposure. Evidence is presented on both sides of the intense controversy as to whether greenstone belts are the product of modern plate tectonic processes complete with subduction, or else the product of other, lateral tectonic processes driven by the ‘mantle wind.’ Given that numerous indicators of plate tectonic processes – structural style, rock types, and geochemical features – are unique to the Archean, it is concluded that the evidence is marginally in favour of non-actualistic tectonic processes in Archean granite–greenstone terranes.

P.C. Thurston

Department of Earth Sciences
Laurentian University
935 Ramsey Lake Road, Sudbury
Ontario, P3E 2C6, Canada
E-mail: pthurston@Laurentian.ca

SUMMARY

Greenstone belts are long, curvilinear accumulations of mainly volcanic rocks within Archean granite–greenstone terranes, and are subdivided into two geochemical types: komatiite–tholeiite sequences and bimodal sequences. In rare instances where basement is preserved, the basement is unconformably overlain by platform to rift sequences consisting of quartzite, carbonate, komatiite and/or tholeiite. The komatiite–tholeiite sequences consist of km-scale thicknesses of tholeiites, minor intercalated komatiites, and smaller volumes of felsic volcanic rocks. The bimodal sequences consist of basal tholeiitic flows succeeded upward by lesser volumes of felsic volcanic rocks. The two geochemical types are unconformably overlain by successor basin sequences containing alluvial–fluvial clastic metasedimentary rocks and associated calc-alkaline to alkaline volcanic rocks.

Stratigraphically-controlled geochemical sampling in the bimodal sequences has shown the presence of Fe-enrichment cycles in the tholeiites, as well as monotonous thicknesses of tholeiitic flows having nearly constant MgO, which is explained by fractionation and replenishment of the magma chamber with fresh mantle-derived material. Geochemical studies reveal the presence of boninites associated with the komatiites, in part a result of alteration or contamination of the komatiites. Within the bimodal sequences there are rare occurrences of adakites, Nb-enriched basalts and magnesian andesites.

The greenstone belts are engulfed by granitoid batholiths ranging from soda-rich tonalite–trondhjemite–granodiorite to later, more potassic granitoid rocks. Archean greenstone belts exhibit a unique structural style not found in younger orogens, consisting of alternating granitoid-cored domes and volcanic-dominated keels. The synclinal keels are cut by major transcurrent shear zones.

Metamorphic patterns indicate that low-pressure metamorphism of the greenstones is centred on the granitoid batholiths, suggesting a central role for the granitoid rocks in metamorphosing the greenstones. Metamorphic patterns also show that the proportion of greenstones in granite–greenstone terranes diminishes with deeper levels of exposure.

Evidence is presented on both sides of the intense controversy as to whether greenstone belts are the product of modern plate tectonic processes complete with subduction, or else the product of other, lateral tectonic processes driven by the ‘mantle wind.’ Given that numerous indicators of plate tectonic processes – structural style, rock types, and geochemical features – are unique to the Archean, it is concluded that the evidence is marginally in favour of non-actualistic tectonic processes in Archean granite–greenstone terranes.

RÉSUMÉ

Les ceintures de roches vertes sont des accumulations longiformes et curvilinéaires, principalement composées de roches volcaniques au sein de terranes granitiques archéennes, et étant subdivisées en deux types géochimiques: des séquences à komatiite–tholéiite et des séquences bimodales. En de rares occasions, lorsque le socle est préservé, ce dernier est recouvert en discordance par des séquences de plateforme ou de rift, constituées de quartzite, carbonate, komatiite et/ou tholéiite. Les séquences de komatiite-tholéiite forment des épais-
seurs kilométriques de tholéiite, des horizons mineurs de komatiites, et des volumes de moindre importance de roches volcaniques felsiques. Les séquences bimodales sont constituées à la base, de coulées tholéitiques surmontées par des volumes mineurs de roches volcaniques felsiques. Ces deux types géochimiques sont recouverts en discordance par des séquences de bassins en succession contenant des roches métasédimentaires elastiques fluvi-o-alluvionnaires associées à des roches volcaniques calco-alcalines à calcaires.

Un échantillonnage à contrôle stratigraphique des séquences bimodales a révélé la présence de cycles d’enrichissement en Fe dans les tholéites, ainsi que des épaisseurs continues d’épachenements tholéitiques ayant des valeurs presque constante en MgO, qui s’explique par la cristallisation fractionnée et le réapprovisionnement de la chambre magmatique du matériau mantélique. Les études géochimiques montrent la présence de boninites associées aux komatiites, résultant en partie de l’altération ou de la contamination des komatiites. Au sein des séquences bimodales, on retrouve en de rares occasions des adakites, des basaltes enrichis en Nb et des andésites magéniennes.

Les ceintures de roches vertes sont englouties dans des batholites granitoïdes de composition passant des tonalites–trondjhmérites–granodiorites enrichis en sodium, à des roches granitoïdes tardives plus potassiques. Les ceintures de roches vertes archéennes montrent un style structural unique que l’on ne retrouve pas dans des orogènes plus jeunes, et qui est constitué d’alternances de dômes à cœur granitoïdes et d’affaissements principalement composés de roches volcaniques. Les synclinaires formant les affaissements sont recoupés par de grandes zones de cisaillement.

Les profils métamorphiques indiquent que le métamorphisme de basse pression des roches vertes est centré sur les batholites, indiquant un rôle central des roches granitoïdes durant le métamorphisme des roches vertes. Les profils métamorphiques montrent également que la proportion de roches vertes dans les terranes granitoïdes diminue avec l’exposition des niveaux plus profonds.

On présente les arguments des deux côtés de l’intense controverse voulant que les ceintures de roches vertes soient le produit de processus moderne de la tectonique des plaques incluant la subduction, ou alors le produit d’autres processus tectoniques découulant du « flux mantélique ». Étant donné la présence des indicateurs des processus de tectonique des plaques – style structural, les types de roches, et les caractéristiques géochimiques – ne se retrouvent qu’à l’Archéen, nous concluons que les indices favorisent légèrement l’option de processus tectoniques non-actuels dans les terranes granitoïdes de roches vertes à l’Archéen.

Traduit par le Traducteur

INTRODUCTION

Greenstone belts are long, linear accumulations of predominantly volcanic rocks that typically feature relatively low metamorphic grade. The belts range from the ~3825 Ma volcanic rocks of the Porpoise Cove belt of northeastern Québec (O’Neil et al. 2008) and the 3710 Ma Isua greenstones of western Greenland (Baadsgaard et al. 1984), to Paleoproterozoic greenstones such as the Trans-Hudson orogen (Canada) and the Ashanti gold belt of west Africa. Archean greenstone belts are an important component of granite–greenstone sub-provinces that form the major part of Archean cratons (Fig. 1; Percival and Stott 2010). Granite–greenstone sub-provinces consist of the greenstone belts themselves and related granitoid rocks, which include granitoid basement and synvolcanic, syn-tectonic and post-tectonic plutons. Greenstone belts are sensitive recorders of their environment of formation, such as atmospheric composition (Farquhar and Wing 2003), oceanic chemistry and depth (Bolhar et al. 2005; Kamber 2010; Thurston et al. 2012) and mantle dynamics, such as the presence or absence of subduction (Wyman et al. 2002; Bédard et al. 2013). Greenstone belts are economically important as a repository for syngenetic mineralization, e.g. volcanogenic massive sulphides (VMS) deposits (Galley et al. 2007a), uranium, komatiite-associated nickel deposits (Lesher and Keays 2002), and epigenetic deposits, such as lode gold. The petrogenetically associated granitoid rocks are sources of rare metal mineralization in pegmatites and accessory phases. The orogenic lode gold deposits of Canada are almost exclusively in the volcanic rocks and successor basin units of Archean greenstone belts (Goldfarb et al. 2005), whereas their occurrence in granitoid plutons of the greenstone belts is minor (Robert et al. 1997).

The objectives of this paper are to describe all the major aspects of granite–greenstone terranes: rock types, volcanology, sedimentology, igneous petrology, structural geology, and metamorphism, and to assess the merits of tectonic models required to produce these terranes. This review will concentrate upon the Superior Province but will provide examples from other shields, principally to illustrate that the features and processes described are not unique to the Superior Province.

It is important to recognize that there are two points of view concerning the origin of greenstones: a) an actualistic point of view involving the operation of plate tectonics in the Archean, and b) various non-plate tectonic scenarios invoked only for Archean and some Proterozoic greenstones. There is at this time an intense debate as to which of these scenarios is correct (Stern 2005; Percival 2007; Percival and Stott 2010; Wyman et al. 2011; Hamilton 2011; Bédard et al. 2013). In this paper, a balance is sought between the largely geochemical arguments presented for Archean subduction (Hollings 1999, 2002; Kerrich et al. 1999; Polat and Kerrich 2001, 2002; Wyman et al. 2002) vs. the geodynamic and geochemical arguments opposing Archean subduction (Hamilton 2011; Bédard et al. 2013; Kamber 2015). This paper also seeks to highlight the importance of integration of geochemical arguments with stratigraphy and structure.

CRATON SUBDIVISIONS

The Superior Province is subdivided into Paleo- to Mesoarchean continental fragments, Neoarchean juvenile oceanic fragments, and orogenic flysch terranes (Percival and Stott 2010). The individual terranes are mainly fault-bounded. A less controversial subdivision of Archean cratons used here-in recognizes ‘granite–greenstone’ terranes or sub-provinces and ‘orogenic flysch’ terranes (Fig. 1). Orogenic flysch units are relatively rare; the other major non-Superior Province occurrence is the Limpopo orogen linking the Kaapvaal and Zimbabwe cratons (Eglington and Armstrong 2004; Schmitz et al. 2004). Review of other Archean cratons shows that they
are dominated by granite–greenstone terranes; the greenstones are mostly at greenschist grade, but smaller areas achieve amphibolite–granulite grade.

BASEMENT – A RARE RELATIONSHIP
A small number of Archean greenstone belts lie unconformably upon basement in the Superior Province (Wilks and Nisbet 1988; Breaks et al. 2001) and in the Zimbabwe craton (Martin et al. 1993; Bickle et al. 1994). In places, the greenstone–granitoid contact is a regolith, reflecting subaerial exposure, for example at the base of the Keewask assemblage in the North Caribou belt of the Superior Province (Fig. 2) and at the base of Zimbabwe greenstones (Thurston et al. 1991; Martin et al. 1993). However, at Steeprock in the Superior Province (Wilks and Nisbet 1988) the unconformity is a submarine contact consisting of quartzose clastic units overlying the granitoid substrate. These basal unconformities and inter-assemblage unconformities clearly indicate that some greenstones formed in place. Additional evidence for autochthonous origin of some greenstones is discussed in a subsequent section.

LITHOTECTONIC ASSEMBLAGES
Since the 1920s, geologists have been able to decipher the stratigraphy of greenstone belts with way-up indicators such as pillows and graded bedding in sedimentary and volcaniclastic units. With the knowledge of stratigraphic polarity, greenstones are observed to occupy synclinoria or keels that are interspersed with domes cored by granitoid batholiths (Fig. 3). Historically, greenstone belts were divided into Keewatin and Timiskaming units (Gunning and Ambrose 1939). Keewatin units are pre-deformation, largely volcanic units containing minor intercalated metasedimentary rocks, whereas Timiskaming units refer to unconformably overlying successor basins comprising post-early deformation, alluvial–fluvial to deep-

Figure 1. The Superior Province showing granite–greenstone terranes and orogenic flysch terranes (after Percival 2007). In the legend on the figure, abbreviations for Archean granite-greenstone terranes and domains are in green and abbreviations for Archean orogenic flysch terranes are shown in beige. Localities mentioned in the text: 1 – North Caribou greenstone belt, 2 – Shehandowan greenstone belt in the Wawa-Abitibi terrane, 3 – Confederation Lake greenstone belt, 4 – Steeprock greenstone belt in the Marmion terrane, 5 – Chibougamau area within the Abitibi greenstone belt, 6 – Ring of Fire area shown on Figure 26. Figure is after Percival (2007).
basin metasedimentary rocks that contain lesser fine clastic units and calc-alkaline to alkaline volcanic rocks.

The concept of lithotectonic assemblages developed for the Cordilleran orogen (Tipper et al. 1981) was applied to greenstone belts to distinguish units of differing age or geodynamic setting (Thurston 1991; Thurston and Ayres 2004). Within Archean greenstone belts, the following assemblage types are recognized: 1) shallow-water, quartz- and carbonate-rich platforms with minor volcanic rocks, unconformably overlying granitoid or volcanic basement; 2) shallow- to deep-water komatiites and tholeiitic basalts overlying platformal sequences or granitoid basement; 3) deep-water komatiite–tholeiite or tholeiite sequences; 4) bimodal deep-water sequences dominated by tholeiitic basalt and containing minor felsic volcanioclastic rocks, chert, and iron-formation; 5) shallow- to emergent bimodal successions; and 6) subaerial sedimentary rocks intercalated with subordinate alkaline to calc-alkaline volcanic rocks (Thurston and Chivers 1990). Greenstone belts commonly contain multiple assemblages (Fig. 2). At the craton scale, a stratigraphic/temporal progression from assemblage types 1 to 6 is observed (Thurston and Chivers 1990; Thurston and Ayres 2004).

Quartzite–Carbonate Platforms

Quartzite–carbonate platforms are relatively rare but have been described in the Superior, Churchill, and Slave Provinces of Laurentia (Donaldson and de Kemp 1998; Bleeker 2002), as well as in the Yilgarn (Gee et al. 1981), Pilbara (Van Kranendonk et al. 2007b) and Baltic (Thurston and Kozhevnikov 2000) cratons (Fig. 4A, B). These sequences contain shallow-water structures such as hummocky and herringbone cross-stratification and mudstone drapes, and progress upward through stromatolite-bearing carbonates (Arias et al. 1986; Wilks and Nisbet 1988; Bleeker 2002) and shales to deeper water komatiite–tholeiite sequences (described below). These shallow-water sedimentary units are overlain by shale and banded iron-formation (BIF) that are finely laminated and, based on the lack of structures other than loading structures, represent deposition below storm wave base. Quartzite-bearing sequences in the Slave craton are related to craton riftting (Mueller and Pickett 2005), a model which also fits the Superior Province (Thurston 2003).

Shallow- to Deep-Water Komatiite– Tholeiite Sequences

The platformal sequences are overlain by relatively thin (metres to hundreds of metres), areally restricted sequences of komatiitic and tholeiite flows. Primary structures range from spinifex-textured komatiitic flows to pillowd mafic flows, all representative of uncertain water depth. These sequences are in tectonic or stratigraphic contact with overlying kilometre-scale thicknesses of intercalated komatiite and tholeiite flows (Thurston et al. 1991).

Deep-Water Komatiite–Tholeiite Sequences

Individual tholeiitic basalt flows displaying distinctive textures (e.g. glomeroporphyritic or variolitic) are traceable for tens of km and grade from thick, proximal, massive gabbronorite-textured flows, to master tubes with branching megapillows that grade distally into normal-sized pillows with a cross-sectional area averaging 2600 cm² (Sanschagrin 1982). Glomeroporphyritic basalts are commonly high in the stratigraphy and serve as marker horizons (Phinney et al. 1988; Blackburn et al. 1991).
The komatiites constitute a maximum of 5% of the stratigraphy in the Abitibi 1 greenstone belt (Sproule et al. 2002) and their position in the stratigraphic column is not consistent, occurring as basal units such as the Tisdale assemblage, or higher in the stratigraphy such as the Kidd−Munro assemblage (Houlé et al. 2008b).

Komatiitic magmas differ from basalts in being hotter (~1600° vs. ~1200°C) and less viscous. These two parameters profoundly affect the physical volcanology of these magmas. In the classic exposures in the Pyke Hill area (Pyke et al. 1973) of the Abitibi greenstone belt, flows have rubbly flow tops, followed downward by spinifex-textured olivine, a cumulate olivine zone and a chilled base. Komatiitic magmas display: 1) a flood-flow facies of substantial extent consisting of intrusive and extrusive units; 2) a laterally extensive compound-flow facies with linear troughs up to 150 m thick flanked by metre-scale flows; and 3) a ponded-flow facies. Initial flows have a low aspect ratio and propagate laterally beneath a solidified crust (Hill 2001). As the upper crust thickens, it begins to slow the advance of the flow and additional magma is accommodated by flow inflation (Dann 2001; Hill 2001) in an ordered process of flow advance, inflation and endogenous growth. The relationship between komatiite volcanology and komatiite-associated mineralization is discussed in a subsequent section.

Komatiitic and/or basaltic flows, particularly at magma clan transitions, are commonly capped by thin, cm-scale argillite units. A deep water environment is suggested by the rarity of oxide-facies iron-formation, vesicular flows, hyaloclastite units (Dimroth et al. 1985) and mafic pyroclastic units. Lava plains and shield volcanoes dominated by mafic volcanism represent the normal base of greenstone belt stratigraphic sequences. They form 5−7 km-thick subaqueous plains 100−150 km in length consisting of overlapping shield volcanoes >25 km in diameter (Dimroth and Rocheleau 1979; Thurston and Chivers 1990; Fig. 5). Shield volcanoes of the Abitibi greenstone belt are up to 7 km thick and >30 km in diameter (Leclerc et al. 2011). Similar features are seen in mafic sequences in the Pilbara (Kiyokawa and Taira 1998; Krapez and Eisenlohr 1998), the Yilgarn (Brown et al. 2002), and the Baltic (Kozhevnikov 1992) cratons.

The shield volcanoes typifying mafic plain volcanism are succeeded by subaqueous composite volcanoes with steeper dips and higher proportions of pillowed flows, hyaloclastites, and vesicularity, perhaps related to a shallowing-upward depositional environment, e.g. the Monsabrais area in the Blake River Group of the Abitibi greenstone belt (Dimroth et al. 1974; Ross et al. 2008). Flow-foot breccias form prograding deltas typical of a littoral environment (Dimroth et al. 1985) and are consistent with a shallowing-upward hypothesis. Sheets of massive lava-forming topsets and foresets, which grade both upward and downward into pillow lava and pillow breccia, also suggest a littoral environment.

These sequences are linked to ‘deep’ water solely on the basis of the presence of textures such as pillows that are diagnostic of submarine deposition, and the fact that the geometry and thickness of the volcanic edifices require at least a few hundred metres of water depth. Pyroclastic and volcaniclastic units can likewise represent a broad range of depths. This caveat is applicable to the discussion in the following sections.

Deep-Water Bimodal Volcanic Sequences

The bimodal sequences consist of up to 90% basalt or basaltic andesite, and subordinate felsic volcanic rocks. Volcanologically, the mafic component is marked by the transition from shield volcanoes that erupted mafic lavas, to composite volcanoes having multiple vents (Lafrance et al. 2000), volcanic...
complexes (Legault et al. 2002), calderas and/or cauldrons (Gibson and Watkinson 1990) and small felsic centres formed along major structures (Scott et al. 2002). In this style of volcanism, the edifices were predominantly submerged, but short-term emergence is recorded in the upper parts of these sequences (Thurston 1980; Lambert et al. 1990), as well as shallow-water features such as stromatolite-bearing carbonate rocks in the Abitibi greenstone belt (Hofmann and Masson 1994), the North Caribou terrane, at Steeprock in the Marmion terrane of the Superior Province (Hofmann et al. 1985; Stone et al. 1992; Fig. 6), and the Back River volcanic complex in the Slave Province (Lambert et al. 1990, 1992). Further constraints on water depth are absent.

Two main types of felsic rocks occur in deep-water bimodal sequences: 1) lava flows, domes, and related autoclastic units (de Rosen-Spence 1976; de Rosen-Spence et al. 1980); and 2) volcaniclastic units, including pyroclastic rocks possibly associated with calderas (Ross and Mercier-Langevin 2014). Some volcaniclastic units are interpreted as welded to non-welded pyroclastic flows (Thurston et al. 1985), mass flows (lahars), and air fall eruptives (Hallberg 1986; Barley 1992; Krapez and Eisenlohr 1998). Subaqueous pyroclastic flows have been proposed for calderas at Sturgeon Lake in the western Wabigoon subprovince (Morton et al. 1991), for the Selbaie and Noranda calderas in the Abitibi greenstone belt (Larson and Hutchinson 1993), in the Pilbara greenstones (Van Kranendonk 2000), and for subaerial welded ignimbrites in the North Caribou terrane (Thurston 1980).

Stratigraphically, the bimodal sequences are characterized by a mafic base and minor felsic volcanic rocks at the top (Fig. 7). The transition to the next volcanic cycle is marked by numerous mafic dikes cutting the felsic rocks, followed by mafic flows; alternatively, the felsic volcanic rocks are overlain by a ‘sedimentary interface zone’ (Thurston et al. 2008) characterized by elastic and chemical sedimentary rocks from a few cm to ~500 m thick.

Subaerial to Emergent Successor Basins
The deep-water bimodal successions are succeeded by unconformably overlying successor basins deposited synorogenically and characterized by the first appearance of plutonic detritus and calc-alkaline to alkaline volcanic rocks. These units are classically termed ‘Timiskaming’-type sequences in Canada (Gunning and Ambrose 1939; Fig. 8). Examples are found in all Archean cratons. In the Superior Province, examples include the Wabigoon (Ayer and Davis 1997), the Abitibi (Mueller and Dimroth 1987; Dostal and Mueller 1992) and the North Caribou (Parks et al. 2006) terranes. They also occur in the Slave (Mueller and Corcoran 2001), the Pilbara (Krapez and Barley 1987) and the Yilgarn (Swager et al. 1990) cratons. The successor basins contain up to 40% volcanic units (Swager et al. 1990; Mueller and Corcoran 1998), ranging in composition from calc-alkaline to shoshonitic. Shoshonites are found at Oxford Lake in the Oxford–Stull terrane (Brooks et al. 1982), in the Wawa–Abitibi terrane (Capdevila et al. 1982) and at Lake of the Woods in the western Wabigoon terrane (Ayer and Davis 1997). These successor basin volcanic rocks include 2–30 m-thick pillowed tholeiitic basalts and subaerial, calc-alkaline, felsic lobate and brecciated flows at Stormy Lake (Mueller and Corcoran 1998), and, at Kirkland Lake in the Abitibi greenstone belt, ultrapotassic lava flows with blocky or aa flow texture accompanied by pyroclastic surge and air fall deposits containing accretionary lapilli (Cooke 1966).

VOLCANIC GEOCHEMISTRY AND PETROGENESIS
Introduction
Volcanic rocks in Archean greenstone belts consist of two major geochemical associations, each typically making up one assemblage: 1) komatiite–tholeiite sequences (Sun and Nesbitt 1978; Arndt and Nesbitt 1982; Polat et al. 1998; Kerrich et al. 1998); and 2) bimodal basalt to dacite/rhyolite sequences (Condie 1981; Thurston et al. 1985; Lafleche et al. 1992). Basalts of the latter association vary from tholeiitic to calc-alkaline, and more recent work (Wyman et al. 2000; Polat and Kerrich 2001; Hollings 2002) has shown that magmas rich in Nb-enriched basalt/andesite, and adakites common-

2 Shoshonites are basaltic alkalic volcanic rocks that have high total alkalies (Na₂O + K₂O >5%), K₂O >Na₂O, and are nearly saturated in silica.

Figure 6. Domical stromatolites at the Steeprock mine, Marmion Terrane. Photo from stromatolites.blogspot.ca.
ly occur in the upper units of this association. Archean volcanic rocks have been subject to hydrothermal as well as metamorphic alteration. Conventionally, alteration is identified by volatile contents over 3.8% and presence of normative corundum (Gélinas et al. 1977), and various alteration indices such as the Ishikawa index (Ishikawa et al. 1976) or the alteration box plot of Large et al. (2001). Within individual lava flows, a uniformity of inter-element ratios such as Al₂O₃/TiO₂, Ti/Zr, and Ti/Sc indicate a lack of large-scale mobility of some elements during alteration (Kerrich and Wyman 1996). General experience with trace element geochemistry has shown that on the extended trace element diagram ('spidergram') the large ion lithophile elements (LILE), Cs, Rb, Ba, and U can show erratic behaviour because of alteration, and therefore they are commonly omitted on plots of Archean volcanic rocks. In the following paragraphs, the geochemistry of the two sequence types is discussed. This is followed by a discussion of the implications of stratigraphic geochemical variations in selected Archean greenstone belts.

Komatitite–Tholeiite Sequences

Komatitite–tholeiite sequences consist of intercalated komatiitic and tholeiitic flows, and rare volcaniclastic units. Komatiites include ultramafic volcanic and coeval intrusive rocks, and are classified on the basis of Al₂O₃/TiO₂ and Gd/YbCN (CN = chondrite-normalized) (Table 1). By definition, they have >18% MgO, high concentrations of Ni and Cr, and FeOt about 11%. The geochemistry of komatitites is a function of:

Figure 7. Stylized view of subaqueous calderas in bimodal associations of the Abitibi greenstone belt (after Mueller and Mortensen 2002; Thurston et al. 2008).

Figure 8. Diagrammatic view of an Archean successor basin prior to deformation (after Krapez and Barley 1987).
1) source composition; 2) conditions of melting; 3) melting mechanisms; 4) extent and type of contamination; 5) degree of fractionation or accumulation; and 6) post-crystallization modification (Ludden et al. 1986; Xie et al. 1993). Komatiites are considered to be the product of mantle plumes, based upon thermodynamic models, experimental petrology, melt inclusions, trace element systematics, and the presence of comparable rocks on oceanic plateaux and oceanic hotspots (Storey et al. 1991; Herzberg 1992; McDonough and Ireland 1993; Kerr 1996). Most Archean plumes were derived from depleted mantle (Campbell et al. 1989; Storey et al. 1991) that was tapped at various depths, as summarized in Table 1. It is interesting to note that Al-depleted and Al-undepleted komatiites are intercalated in the south-central part of the Abitibi greenstone belt, suggesting a rising plume source (Dostal and Mueller 1997). The major modern analogue to Archean komatiites is the Gorgona komatiite at the base of the Columbia–Caribbean Large Igneous Province (Kerr 1996). A contrasting view suggests that komatiites originated as hydrous magmas (Grove and Parman 2004), possibly in a subduction zone setting (Parman et al. 2001); however, as indicated by Arndt et al. (2008, p. 349), this hypothesis is not widely supported.

Komatiitic basalts have MgO contents of 18–26% and relatively low abundances of TiO₂ (<1%) and incompatible trace elements (Arndt et al. 2008). They have lower contents of Fe, high-field-strength elements (HFSE) and light rare-earth elements (LREE) than tholeiites (Arndt et al. 2008). Trace elements indicate that Archean basalts associated with komatiites are predominantly Mg- to Fe-tholeiites displaying flat REE patterns (Fig. 9). On the basis of their consistent stratigraphic association with komatiites and picrites, the tholeiites are interpreted as products of a rising plume head that entrained some of the surrounding mantle (Campbell et al. 1989; Arndt 1991). These tholeiites therefore represent a mixture of plume head material and upper mantle melts (Campbell et al. 1989; Arndt 1991). Archean basalts display a continuous trend from high to low Mg# accompanied by a rise in FeOt, Nb, Th, Zr, Hf, REE and Y, accompanied by decreasing Cr and Ni contents (Kerrich et al. 1999). In general terms, Archean basalts have higher Fe contents than younger counterparts, clearly seen on an Fe/Ti vs. Al/Ti cation diagram (Francis et al. 1999; Fig. 10). The tholeiites within komatiite–tholeiite sequences are commonly divided into Mg- and Fe-tholeiites and LREE-enriched units (Maurice et al. 2009). A recently developed subdivision applied on a regional scale consists of Mg-tholeiites with 4–10% MgO, 9–15% Fe₂O₃t, and 0.4–1.2% TiO₂, and Fe-tholeiites having a similar range of MgO content, but higher Fe₂O₃t (11–20%), and TiO₂ (1.0–2.6%). The Fe-tholeiites contain greater abundances of incompatible trace elements (e.g. 50–155 ppm Zr), lower Al₂O₃/TiO₂ (<15), and higher Gd/YbCN (1.2–2.0) (Maurice et al. 2009).

Kerrich et al. (1999), in discussing the origin of Archean tholeiites and komatiites from the Abitibi and the Lumby Lake greenstone belts, dismiss the possibility of contamination affecting trace element geochemistry on the basis of: 1) the lack of geochemical signatures of contamination; 2) the lack of xenocrystic zircons; and 3) the lack of isotopic evidence for contamination. All of these criteria have subsequently been disproven in at least part of the Wawa–Abitibi terrane and the Marmion terrane of the Superior Province (Thurston 2002; Ayer et al. 2005; Buse et al. 2010). The probability of contamination is inherent in the autochthonous development of many other Superior Province greenstones (Thurston 2002). The notion that magmas in granite–greenstone terranes transect older units is supported by the presence of dikes of younger greenstones cutting older greenstones in the North Caribou terrane (Rogers et al. 2000) and the Wawa–Abitibi terrane (Ayer et al. 2005). Xenocrystic zircons in Archean greenstones have been found in about 20% of post-millennial geochronological studies, which have been carried out mainly in the Wawa–Abitibi terrane and in the Marmion terrane of the Superior Province (Buse et al. 2010).

Table 1. Petrogenetic classification of komatiites (after Sproule et al. 2002).

<table>
<thead>
<tr>
<th>Geochemical Type</th>
<th>Al undepleted (AUK)</th>
<th>Al depleted (ADK)</th>
<th>Ti enriched</th>
<th>Ti depleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type area</td>
<td>Munro</td>
<td>Barberton</td>
<td>Finland</td>
<td>Shining Tree</td>
</tr>
<tr>
<td>(\text{Al}_2\text{O}_3/\text{TiO}_2)</td>
<td>15–25</td>
<td><15</td>
<td><15</td>
<td>15–25</td>
</tr>
<tr>
<td>(\text{Gd}/\text{Yb})</td>
<td>~1</td>
<td>1.2–2.8</td>
<td>>1.2</td>
<td>0.6–0.8</td>
</tr>
<tr>
<td>Degree of partial melting</td>
<td>30–50%</td>
<td>20–40%</td>
<td>>20%</td>
<td>20–50%</td>
</tr>
<tr>
<td>Depth of melt separation</td>
<td>Plume head: 2–8 Gpa</td>
<td>Plume tail: 6–9 Gpa</td>
<td>Plume head: 2–8 Gpa</td>
<td>Plume tail: 6–9 Gpa</td>
</tr>
</tbody>
</table>
The advent of ICP–MS analysis has brought about many studies of the trace element geochemistry of Archean volcanic rocks and possible relationships with geodynamic settings (Hollings and Kerrich 1999, 2002; Hollings et al. 1999a, b; Kerrich et al. 1999; Wyman and Kerrich 2009). For example, in northwestern Ontario, Hollings et al. (1999b) have documented basalt geochemistry in 2.9–3.0 Ga komatiite–tholeiite sequences (Fig. 11). They observed that the majority of basalts are Mg-tholeiites with flat REE patterns. However, some samples display negative Nb anomalies, La/SmCN 1.8–3.4, and Gd/YbCN 1.0–1.6; some samples display LREE depletion. Many of the northwestern Ontario greenstone belts examined in this study are underlain by older greenstone and granitoid rocks. In support of this, it was noted that Nb anomalies increase with increasing SiO2, La/SmCN, and Th/CeCN, all suggestive of contamination by a felsic component, given the high La/SmCN and Th/CeCN of granitoid magmas. The so-called Silicic High Magnesium Basalts (SHMB) documented in the Archean of Australia and elsewhere (Sun et al. 1989) have similar high SiO2 (51–55%) and MgO (10–16%), and are shown to be produced by contamination, as validated by Pb and Sm–Nd isotopic and trace element studies.

Boninites

Boninites are primitive andesites occurring within komatiite–tholeiite sequences. They contain >53% SiO2, 8–15%
MgO, Mg# >60, low (<0.5%) TiO₂, enrichment in LREE compared to tholeiites, and fractionated HREE (Crawford et al. 1989; Fig. 12). Representative Archean boninites (Kerrich et al. 1998) are characterized by Gd/Ybₓₚₑ 0.3−0.7, Zr/Y 1.2−1.7, positive Zr and Hf anomalies, Zr/Hf ≥36, LREE depletion to enrichment (La/Smₓₚₑ 0.72−1.40), and negative Nb anomalies (Nb/Laₓₚₑ 0.76−0.93; rm = primitive mantle-normalized; Fig. 12). Boninite petrogenesis is a two-stage process, beginning with extraction of a melt from the mantle and leaving a refractory residue that is fluxed by fluids enriched in Si, Na, LILE, ± LREE, and in some instances Zr and Hf. This two-stage process generates the variably enriched or depleted LREE pattern, and the negatively fractionated HREE of boninites and low-Ti tholeiites (Crawford et al. 1989). In the Phanerozoic, boninites have been reported from ophiolites, intraoceanic arcs, back arcs, forearcs, continental margin settings, and intra-continental rifts (Kerrich et al. 1998, and references therein). Boninites in the Abitibi greenstone belt are associated with komatiites and tholeiites. Boninites are noted also in the Yilgarn (Angerer et al. 2013), Pilbara (Smithies 2002), and Baltic (Shchipansky et al. 2004) cratons. Kerrich et al. (1998) favour a petrogenesis for the Abitibi boninites involving derivation from a depleted mantle source rather than the second-stage petrogenesis involving fluid fluxing of a depleted source. In more detail, the association with komatiites and a progression from primitive tholeiites to more evolved tholeiites is considered by Kerrich et al. (1998) to represent interaction of plume-derived komatiites and basalts with subduction zone-derived tholeiites.

Archean boninites are more aluminous, slightly less depleted in the heavy REEs, and have higher TiO₂ contents than Phanerozoic analogues (Bédard et al. 2013). Given the variety of geodynamic settings of boninites, the common thread is derivation from a depleted source, with or without fluid fluxing. However, it must be kept in mind that Archean boninites are exceedingly rare, and only a few tens of analyses exist, a function of rarity or perhaps a lack of recognition by investigators other than specialized petrologists. The above-cited studies provide some data on location, but stratigraphic position and primary structures are not described in all the cited studies. Excellent petrographic detail is presented by Wyman and Kerrich (2012) for boninites in the Youanmi terrane of the Yilgarn craton. The consistent features of their petrogenesis are high-temperature melting and derivation from depleted mantle. These komatiite–tholeite sequences are distinct from more evolved basalt – andesite sequences such as the Blake River Group of the Abitibi greenstone belt, which are characterized by LREE enrichment and negative Ti, Nb and Eu anomalies (Ayer et al. 2005). Geochemically similar rocks have been considered to originate by crustal contamination of komatiitic material (e.g. Sylvester et al. 1997).

Figure 12. Boninites from the Abitibi greenstone belt of the Superior Province (Kerrich et al. 1998). Note the positive Zr and Hf anomalies and the fractionated HREE. Normalizing values, the normal mid-ocean ridge basalt (N-MORB) and the average ocean island basalt (OIB) are from Sun and MacDonough (1989) and the island arc basalt from Pearce and Peate (1995).

Ferropicrites

Ferropicrites are ultramafic rocks having MgO contents similar to komatiites (>18% MgO) but lower Al₂O₃ (<10% to <5%); they are defined as ferropicrites based on FeOt >14% (Hanski and Smolkin 1989). The Al₂O₃ content remains relatively constant with increasing MgO, and Al₂O₃/TiO₂ values are ~4; these characteristics are similar to moderately alkaline olivine basalts associated with hotspots. On the classification diagram for ultramafic rocks (Hanski and Francis 2008), the Superior Province ferropicrites fall between the picrite and the Al-depleted picrite fields. They are enriched in TiO₂ (1−2%) and Nb (10−17 ppm, Nb/Laₓₚₑ = 0.8−1.3) relative to komatiites, and display fractionated REE profiles (La/Ybₓₚₑ = 8−18; Goldstein and Francis 2008) and HREE depletion (Gd/Ybₓₚₑ ~3; Fig. 13A). Furthermore, they have higher ratios of some incompatible elements (e.g. Zr/Y ~6). Given these differences from komatiites, ferropicrites require a distinct petrogenesis (Goldstein and Francis 2008). In support of this, a Mg# vs. Ni diagram (Fig. 13B) illustrates that Ni values in ferropicrites rise asymptotically at Mg# 83, whereas for komatiites the rapid rise is at Mg# 90 (Goldstein and Francis 2008). Thus, sources for ferropicrite magmas have lower Mg# values than komatiite source mantle, indicating that they are distinct. Ferropicrites contain higher Ni but lower Cr than komatiites, indicating higher normative olivine in ferropicrites in contrast to the importance of normative pyroxene in komatiites.

Ferropicrites have liquidus temperatures similar to komatiites, but their source was olivine-rich mantle that, compared to komatiites, was enriched in incompatible trace elements (Goldstein and Francis 2008). Postulated petrogenetic mechanisms for this suite include liquid immiscibility, mixing of an Fe-rich immiscible liquid with a komatiitic liquid, melting of isolated enriched mantle domains, melting of a peridotite–basalt mixture, or melting of an Fe-rich mantle source that was depleted.
relative to CHUR (chondritic uniform reservoir) (Goldstein and Francis 2008). Such a melt would have the fractionated REE patterns seen in Archean ferropicrites. In the end, the favoured model is one in which an olivine-rich mantle source is melted at ~5 Gpa (Goldstein and Francis 2008).

Ferropicrites are spatially associated with komatiite–tholeiite sequences within greenstone belts of the Wawa–Abitibi terrane (Green and Schulz 1977; Stone et al. 1995; Goldstein and Francis 2008), the Kolar schist belt of India (Rajamani et al. 1985), and the Lake of the Enemy terrane in the Slave Province (Francis et al. 1999). More recently, they have been reported in the Marmion terrane at Steeprock Lake, at Lumby Lake, and Grassy Portage Bay in the western Wabigoon terrane (Goldstein and Francis 2008). The Marmion terrane occurrences were also described as Al-depleted komatiites (Hollings and Wyman 2000). Ferropicrites may occur either as typical subaqueous pillowed flows (Francis et al. 1999), pyroclastic rocks (Steeprock Lake, Lumby Lake and Grassy Portage Bay) or as intrusive plugs (Dayohessarah Lake; Goldstein and Francis 2008). The western Superior Province ferropicrites of Goldstein and Francis (2008) are somewhat higher in MgO (~19%) compared to those referred to above from Minnesota, Boston Township (in the Abitibi greenstone belt) and India. However, the western Superior Province ferropicrites have similar trace element patterns.

Bimodal Tholeiitic to Calc-Alkaline Basalt–Dacite/Rhyolite

The bimodal basalt–dacite association occurs in many of the greenstone belts of the Superior Province and most other Archean cratons. Basalts and basaltic anodesites of this association generally display flat REE patterns and typically contain ca. 5% MgO, whereas FeOt increases ~5% up to a maximum of 18–20% (Thurston and Fryer 1983; Jensen 1985; Thurston et al. 1985). There is a continuous transition from tholeiites with flat REE patterns to calc-alkaline basalts with fractionated REE patterns (Leclerc et al. 2011; Bédard et al. 2013). A typical suite from the Schreiber–Hemlo and White River–Dayohessarah greenstone belts of the Wawa–Abitibi terrane is characterized by Mg- to Fe-tholeiites having La/YbCN = 2.7–24.5 (Polat et al. 1998). In the bimodal association, anodesites in general are not prominent (Taylor and McLenan 1985; Condie 1986), where present, they vary from primary anodesitic liquids to fractionated basalts (Thurston and Fryer 1983). In the Yilgarn craton, a fractionation sequence from basalt through anodesite to rhyolite is reported for the Welcome Well and Marda complexes (Taylor and Hallberg 1977). In the Abitibi greenstone belt, primary anodesites range from low- to high-K anodesites (Ayer et al. 2005) using the classification of Gill (1981). The felsic endmembers of this association range from dacite to rhyolite. In terms of trace element geochemistry, these units display flat, ‘tholeiitic’ patterns through to extremely fractionated patterns (Thurston 1981; Lesher et al. 1986; Hart et al. 2004). This bimodal association is more fractionated than the komatiite–tholeiite association and has the negative Ti and Nb anomalies considered by some to represent arc petrogenesis (Hart et al. 2004). Similar features are seen in the Blake River Group of the Abitibi greenstone belt and throughout the Superior craton (Thurston et al. 1985; Scott et al. 2002).

Associated with the bimodal suite are a number of relatively unusual rock types for Archean greenstone belts: the so-called adakite suite, consisting of magnesian anodesites, Nb-enriched basalts and anodesites, and adakites. Their geochemistry is discussed below. In modern arc systems, adakites, Nb-enriched basalts and magnesian anodesites are spatially and temporally associated (Kepezhinskas et al. 1995). For example, in Panama and Costa Rica, normal arc volcanic rocks are succeeded by an adakite–Nb enriched basalt association (Defant et al. 1992). The adakite suite is interrelated in the sense that their geochemical variation is a function of garnet fractionation (Richards and Kerrich 2007).

Adakites

Adakites, formerly termed tonalite–trondhjemite–granodiorite (TTG) series volcanic rocks (including low-K dacites) (Richards and Kerrich 2007), were defined by Defant and Drummond (1990, 1993) as a term for magnesian anodesites and more felsic derivatives in the Aleutian arc, where they were interpreted to have formed by the melting of subducted oceanic crust. They are characterized by high La/Yb, high Sr (~1800 ppm), ‘relatively high’ Mg#, Cr, and Ni (Richards and Kerrich 2007) compared to normal anodesites, and non-radiogenic Pb and Sr isotopic compositions. Further details of the geochemistry of adakite-like rocks are listed in Table 2. Archean volcanic rocks of this association are enriched in elements mobilized by aqueous fluids (e.g. W, Pb, Be, I), whereas HFSE such as Ti, Nb and Ta are depleted. The central question is whether this geochemical signature is unique to the subduction environment or whether other geodynamic settings can produce the same features. Defant and Drummond (1990) used Sr/Y vs. Y and La/Yb vs. Yb binary plots to demonstrate the role of garnet fractionation in adakites vs. plagioclase fractionation typical of normal modern arc suites. The general term ‘adakite’ or adakitic has been used to describe Mg-rich
Adakites, Nb-enriched basalts and andesites, and adakites (Polat and Kerrich 2001; Svetov 2001; Slabunov et al. 2006). Several other rock types in the basalt–rhyolite fractionation series share the high La/Yb, and high MgO, Cr and Ni of adakites, such as high-Mg andesites and Nb-enriched basalts in modern arcs (Sajona et al. 1996). However, Richards and Kerrich (2007) show that Melting−Assimilation−Storage−Homogenization (MASH) (Hildreth and Moorbath 1988) or Assimilation−Fractional Crystallization (AFC; Depaolo 1981) processes that control tholeiitic and calc-alkaline magmas can also produce adakitic compositions. Therefore, although some authors appeal to subduction processes for the origin of the adakite suite, the MASH and AFC processes simply require a subjacent magma chamber; in this way, the high La/Yb and Sr are hallmarks of petrogenesis involving mafic sources within the garnet stability field (Richards and Kerrich 2007). Alternatively, Johnson et al. (2014) modelled trace element distribution in a hotter Archean Earth and found that convergent plate margins are not necessary.

Adakite-like rocks occur in three magmatic associations in greenstone belts: 1) volcanic rocks and related minor intrusive bodies forming part of the bimodal association (Kerrich and Fryer 1979; Hollings and Kerrich 2000; Wyman et al. 2000; Polat and Kerrich 2001; Naqvi et al. 2006); 2) syn- to late-tectonic batholiths of the high-Al-ITG association, such as the Lake Abitibi and Round Lake batholiths of the Abitibi greenstone belt (Feng and Kerrich 1992); and 3) post-tectonic high-Mg diorites/sanukitoids (Smithies and Champion 2000).

Adakites and related magnesian andesites and Nb-enriched basalt–andesites are not common rock types within the bimodal association in Superior Province greenstone belts (Boily and Dion 2002; Percival et al. 2003; Ujike et al. 2007). Given the lack of stratigraphic detail in the papers describing these rocks in the Superior Province, it is not currently possible to understand how the adakitic rocks relate to greenstone chemostratigraphy. However, adakitic rocks occur as lava flows in the Superior Province, and as volcaniclastic rocks in the Baltic Shield (upper part of the Hautavaara greenstone belt; Svetov et al. 2004).

Table 2. Adakite suite details.

<table>
<thead>
<tr>
<th>Rock type</th>
<th>Defining Characteristics</th>
<th>Examples</th>
<th>Petrogenesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adakite</td>
<td>SiO₂ > 56%, Al₂O₃ >15%, MgO < 3%, Mg# 5</td>
<td>Superior Province: Schreiber-Hemlo, White River-Dayohessarah,</td>
<td>Evolution by garnet fractionation. Generated by slab melting OR by MASH or AFC.¹</td>
</tr>
<tr>
<td></td>
<td>Y < 18 ppm, Yb < 1.9 ppm, Ni > 18 ppm, Cr > 30 ppm</td>
<td>Winston L. – Big Duck L., Manitouwadge², NE Quebec³.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High La/Yb</td>
<td>Baltic Shield¹, Dharwar craton¹,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High Sr/Y</td>
<td>High Sr/Y</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High Mg#, Cr, Ni compared to normal andesites¹</td>
<td>N. China craton⁶</td>
<td></td>
</tr>
<tr>
<td>Nb-enriched basalts</td>
<td>Nb > 20 ppm, Nb/La₉MN, 0.5-1.4</td>
<td>Superior Province: Wabigoon; North Caribou⁴; Pilbara⁵; Dharwar¹¹, Baltic shield¹</td>
<td></td>
</tr>
<tr>
<td>Andesites and</td>
<td>High MgO relative to SiO₂</td>
<td>Northern part of Wawa-Abitibi terrane¹²</td>
<td>Evolution by garnet fractionation. Generated by slab melting OR by MASH or AFC¹</td>
</tr>
<tr>
<td>Magnesian andesites</td>
<td>Sr/Y > 20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹Richards and Kerrich (2007); ²Polat and Kerrich (2001); ³Boily and Dion (2002); ⁴Svetov et al. (2004); ⁵Manikyamba et al. (2009); ⁶Wang et al. (2004); ⁷Wyman et al. (2000); ⁸Hollings and Kerrich (2000); ⁹Hollings (2002); ¹⁰Smithies et al. (2005); ¹¹Kerrich and Manikyamba (2012); ¹²Ayer et al. (2010).

Magnesian Andesites

Magnesian andesites in Archean greenstone belts have high MgO contents (e.g. 4.8%) relative to SiO₂ (Polat and Kerrich 2001), and high Cr and Ni. Thus, by definition, they plot above the divide between arc andesites and magnesian andesites on a MgO vs. SiO₂ diagram (McCarron and Smellie 1998). Compared to normal andesites in the Abitibi–Wawa terrane, magnesian andesites contain lower TiO₂ at a given MgO content, and tend to have higher Th and Ce, lower Nb, and nearly flat patterns for Zr, Y and Yb with respect to MgO. Magnesian andesites form a minor constituent of the ca. 2720 Ma greenstones on the northern fringe of the Wawa–Abitibi terrane west of the Kapuskasing structural zone (Ayer et al. 2010).

Magnesian andesites are interpreted to form through hybridization of adakitic liquids with peridotitic mantle wedge material, which explains their high Mg, Cr, Ni, Th and Ce, fractionated REE, low Yb content and negative Nb and Ti anomalies (Keleman 1995; Yogodzinski et al. 1995). Details on volcanology or stratigraphic association are not available. Examples of their trace element geochemistry in the Wawa–Abitibi terrane are shown in Figure 14.

Nb-Enriched Basalts

Nb-enriched basalts are LREE-enriched basalts containing >20 ppm Nb and Nb/La >1. In modern orogens, Nb-enriched basalt occurs in arcs, rifted arcs, and back arc settings.
The trace element characteristics are similar to those of ocean island basalts (OIB) and have been attributed either to an asthenospheric or lithospheric component in their sources, or to small degrees of melting of a mid-ocean-ridge basalt (MORB) source in a slab window (D’Orazio et al. 2000). Nb-enriched basalts have also been attributed to adakitic metasomatism above a mantle wedge (Sajona et al. 1996). Nb-enriched basalts occur in the western Wabigoon subprovince of the Superior craton (Wyman et al. 2000), the south margin and elsewhere in the North Caribou terrane (Hollings and Kerrich 2000, 2002; Fig. 15), and the Pilbara (Smithies et al. 2005), Dharwar (Kerrich and Manikyamba 2012) and Karelian (Svetov et al. 2004) cratons. No stratigraphic or volcanicological context is provided in the above studies except for the work of Svetov et al. (2004).

Felsic Volcanic Units

Felsic rocks of the bimodal association in Archean greenstone belts range from dacite to rhyolite and so-called high-silica rhyolite. Thurston (1981) noted that these rocks vary enormously in their trace element character. Subsequent work by Lesher et al. (1986) resulted in a classification based on their trace element chemistry, later modified by Hart et al. (2004). The felsic volcanic rocks are classified by Zr/Y, as shown in Table 3. The common feature of the petrogenetic schemes in Table 3 is that they involve fractional crystallization or melting of a tholeiitic basaltic precursor. Felsic volcanic units also occur in the komatiite–tholeiite association, the rhyolites associated with the Kidd Creek VMS deposit being the most prominent example (Bleeker 1999).

Successor Basins

After early deformation of greenstone belts, successor basins developed unconformably above the volcanic rocks. The basal unconformities are generally paleosols (Ayer et al. 1999), indicating that the greenstone belts were at least briefly subaerial. The basins occur in proximity to major transcurrent faults in the greenstone belts and, although relatively late, the basins preserve the same metamorphic grade as the surrounding greenstones. The successor basins are only a few km in width but extend several tens of km along strike. They are the remnants of originally much more extensive basins, as outliers are found tens of km away from the main preserved basins (Thomson 1946).

Successor Basin Sedimentary Units

Two periods of deposition of Archean successor basin metasedimentary rocks are recorded in the Abitibi greenstone belt: early sand-grade clastic units in the western Wawa–Abitibi terrane (the so-called Porcupine metasediments), followed by later conglomerates displaying gravel lags and intercalated cross-bedded sands (the so-called Timiskaming metasediments). Together, these rocks are diagnostic of alluvial–fluvial environments (Dimroth et al. 1982; Thurston and Chivers 1990; Mueller and Corcoran 1998) that grade laterally to deep marine sands (Dimroth et al. 1982). These units unconformably overlie the older volcanic rocks and occur along major transcurrent shear zones within greenstone belts, suggesting that the basins are, at least in part, fault-controlled. The early sand-grade units (Porcupine type) are more laterally extensive than the later, coarser Timiskaming type units. The presence of foliated and massive granitoid clasts in the conglomerates (e.g., Mueller and Corcoran 1998) indicates that early deformation preceding the development of the successor basins included emplacement and unroofing of
granitoid batholiths. Iron-formation clasts in the type Timiskaming of the Kirkland Lake area in the Abitibi greenstone belt suggest a widespread pelagic sedimentation event that terminated Keewatin deposition in that region and elsewhere. Similar units are found in the Slave (Bleeker and Hall 2007), Zimbabwe (Martin et al. 1993), Pilbara (Van Kranendonk et al. 2002), Yilgarn (Krapez and Barley 1987); and Baltic (Slabunov et al. 2006) cratons. Development of the basins is discussed in a subsequent section.

Successor Basin Volcanic Units

Magma emplaced during successor basin development generally range from calc-alkaline to alkaline in composition; one instance of komatiitic volcanism is associated with the Porcupine unit in the Abitibi greenstone belt (Wray 2014). The alkaline volcanic rocks are generally shoshonitic (K$_2$O/Na$_2$O >1), hornblende-phyric andesite and more siliceous derivatives (Shegelski 1980; Brown 1995). An example of the calc-alkaline type is the Shebandowan assemblage in the Wawa−Abitibi terrane just west of Thunder Bay (No. 1 in Fig. 1). Rocks of this assemblage are characterized by LREE abundances about 100 times that of chondrites (Brown 1995), and are spatially associated with more fractionated types (Carter 1993). In the Wawa−Abitibi terrane, the proximal successor basin volcanic rocks of the type Timiskaming have shoshonitic geochemistry, and alkaline dikes and plutons are proximal to major strike-slip structures (Wyman and Kerrich 1989; Othman et al. 1990; Dostal and Mueller 1992). In the northern reaches of the Superior Province, shoshonitic volcanic rocks occur in the North Caribou terrane at Oxford Lake (Brooks et al. 1982) and at North Spirit Lake (Smith and Longstaffe 1974). In the Wabi-goon subprovince, alkaline volcanic rocks occur in the Lake of the Woods area (Dostal et al. 2004). Late stage alkaline magmatism also occurs in the western Dharwar (Manikyamba et al. 2012), the Yilgarn (Taylor et al. 1990), and Pilbara (Krapez and Barley 1987) cratons, the Shamvaian sequence in the Zimbabwe craton (Blenkinsop et al. 1997) and in the Baltic shield (Slabunov et al. 2006). In general, the successor basins occur at the margins of terranes or proximal to major structures such as the Porcupine−Destor shear zone in the Abitibi greenstone belt. The extremely fractionated REE patterns of the shoshonitic units suggests that they represent direct mantle melts involving low percentages of partial melting (Othman et al. 1990).

Sedimentary Subprovince Volcanic Units

The volcanic rocks of greenstone belts are overlain by wacke−pelite turbidites of adjacent metasedimentary subprovinces. For example, North Caribou terrane greenstones are overlain by wacke−pelite units of the English River subprovince (Breaks 1991; Stott and Corfu 1991). Volcanic rocks form a minor component of the sedimentary subprovinces; the Piché Group within the Pontiac metasedimentary subprovince (Simard et al. 2013) immediately south of the Abitibi greenstone belt is the best known example. These volcanic units are thin, but have a lateral extent of tens to hundreds of kilometres. They vary from komatiite through tholeiitic basalt and calc-alkaline basalt to rhyolite (Stone 1990; Simard et al. 2013). Similar minor metavolcanic rocks form unnamed metavolcanic units in the English River subprovince (Breaks 1991) and the Quetico subprovince (Williams 1991); however, there are limited geochemical data.

SEDIMENTARY UNITS IN GREENSTONE BELTS

Introduction

Archean greenstone belts typically have <10% sedimentary rocks in the pre-deformation mafic-to-felsic volcanic cycles. Four types of sedimentary sequences are recognized, as summarized by Bédard et al. (2013): 1) subaerial to shallow-water clastic sequences rich in continental detritus; 2) continental rupture sequences containing shallow-water quartz-rich sedimentary and carbonate rocks, succeeded by BIF and deeper-water komatiite−tholeiite units; 3) deep-water chemical sedimentary units (the ‘sedimentary interface zones’ of Thurston et al. 2008); and 4) clastic and chemical sequences fringing or
Table 3. Geochemistry of Archean felsic metavolcanic rocks (after Hart et al. 2004).

Source depth	FI1 FII FIIIa FIIIb F IV	Lithology	Dacite-rhyolite Dacite-rhyolite Rhyodacite-high Si rhyolite Rhyodacite-high Si rhyolite Rhyolite-high Si Rhyolite			
SiO₂	FI1 FII FIIIa FIIIb F IV	64–72	64–81	67–78	67–84	69–81
TiO₂	FI1 FII FIIIa FIIIb F IV	0.16–0.65	0.16–0.89	0.21–0.99	0.09–0.73	0.09–0.57
Zr/Y	FI1 FII FIIIa FIIIb F IV	8.8–31	3.2–12.12	3.9–7.7	1.7–6.2	18–63
Yb	FI1 FII FIIIa FIIIb F IV	0.43–3.8	1.3–7	3.4–9.3	5–32	1.5–8.4
La/Yb	FI1 FII FIIIa FIIIb F IV	5.8–34	1.7–8.8	1.5–3.5	1.1–4.9	0.22–2.1
Eu/Eu*	FI1 FII FIIIa FIIIb F IV	0.87–1.5	0.35–0.91	0.37–0.94	0.20–0.61	
Petrogenesis	FI1 FII FIIIa FIIIb F IV	Low degree partial melting of mafic precursor at high pressure (Lesher et al. 1986)	Fractionation of intermediate magma (Campbell et al. 1981, 1982); high degree partial melting of felsic granulite at intermediate depths (Lesher et al. 1986); partial melting of hydrated, subducted oceanic slab (Barrie et al. 1993); partial melting of metasomatized mantle wedge above subducted slab, with fractional crystallization of resultant mafic magma (Barrett and MacLean 1999); high temperature partial melting of crustal material.	Low pressure partial melting of tholeiite without residual amphibole (Hart 1984) or garnet (Campbell et al. 1981; Lesher et al. 1986; Barrie et al. 1993) in a subvolcanic chamber, plagioclase-dominated fractionation of intermediate magma (Lesher et al. 1986); partial melting of crustal material yielding various felsic magmas (Lentz 1998); partial melting of continental crust with minor AFC yielding alkaline to subalkaline rhyolites (Barrett and MacLean 1999).	Low pressure moderate partial melting of depleted tholeiitic basalt (Hart et al. 2004).	

Source depth: Deep >30 km, Intermediate 10–15 km, Shallow <10 km

Continental Rupture

These sequences of quartz-rich metasedimentary rocks are deformed in places that contain the edges of tectonic blocks. The quartz-rich metasedimentary rocks are underlain by paleosols (Breaks 1991) and contain shallow-water structures such as hummocky cross-stratification (Thurston et al. 1999) and contain shallow-water structures such as hummocky cross-stratification (Thurston et al. 1999) and contain shallow-water structures such as hummocky cross-stratification (Thurston et al. 1999) and contain shallow-water structures such as hummocky cross-stratification (Thurston et al. 1999).
of komatiite–tholeiite sequences. Although similar to sequences within Atlantic-style passive margins, the lateral distance from the tidal environment to submarine fan structures is commonly only 5–8 km (Goutier et al. 1999), much less than an Atlantic-style margin.

Sedimentary Interface Zones

‘Sedimentary Interface Zones’ (Thurston et al. 2008) are zones of chemical and lesser clastic sedimentary rocks capping mafic to felsic volcanic cycles in greenstone belts worldwide. These zones are accumulations of chemical metasedimentary rocks and minor clastic material from a few cm to ~500 m thick. Their stratigraphic association with volcanic rocks, petrography, geochemistry and isotopic composition indicates that these units are dominated by Algoma-type BIF (Thurston et al. 2008; Baldwin 2009) deposited below storm wave base by one or more of the following processes: 1) direct precipitation from seawater; 2) deposition from hydrothermal fluids; or 3) replacement of precursor rock types.

U–Pb zircon geochronology of rhyolites at the top of the ca. 2734 Ma Deloro assemblage in the Abitibi greenstone belt and in the immediately overlying 2710 Ma sequence show a locally developed ca. 25 m.y. age gap. The fundamental question stemming from these apparent age gaps between dated rhyolites in neighbouring assemblages is whether they represent slow, continued volcanic evolution, or lengthy deposition of the chemical sedimentary rocks separating mafic to felsic cycles. Thurston et al. (2008) modelled accumulation of the 750,000 km³ of volcanic rocks in the Deloro assemblage south of Timmins (Abitibi greenstone belt) over periods ranging from 7.5 k.y. to 5 m.y., using rates of magma accumulation for chemically-zoned ash flow magma chambers, plume systems, and modern arc systems, all representing minimal accumulation rates given a hotter Archean Earth. These rapid rates of volcanism compared to the time gaps between assemblages in the western part of the Abitibi greenstone belt suggest that chemical sedimentary units marking magma clan transitions represent periods of slow deposition. These estimates of depositional rates were corroborated by U–Pb dating of bounding rhyolite units (Baldwin 2009), which indicate that the rate of deposition was fairly slow, i.e. 0.060–0.008 mm/y (Baldwin 2009) for a 40 m-thick BIF, perhaps comparable to sedimentation rates in the mid-Pacific Ocean (Gleason et al. 2004). Thus, apparently minor chemical and associated clastic sedimentary units, including minor cm-scale graphitic argillites marking magma clan transitions, are important in assessing the rate of accumulation and volcanic evolution in greenstone belts. These rapid rates of accumulation and volcanic evolution in greenstone belts worldwide are important in assessing the rate of accumulation and volcanic evolution in greenstone belts worldwide. These rapid rates of accumulation and volcanic evolution in greenstone belts worldwide are important in assessing the rate of accumulation and volcanic evolution in greenstone belts worldwide.

Archean Sedimentary Patterns

Basement–cover relationships of older vs. younger greenstones (Blenkinsop et al. 1993; Buick et al. 1995; Bleeker 2003), abundant compositionally mature sedimentary units (Krapez and Barley 1987; Hessler and Lowe 2006), isotopic and trace element evidence (Kamber 2010), and generally coarse-grained epiclastic units associated with greenstone mafic to felsic cycles (Mueller and Corcoran 1998; Corcoran and Mueller 2007), all point to the presence of exposed continents and subaerial weathering. This evidence is also supported by isotopic considerations (Dhuime et al. 2012). The sand-rich nature of Archean sedimentary rocks points to a depositional system in which the sediment source is proximal and characterized by high relief and a narrow shelf, whereas mud-rich systems (seen mainly in sedimentary subprovinces of the Superior Province), reflect a sediment source distant from the shoreline in a low relief environment (Bouma 2000).

The quartz-rich nature of Meso- and Neoarchean metasedimentary rocks is a function of a largely granitoid source and intense chemical weathering under reducing conditions. The paucity of clays and feldspars, and enrichment of Archean mudstones in Al relative to younger mudstones (Eriksson and Soegaard 1985; Hessler and Lowe 2006) reflect this style of weathering. The erosion of Archean volcanic rocks brought about similar Al enrichment in Archean metasedimentary rocks relative to younger equivalents, whereas sedimentary units display a steady decrease in Mg content over time (Migdisov et al. 2003). Enrichment in Al is a function of a largely granodioritic source and extensive weathering, and the decrease in Mg is a function of the overall decrease in komatiite eruptions over time (Arndt et al. 2008; Van Kranendonk 2012).

Archean sedimentary carbonate units are scarce (Ojakangas 1985), and where present, commonly occur at the top of mafic to felsic volcanic cycles in sedimentary interface zones (Thurston et al. 2008). These carbonate rocks are shallow-water rocks featuring multiple forms of stromatolites (Hoffmann et al. 1985; Arias et al. 1986; Wilks and Nisbet 1988; Hofmann et al. 1991; Hofmann and Masson 1994).

There is little evidence constraining the depth of water in greenstone belt metasedimentary units, except, for example, quartzose sedimentary rocks of the continental rupture sequences that display hummocky cross-stratification and mud drapes typical of the tidal environment (Donaldson and de Kemp 1998). Estimates of mean ocean depth in the Archean are ~2.6 km (Bickel et al. 1994). With this mean depth in mind, one might conclude that greenstone belts represent deep-water deposits; however, the near total absence of mudstones, which typically form 70% of Phanerozoic abyssal sedimentary sequences (Aplin and Macquaker 2011) suggests that greenstone belts either do not represent a deep-water environment, or that Archean oceans were remarkably free of fine-grained detritus.

CONTROLS ON VOLCANIC CYCLICITY

Introduction

Many of the geochemical studies referred to in the preceding sections provide limited stratigraphic detail beyond the level of major geochemical groupings and the relationship of the geochemistry to broad stratigraphic groups. However, in the minority of studies that utilized detailed stratigraphy as a control on geochemical variation, insight into magma chamber dynamics can be obtained.

Fe-Enrichment Cycles: Evidence for Fractionation

Tholeiitic basaltic sequences within the komatiite–tholeite association (e.g. the western Abitibi greenstone belt; Jensen 1985) and the bimodal basalt–dacite association (e.g. the Confederation assemblage on the south margin of the North Caribou terrane; Thurston and Fryer 1983) show Fe-enrichment cycles ranging from 6–8% to 18–20% FeO*. Similar Fe-enrichment cycles are observed in the Fe-rich tholeiites of northern Québec (Maurice et al. 2009) and in many tholeiitic sequences throughout the Superior Province (Ludden et al. 1986), the Pilbara craton (Van Kranendonk et al. 2002), the Yilgarn craton (Barley 1997) and the Slave Province (Bleeker and Hall 2007). The high-Fe tholeiites are occasionally capped by variolitic flows (Gélinas et al. 1976; Thurston and Fryer 1983), with or without minor sedimentary rocks. Fe-enrichment cycles in tholeiitic basalts are interpreted to represent an initial mantle-derived tholeiitic liquid evolving by fractionation of olivine and plagioclase in a low pressure magma chamber, in rare cases to the point of developing liquid immiscibility (Gélinas et al. 1976; Thurston and Fryer 1983).

Fractionation vs. Mantle Input

In the Chibougamau area of the Abitibi greenstone belt, Leclerc et al. (2011) divided the ca. 2730 Ma Roy Group into multiple units (Fig. 16) of largely tholeiitic and minor calc-alkaline units. Insight comes from examination of the stratigraphically controlled geochemistry of the David Member of the Obatogamau Formation. The authors report that the basalts and basaltic andesites of this member show no chemical variability with stratigraphic position in spite of their relatively evolved compositions (about 5% MgO). This lack of variation is explained in terms of fractionation being balanced by input of fresh mantle-derived magma. An upward decrease in Zr/Y, P2O5 and TiO2 at near constant MgO are explained as sampling of increasingly depleted starting material by successive magma batches. The authors further speculate as to whether this represents exhaustion of fertile components in the mantle, changes in the mantle source, or a progressive increase in the degree of partial melting.

Overlying the David Member, felsic units of the Allard and the Queylus members are calc-alkaline. Their fractionated REE patterns reflect a garnet-bearing residue, suggesting that a metabasite source was melting at high pressure. Transitional to calc-alkaline mafic rocks are interpreted as mixtures of minor volumes of these melts with variable proportions of background tholeiites, which are interfingered with the felsic units. However, in the upper part of the Allard Member, tholeiites are absent, implying that the crust acted as a density filter (Hildreth 1981; Thurston and Sutcliffe 1986), preventing eruption of the tholeiites.

Figure 16. Stratigraphic nomenclature for the Chibougamau greenstone belt (after Leclerc et al. 2011).
Origin of Felsic Volcanic Rocks by Contamination – or Two Separate Sources?

Felsic metavolcanic rocks are a minor constituent of greenstone belts and their petrogenesis is largely independent of basalt petrogenesis. A full fractionation sequence from basalt to andesite and rhyolite is reported in the Marda complex of the Yilgarn craton (Taylor and Hallberg 1977); however, Thurston and Fryer (1983) demonstrated that fractionation of a basaltic sequence in the North Caribou terrane could not produce the volume of rhyolite capping the 2.74 Ga Confederation assemblage east of Red Lake (No. 2 on Fig. 1). In fact, many basaltic sequences are capped by sedimentary interface zones (Thurston et al. 2008), indicating the cessation of volcanism. In the Abitibi greenstone belt (Leclerc et al. 2011), the calc-alkaline Allard Member is a 500 m-thick package of andesite to dacite/ryhodacite within a thick sequence of theoleites. Several authors (Barrie et al. 1993; Hart et al. 2004; Leclerc et al. 2011) envision that basalts represent one end member and rhyodacites produced by anatexis (crustal melting) form the other end member. Modelling indicates that intermediate units represent mixing of varying proportions of basalt and anatexitic rhyodacite in the magma conduit (Leclerc et al. 2011; J. Bédard personal communication; Fig. 17).

Archean Andesites

Phanerozoic andesites are plagioclase- and pyroxene-phric intermediate volcanic rocks found in continental and island arcs, and more rarely in oceanic islands, oceanic plateaus, Large Igneous Provinces and back-arc settings (Hooper et al. 2002; Scarrow et al. 2009; Willbold et al. 2009). The origin of these andesites is mainly by mixing of mafic and felsic magmas regardless of geodynamic setting (Reubi and Blundy 2009). However, icelandites (low-Al, high-Fe andesites, a relatively rare rock type; Carmichael 1964) form by fractionation (Sensarma and Palme 2013). Andesites in Phanerozoic continental arcs are mainly produced by mixing of mantle-derived basalt with melted continental crust (Gill 1981; Tatsumi 2005). As andesites can constitute up to 35–40% of continental arcs and represent about 30% of rock types in island arcs, based on a compilation by Winter (2001; p. 326) of 397 Andean and 1484 southwest Pacific analyses from Ewart (1982), they can be considered a hallmark of plate tectonics. Modern andesites possess negative Ti, Nb and Ta anomalies, which have been related to the presence of residual Nb- and Ta-bearing minerals such as rutile, ilmenite, titanite, and perhaps hornblende (Morris and Hart 1983; Saunders et al. 1991). Others argue for enrichment of the adjacent elements on extended trace element diagrams, and suggest that the HFSE are similar in abundance to MORB and reflect source characteristics (McCulloch and Gamble 1991). However, Jahn (1994) calculated that contamination of primitive mantle by ~2% upper crustal material would produce negative Nb and Ta anomalies. Bédard (2006), using partition coefficient data, states that 2% rutile in the source would have a similar effect.

Archean andesites are rare (Condie 1981; Ayres and Thurston 1985) and generally lack the plagioclase and pyroxene phenocrysts typical of Phanerozoic andesites. Proposed origins for Archean andesites include extensive fractionation of large basaltic magma chambers accompanied by some admixing of felsic melts (Smithies et al. 2007), as well as simpler mixing scenarios (Bédard et al. 2013). In the Yilgarn craton, Barnes and Van Kranendonk (2014) provided convincing field evidence and modelling to conclude that Archean andesites in the Yilgarn are a product of plume-related tholeiites mixed with rocks having TTG compositions. Thurston and Fryer (1983) postulated two possible additional origins for Archean andesites: 1) primary andesitic melts; and 2) fractionation of basaltic precursors.

Figure 17. MORB-normalized analyses of basaltic andesite to rhyodacite in the Chibougamau greenstone belt of the Abitibi-Wawa terrane (after Bédard et al. 2013). MORB normalizing factors after Sun and McDonough (1989).
of evidence for vertical tectonics in granite–greenstone terranes. Examples of diapiric granitoid rocks occur in the East Pilbara terrane (Van Kranendonk et al. 2004), the Barberton greenstone belt in the Kaapvaal craton (Anhaeusser 1984), the Zimbabwe craton (Jelsma et al. 1993), the Yilgarn craton (Gee et al. 1981; Swager et al. 1990). At the scale of terranes, the Superior Province consists of long, linear granite–greenstone terranes, but the greenstone belts within these terranes in the northern part of the Superior Province commonly display dome-and-keel structural style (Stott and Corfu 1991; Thurston et al. 1991). The dome-and-keel structural style in the eastern Pilbara is bordered to the north and west by the West Pilbara granite–greenstone terrane. The latter greenstones are somewhat younger than those in the classic East Pilbara stratigraphic section, but the important distinction between the two is the northeasterly structural grain of the West Pilbara and the fact that granitoid rocks are structurally simpler than in the East Pilbara, and discordant to the supracrustal units. Thus, Van Kranendonk et al. (2002) invoke an early episode of vertical tectonics followed by later horizontal tectonics, including major, terrane-bounding shear zones and thrust-based stratigraphic transport and duplication.

Successor Basin Structural Style and Genesis

The dome-and-keel structural style described above must be modified to accommodate the presence of scattered successor basins having the following characteristics: 1) metamorphic
grades similar to the surrounding greenstones; 2) rapid transition from fluvial to deep-water facies; and 3) the presence of mantle-derived alkaline magmatism. Bleeker (2012) has synthesized a model for the late structural evolution of greenstone belts (concentrating on the western part of the Abitibi greenstone belt) and the place of orogenic gold deposits in that process, as follows (Fig. 19): 1) early folding, thrusting and terrane imbrication (Bleeker and Van Breemen 2011); 2) synorogenic extension; 3) later thick-skinned extension that inverted earlier extensional structures; 4) further shortening and steepening of structures; and 5) transpression and associated sinistral and later dextral strike-slip movement.

Early folding was involved in the development of the above-noted dome-and-keel structures, and was followed by local-scale thrusting (e.g. the out-of-sequence position of the Kidd–Munro assemblage north of the Porcupine–Destor structure). In the Timmins area, a second phase of folding has produced the so-called ‘Porcupine syncline,’ which is cut by the unconformity at the base of the Timiskaming rocks. Subsequent synorogenic extension is marked by uplift and erosion, filling the successor basins. Extension is required to explain the alkaline to calc-alkaline magmatism and the presence in the conglomerates of foliated granitoid clasts, indicative of uplift and exhumation of mid-crust. The rapid lateral transition within these basins from alluvial–fluvial facies to deep-water wackes is explicable by extension and strike-slip processes. The ‘major breaks’ or transcurrent faults in greenstone belts are not numerous and have a spacing perpendicular to strike of several tens of km. These ‘major breaks’ are late, and transect early thrusts, but are spatially associated with the successor basins. Given the close spatial relationship of the ‘breaks’ and the basins, Bleeker (2012) proposed that the ‘breaks’ are first-order extensional structures. The common development of extensional shear bands in granitoid plutons at greenstone belt margins (Beakhouse 2013) is consistent with extensional processes. The extent of these extensional detachments is shown in Figure 20 for an area in the western Superior Province. It should be noted that some of the faults near the interface between the Wabigoon subprovince and the older Winnipeg River subprovince represent originally shallow-dipping thrust faults that were steepened by collision of the two terranes (Beakhouse 2013).

Given the necessity of 10–15 km of uplift required by the exposed metamorphic facies in the successor basins, their preservation would indicate that they were tectonically buried. The basins are asymmetric: the contact with older greenstones is an unconformity, whereas the ‘major break’ lies on the other flank of the basin. Using the Abitibi greenstone belt as an example, successor basin stratigraphy youngs south but appears on the north side of these major structures. These patterns are best explained by late-stage thrust burial in which the major extensional ‘breaks’ became inverted, forming thick-skinned thrusts. The association of successor basins with gold mineralization is discussed in a subsequent section. It should be noted that the Bleeker (2012) model does not explain along-strike variations in the Porcupine–Destor structure east of Timmins (J. Goutier personal communication 2014).

Although the model for successor basin development is based on the Abitibi greenstone belt (Bleeker 2012), similar basins, complete with evidence of extension (alkaline to calc-alkaline magmatism) exist in the western part of the Wawa–Abitibi terrane (Lodge et al. 2013), in the Wabigoon subprovince (Mueller and Corcoran 1998), and the North Caribou terrane (Brooks et al. 1982; Parks et al. 2006). Similar successor basins exist in the Slave (Bleeker and Hall 2007), Yilgarn (Kosticin et al. 2008), Pilbara (Krape and Barley 1987),
Baltic (Slabunov et al. 2006), and Zimbabwe (Blenkinsop et al. 1997) cratons, among others.

METAMORPHISM
Metamorphic patterns reveal the thermal and structural history of Archean granite–greenstone terranes. Metamorphism of these terranes is of low pressure, high temperature type, and isograds are broadly concentric with respect to the major batholiths (Thurston and Breaks 1978; Easton 2000; Fig. 21). The most intensely studied region in terms of metamorphism in the Superior Province is the Abitibi greenstone belt, where P₁, a seafloor metamorphism, produced prehnite–pumpellyite assemblages (Jolly 1978; Dimroth and Lichtblau 1979). In places, the early metamorphism includes development of contact aureoles around synvolcanic plutons such as the Flavrian and Powell plutons. These events predate cleavage development (Dimroth et al. 1983). The second metamorphic event in most greenstone belts, P₂, consists of up to 5 km-wide contact aureoles imposed on the greenstone belt and early plutonic rocks by intrusion of large TTG plutons and late alkaline plutons (Mortensen 1993). The P₂ assemblages overprint the earlier event, though the textural features could be explained by outward progression of the thermal anomalies surrounding granitoid intrusions. Thus, in the most intensely studied region, both burial and contact metamorphic processes are evident (Easton 2000). The metamorphic grade in greenstone belts elsewhere in the Superior Province and on other Archean cratons is in the greenschist to amphibolite facies (Thurston and Breaks 1978; Easton 2000; Goscombe et al. 2012; Bédard et al. 2013). The Abitibi greenstone belt is unusual in having sub-greenschist facies assemblages in the interior of the belt (Powell et al. 1995).

Regional mapping coupled with metamorphic studies demonstrate a systematic variation in structural style and metamorphic pressure (Bédard et al. 2013). At upper crustal levels having low metamorphic pressures, the dome-and-keel structural style predominates. At middle- to deep-crustal levels, greenstones form <10% of the crust and TTGs predominate.
among steeply dipping, minor supracrustal enclaves. In deep crust such as the North Atlantic craton, gneissic units and supracrustal enclaves display subhorizontal structures and metamorphic pressures equivalent to 25−30 km depth (Windley and Garde 2009).

The early metamorphism (P₁) is the main metamorphic event in the granite–greenstone terranes north and west of the Abitibi–Wawa terrane (Easton 2000; Table 4). The higher-grade granite–greenstone terranes have somewhat later metamorphic events (e.g. P₂), whereas P₃ is the dominant metamorphic event in the southern Superior Province. P₄ is present mainly in amphibolite- to granulite-facies areas of the southern Wawa–Abitibi, Quetico and English River subprovinces (Easton 2000).

Metamorphic discontinuities at major tectonic boundaries, e.g. the North Caribou terrane–English River subprovince boundary (Thurston and Breaks 1978) are abrupt, commonly representing a difference of hundreds of degrees over a horizontal distance of a few metres. Metamorphic variations in the Superior Province indicate that the individual terranes were not tilted; for example, northeastern Québec displays broad areas of uniform metamorphic rank, whereas the metamorphic variation in the Baltic shield (Nehring et al. 2009) suggests that granite–greenstone terranes are large-scale tilted blocks.

GRANITOID ROCKS AND MAFIC/ULTRAMAFIC INTRUSIONS IN GRANITE–GREENSTONE TERRANES

Introduction
Granitoid rocks in granite–greenstone terranes are classified based on the system of Le Maitre (1989; Fig. 22), with modifications by Stone (2005). At a regional scale, the granitoid rocks surrounding greenstone belts in the Superior Province are subdivided into: 1) gneissic tonalite, 2) foliated tonalite, 3) granite, 4) peraluminous granite, and 5) sanukitoid suite plutons (Stone 2005; Table 5).

With minor variations in nomenclature, these subdivisions are present in all Archean cratons (Pawley et al. 2004; Martin et al. 2005). The gneissic tonalite suite commonly connects greenstone remnants in high-grade metamorphic zones in the northwestern and northeastern Superior Province (Percival et al. 1994; Stone 2005). The foliated tonalite suite, made up of biotite tonalite and hornblende tonalite, constitutes about 50% of the crust in western Ontario (Stone 2005, 2010). It makes up greater proportions of the crust in areas of higher metamorphic grade, e.g. in northern Québec (Bédard et al. 2013). The dominant geochemical type of tonalite is the high-Al type of Martin (1993), which is produced in the garnet stability field, whereas in the East Pilbara terrane (Champion and Smithies 2007) and in the Baltic shield (P. Holta personal communication 2009), both high- and low-Al types occur. Peraluminous granites form elongate to irregular bodies commonly found along major structures, e.g. along the Bearhead fault zone (Thurston et al. 1991). The sanukitoid suite intrusions occur in quasi-linear arrays along major strike-slip structures and along terrane boundaries (Thurston et al. 1991). The proportions of the various suites are a function of exposure level; the northern Superior Province represents mid-crustal depth (Stone 2005) and the northeastern Superior Province a somewhat deeper level wherein the proportion of tonalites increases slightly (Bédard et al. 2003, 2013). At higher crustal levels, such as in the Wawa–Abitibi terrane (Sutcliffe et al. 1993), the proportion of granite suite plutons increases slightly.

Age Relationships of Archean Granitoid Rocks vs. Greenstones
Granitoid units in Archean granite–greenstone terranes range in timing of emplacement from synvolcanic to syn-tectonic to post-tectonic. In rare instances, where not overprinted by later structures or intrusions, granitoid rocks form basement to greenstones (Wilks and Nisbet 1988; Bickle et al. 1993). In a mechanical sense, kinematic indicators show that, at the granitoid–greenstone interface, the sense of motion is batholith-up and greenstones-down (Stott and Corfu 1991; Pawley et al.
Table 4. Bathozones in the Superior Province (after Easton 2000).

<table>
<thead>
<tr>
<th>Event</th>
<th>Bathozone (depth in crust)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-2 (3–8 km)</td>
</tr>
<tr>
<td>P1</td>
<td></td>
</tr>
<tr>
<td>2710–2695 Ma</td>
<td>NW Superior (N. Caribou terrane)</td>
</tr>
<tr>
<td></td>
<td>Wabigoon, Eastern Wawa-Abitibi (Abitibi greenstone belt)</td>
</tr>
<tr>
<td>P2</td>
<td></td>
</tr>
<tr>
<td>2693–2680 Ma</td>
<td>Central Wawa-Abitibi</td>
</tr>
<tr>
<td>P3</td>
<td></td>
</tr>
<tr>
<td>2678–2665 Ma</td>
<td>Western Quetico, Eastern Wawa-Abitibi</td>
</tr>
<tr>
<td>P4</td>
<td></td>
</tr>
<tr>
<td>2660–2648 Ma</td>
<td>North-central Wawa-Abitibi, Central Wawa-Abitibi gneisses</td>
</tr>
<tr>
<td>P5</td>
<td></td>
</tr>
<tr>
<td><2640 Ma</td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Regionally important Granitoid types in the Superior Province (after Stone 2005).

<table>
<thead>
<tr>
<th>Suite</th>
<th>Rock types</th>
<th>Fabric</th>
<th>Form/Occurrence and % of area</th>
<th>Inclusion types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gneissic Tonalite</td>
<td>Biotite + hornblende tonalite to granodiorite</td>
<td>Foliated, layered, folded</td>
<td>Belts, masses; scattered near greenstone remnants 3%</td>
<td>Supracrustal xenoliths</td>
</tr>
<tr>
<td>Foliated Biotite Tonalite</td>
<td>Biotite tonalite to granodiorite</td>
<td>Foliated to gneissic; quartz and feldspar megacrystic</td>
<td>Irregular to crescentic and lobate bodies; scattered 34%</td>
<td>Amphibolite, supracrustal xenoliths</td>
</tr>
<tr>
<td>Foliated Hornblende Tonalite</td>
<td>Hornblende + biotite tonalite to granite</td>
<td>Foliated; granular; feldspar megacrystic</td>
<td>Irregular to elongate bodies of variable size; scattered; 14%</td>
<td>Lensoid dioritic inclusions</td>
</tr>
<tr>
<td>Biotite Granite</td>
<td>Biotite granodiorite to granite</td>
<td>Massive to weak magmatic layering</td>
<td>Dikes, irregular masses, oval batholiths; scattered 30%</td>
<td>Biotite tonalite, amphibolite</td>
</tr>
<tr>
<td>Peraluminous (S-type)</td>
<td>Biotite + muscovite granodiorite to granite</td>
<td>Massive; mylonitic</td>
<td>Elongate to irregular bodies <1%</td>
<td>Sediment</td>
</tr>
<tr>
<td>Sanukitoid</td>
<td>Biotite+hornblende+ pyroxene quartz diorite, tonalite, quartz monzodiorite, granodiorite, quartz monzonite, quartz syenite, granite</td>
<td>Massive to weak magmatic layering</td>
<td>Oval plutons 4.5%</td>
<td>Hornblendite, amphibolite</td>
</tr>
</tbody>
</table>
2004; Van Kranendonk et al. 2004; Robin and Bailey 2009). In granite–greenstone terranes worldwide, there is a regular progression from TTG units to true granites followed by sanukitoid plutons, as shown by relationships in the North Caribou terrane (Corfu and Stone 1998; Fig. 23), the Superior craton in northeastern Québec (Bédard et al. 2003), and the Pilbara craton (Van Kranendonk et al. 2004). Geochronology linked with phase-by-phase mapping of granitoid plutons and structural geology is not commonly done in granite–greenstone terranes, with some notable exceptions (Corfu and Stone 1998; Van Kranendonk et al. 2004; Stone 2005). Early units occur at the margins of batholiths and younger phases in the central zones in the East Pilbara craton (Van Kranendonk et al. 2004), the Wabigoon subprovince (Stone 2010), and the northeastern Superior Province (Stone 2005). A limited number of so-called ‘late crescentic plutons’ intruded along the interface between greenstones and granitoid rocks in the Wabigoon subprovince (Stott 1986). A more robust dataset indicates that the granite batholiths post-dated the tonalitic rocks and feature Al-in-hornblende barometry demonstrating that they crystallized at lower pressures than the surrounding, more abundant tonalites (Stone 2005, 2010).

Using integrated geochronology and Al-in-hornblende data on pressure at the time of emplacement, Beakhouse et al. (2011) demonstrated that after emplacement of the syntectonic phases of the Pukaskwa batholith, the batholith was uplifted as a structural dome. Similar features are seen in the Shaw batholith in the Pilbara craton (Pawley et al. 2004; Van Kranendonk et al. 2004). In a general sense, integrated studies of petrogenesis, structural geology and geochronology (Corfu and Stone 1998; Whalen et al. 2004) show that low-K granitoid rocks precede tectonism and that high-K granitoid rocks followed the major deformation events.

Mafic/Ultramafic Intrusions

Mafic to ultramafic intrusions occur across the Superior craton as synvolcanic to post-tectonic intrusions generally a few hundred metres to a few kilometres in diameter. The synvolcanic intrusions represent komatiitic to tholeiitic magmatism as synvolcanic sills, dikes and plutons (e.g. Kuiper 2010). Larger, and somewhat later, layered to massive mafic to ultramafic plutons are found cutting the volcanic units of greenstone belts across the Superior craton (Barrie et al. 1990; Jackson and Fyon 1991; Sappin et al. 2013). These intrusions vary from basaltic to ultramafic and range from synvolcanic to post-tectonic. An excellent example of large intrusions of synvolcanic age in the Abitibi greenstone belt is the Bell River Complex, a subvolcanic intrusion in the Matagami district (Maier et al. 1996). These intrusions bear no particular relationship to stratigraphy or structure at a large scale. Post-tectonic, kilometre-scale mafic/ultramafic intrusions are broadly associated with major tectonic boundaries in granite–greenstone terranes. These intrusions vary from concentrically zoned bodies to rather conventional layered complexes. The primary magma for the concentrically zoned Lac des Iles intrusion in the Marmion terrane is basaltic (Sutcliffe et al. 1989). A string of post-tectonic, concentrically zoned, ultramafic to mafic small intrusions are scattered along the interface between the Quetico subprovince and the western Wabigoon subprovince to the north (Pettigrew and Hattori 2006); their emplacement may well be tectonic (Devaney and Williams 1989a; Pettigrew and Hattori 2006).
Petrogenesis

Tonalite–Trondhjemite–Granodiorite Suite (TTGs)

Archean batholiths of the TTG suite vary from the dominant high-Al type (Martin 1987; Martin et al. 2005) displaying fractionated REE patterns, to less common low-Al type TTGs with less fractionated REE patterns. The lack of significant Eu anomalies and a lack of correlation between Eu* and MgO or SiO₂, particularly in the high-Al type, suggests that fractional crystallization within the plagioclase stability field was not a major process (Stone 2005, 2010; Champion and Smithies 2007). The Si-rich, low-Al TTGs do show evidence consistent with at least some fractional crystallization (Bagas et al. 2003). However, the consensus is that TTGs in general represent the partial melting of a mafic precursor (Barker and Arth 1976; Drummond and Defant 1990), and that variations in the LREE/HREE values reflect melt production in the garnet stability field (high values) or the plagioclase stability field (lower values). Champion and Smithies (2007) modelled the derivation of high-Al TTGs in the East Pilbara terrane by relatively modest degrees (~ 20%) of melting of low-K tholeiitic basalt from the neighbouring greenstone belts. They note that more enriched starting materials are required to produce the more LILE-rich granitoid rocks. Their modelling requires a residual phase retaining Nb, Ti and Ta (perhaps amphibole), or a source that has been depleted in Nb and Ti. The high-Al TTGs can be produced in a similar way from a garnet-free residue containing 20–40% residual plagioclase.

Using actualistic models, Martin (1993, 1999) promoted the generation of TTGs by melting of subducted slabs in what is known as the ‘adakite’ model, based on geochemical similarities to adakites. Alternatively, trace element modelling has shown that the elevated La/Yb and Sr/Y signature of TTGs can be explained by hornblende fractionation of a tonalitic parent melt (Bédard 2006). Further consideration of major element modelling (Bédard et al. 2013) suggests that a maximum of 25% fractionation is possible given the low abundances of FeO and MgO in TTGs. However, when these approaches are combined with εNd data, Champion and Smithies (2007) conclude that some form of intermediate to felsic crustal component is also required along with a basaltic protolith. The isotopic data in this instance also show that contributions to TTG melts had a crustal residence time of as much as 200 m.y. Similar results are seen in Sm–Nd studies of Superior craton granitoid rocks (Henry et al. 1998).

In summary, partial melting of a basaltic protolith at varying pressures controls the residual mineralogy and thus the geochemistry of the TTG suite. The existence of TTGs with high LILE, Th and U requires a source richer in LILE than typical Archean basalts. Therefore, the two types of TTGs may well reflect crustal thickness, the high-Al type indicating thicker Archean crust (Champion and Smithies 2007). The lack of high Mg#, Cr and Ni in high-Al TTGs probably precludes interaction with the mantle wedge (Champion and Smithies 2007) and instead suggests partial melting of thickened mafic crust, which is also seen in younger terranes (Gromet and Silver 1987). There are contrasting opinions that call upon subduction processes (Moyen and Stevens 2006; Laurent et al. 2014); however, representative crustal thickness beneath the Superior (White et al. 2003) and Pilbara (Drummond 1988) cratons (~40 km) and the dominantly felsic nature of that crust preclude the presence of mafic–ultramafic residua in the production of tonalite. Therefore, some form of recycling such as delamination (Smithies and Champion 1999) is required.

The high-alumina TTGs are explained (Wyman et al. 2011) by hornblende and titanite fractionation. If TTGs with high Sr/Y or La/Yb are not residua from fractionation of tonalites, then they must represent very small degrees of partial melting. But if adakites and tonalites are produced by slab melting, these small degree melts do not explain the large proportions of TTGs that characterize granite–greenstone subprovinces (Bédard et al. 2013). Fundamentally, the total variability of high- and low-Al tonalites is best explained by genesis at various pressures and pressures. For example, Nehring et al. (2009) explain the variety of TTGs in the Baltic shield in terms of the melting of granulites and amphibolites.

Granodiorite to Granite

The last phase of granitoid magmatism is the broadly post-tectonic intrusion of granodiorite to granite. Conventional petrogenetic arguments indicate that granites are produced by melting of pre-existing granitic units, based on trace elements and Nd isotope systematics (Whalen et al. 2004). The granites consistently display negative Nb and Ti anomalies (Stone 2005, 2010), which can be explained by retention of trace minerals in residua, enrichment in adjacent trace elements, or a contamination, as discussed previously. The granite suite in northeastern Ontario is marginally peraluminous, indicating a petrogenetic link to the peraluminous granite suite and implying that these characteristics are present in the source, in turn suggesting that the source for this suite is perhaps the biotite tonalite suite (Stone 2005). The presence of depletions in Sr, Ba and Eu, and general REE enrichment is consistent with feldspar fractionation. Isotopic studies (Whalen et al. 2004) indicate that the late, high-K granitoid rocks have εNd values of ~3.1 to +3.3, demonstrating that the K-rich granitoid rocks are produced with input from LREE-enriched older crustal materials and juvenile material. This suggests melting of older crust and young infracrustal material. Lastly, the biotite granite suite includes REE-enriched and REE-depleted units similar to those elsewhere in the Superior Province, implying a broadly similar petrogenesis across the Superior Province.

Peraluminous Granites

Peraluminous leucogranites are commonly found along major tectonic boundaries, e.g. within the North Caribou terrane (Stone 2005) and along the boundaries of the Wabigoon, Winnipeg River and English River terranes (Breaks and Moore 1992). The values of εNd vary from ~2 to ~+2 for the leucogranite suite in the Wabigoon terrane, overlapping values for nearby metavolcanic and metasedimentary units. Thus, Larbi et al. (1999) concluded that the leucogranite suite was developed from both mantle and crustal sources. The leucogranite suite from across the Superior Province is ca. 2650 Ma in age (Larbi et al. 1999; Percival and Stott 2010), suggesting that this suite may be related to a large-scale process such as crustal delamination (Percival et al. 2004).
Sanukitoid Suite

The sanukitoid suite of plutonic rocks was defined by Shirey and Hanson (1986) as follows: SiO$_2$ <60%, MgO >6%, Mg# >0.6, Cr >100 ppm, Sr and Ba >500 ppm, and high Na$_2$O, K$_2$O, LREE, and La/Yb. This suite ranges in composition from dioritic to granodioritic. The high Cr, Ni and K$_2$O distinguish this suite from TTGs and mandate a mantle origin, yet high contents of LILE suggest a more complex origin. Modelling summarized in Martin et al. (2005) demonstrates that sanukitoids cannot be produced by contamination of komatiitic or basaltic magmas by LILERich felsic crust, as that scenario does not explain coincident high Cr, Ni and LILE. Therefore, the less-evolved sanukitoids must represent a peridotitic source, but any mantle source must also account for the high SiO$_2$ and LILE. Given the similarities with TTGs and adakites (high LILE, fractionated REE patterns, low Yb and Y concentrations), these characteristics are interpreted to represent slab melting (Martin et al. 2005); however, the possibility of melting of fertilized mantle has also been postulated (Shirey and Hanson 1986). Sanukitoid intrusions in Archean cratons are post-tectonic and, for example, in the Superior craton, they are spatially associated with major terrane-bounding, strike-slip shear zones.

GEOPHYSICS OF GRANITE–GREENSTONE TERRANES

Introduction

Granite–greenstone terranes have been investigated using a variety of geophysical techniques. Early magnetic surveys optimized for regional mapping clearly distinguished greenstone belts from the surrounding granitoid rocks (Gupta 1991). Gravity maps and gravity modelling of granite–greenstone terranes have shown that the depth to tonalitic basement varies from 10−12 km in the low metamorphic grade Abitibi greenstone belt (Peschler et al. 2004; Benn and Peschler 2005) to about 5 km in the case of the Birch–Uchi greenstone belt in the North Caribou terrane (Gupta et al. 1982). Studies of seismic anisotropy (Silver and Chan 1991; Ferguson et al. 2005) have shown that the structural trends of greenstone belts persist into the upper mantle.

Reflection Seismic Studies

Reflection seismic studies of the Superior craton carried out as part of the LITHOPROBE project (summarized by Percival et al. 2004, 2006) indicate that Superior craton crust is about 40 km thick. Dipping structures interpreted as ‘subduction scars’ occur along the Abitibi–Grenville seismic line, the western Superior Province line, and the Slave Province line (van der Velden and Cook 2005; Fig. 24). Calvert et al. (2004) have developed a model in which the southern part of the North Caribou terrane (the former Uchi subprovince) is preserved at relatively low metamorphic grade along a south-dipping extensional shear zone truncating sub-horizontal reflectors in the interior of the North Caribou terrane gneisses. These authors note that early vertical tectonics is still possible and also note that the extensional event they portray is related to orogenic gold mineralization in the Uchi subprovince. However, numerical models of crustal processes (Gray and Pysklywycz 2010) suggest that the features imaged can develop by shortening without subduction or accretion, although these authors invoke the production of “plate-like mantle lithosphere at depths of ~200–400 km, which may be interpreted as a possible early version of plate tectonics. The LITHOPROBE seismic profiles display few details of greenstone belt structure, although more recent detailed reflection seismic profiles specifically designed to image greenstone belt structure are revealing (Snyder et al. 2008). These studies do not image the prevailing vertical foliations of greenstone belts, but do show structures with dips of <~60°. Therefore, the shallowly dipping strata found in anticlinal domes are clearly revealed and it can be seen that seismically transparent units coring these domes are likely granitoid rocks (Fig. 25). Steeply dipping features such as the gold-associated Porcupine–Destor fault zone are imaged by virtue of the offset of greenstone belt stratigraphy and are seen to have a listric geometry at depth, passing at a depth of a few km into locally-developed antiformal thrust stacks (Snyder et al. 2008).

Similar seismic surveys designed to optimize the detail near greenstone-hosted gold deposits in the Yilgarn craton have been able to trace detachment faults at <7 km depth (i.e. at the base of the supracrustal rocks) that pass into a network of faults trending upward through the greenstones to sites of lode gold deposits (Goleby et al. 2004, 2006). Seismic profiles in the Superior Province lack the combination of detail and depth extent to enable similar interpretations.

RELATIONSHIP OF GRANITE–GREENSTONE TERRANES TO SEDIMENTARY SUBPROVINCES

Sedimentary subprovinces (Card 1990) are linear belts of largely amphibolite- to low-pressure granulite-facies clastic metasedimentary rocks that were termed orogenic flysch by Percival and Stott (2010). Typical examples are the English River, Quetico, Opinaca and Ashuanipi subprovinces in the Superior craton, and the Limpopo sedimentary rocks at the junction between the Kaapvaal and Zimbabwe cratons (Eglinton and Armstrong 2004). Geochronological work indicates that the metasedimentary units are coeval with successor basin sedimentary rocks (Davis 1990; Davis et al. 1990). In numerous places in the Superior Province, sedimentary subprovince clastic units overlie greenstones (Breaks 1991; Williams 1991).
The sedimentary detritus is derived both from the adjacent granite–greenstone terranes and also from more distal and older plutonic terranes (Sanborn-Barrie and Skulski 2006; Percival 2007; Percival and Stott 2010). Structural and metamorphic studies indicate that the sedimentary subprovinces transition southward from lower-grade northern margins to higher-grade zones via extensive thrust telescoping (Devaney and Williams 1989; Hrabi and Cruden 2006). Structural mapping has also demonstrated that the strike-slip faults now bounding the sedimentary subprovinces are relatively late structures (Allen et al. 2002; Ross and Mercier-Langevin 2014). Similar relationships are seen for the Limpopo sedimentary rocks and their relationship to the Kaapvaal and Zimbabwe cratons (Eglington and Armstrong 2004).

ORE DEPOSITS
Archean cratons are a major repository for mineral deposits. The major syngenetic deposit types are VMS deposits and komatiite-associated Cu–Ni–PGE and Cr deposits, and pegmatite-hosted rare metal deposits.

Volcanogenic Massive Sulphide (VMS) Deposits
Knowledge of stratigraphy is critical to evaluation of likely locales for VMS deposits. VMS deposits require subvolcanic pluton-centred hydrothermal circulation, largely during periods of volcanic quiescence (Franklin et al. 2005; Galley et al. 2007a). They are commonly associated with development of calderas in later stages of the evolution of major Archean volcanic systems at Noranda (Gibson and Watkinson 1990) and Sturgeon Lake (Hudak et al. 2003) in the Superior Province, although many VMS deposits are not associated with calderas (Allen et al. 2002; Ross and Mercier-Langevin 2014). The deposits consist of massive to disseminated chalcopyrite, sphalerite and pyrite forming massive lenses deposited on the seafloor, and subjacent stockwork vein systems representing zones of hydrothermal upwelling responsible for the seafloor deposits (Galley 2007a). The hydrothermal processes produced zones of metal leaching in sub-deposit semiconformable alteration zones. The metal content of the deposits is a function of the temperature and pH of the hydrothermal system; hotter systems are more Cu-rich and shallow water systems are possibly more gold-rich (Galley et al. 2007a).

Ore deposits can provide some insight into the geodynamic setting of greenstone belts in that modern VMS deposits, for example, are currently forming in a restricted range of settings (Franklin et al. 2005), e.g. oceanic arcs, back arcs, rifted supra-subduction zone epicontinental arcs, and mature epicontinental back arcs. On the modern seafloor, over 50% of VMS deposits are on ocean ridges (Hannington et al. 2005; Shanks and Thurston 2012). However, there is much debate as to the possible existence of preserved Archean oceanic floor; on one hand, many authors describe possible examples (Manikyamba and Naqvi 1998; Terabayashi et al. 2003; Shibuya et al. 2012), whereas a minority state that no unequivocal ocean floor of Archean age has been identified (Bickle et al. 1994; Bédard et al. 2013; Kamber 2015). Most interpretations of Archean VMS deposits relate them to oceanic arcs and back arcs (Franklin et al. 2005). Of the VMS deposits in the Superior Province, epicontinental arc and back arc settings are favoured by some, largely based on geochemical studies (Polat et al. 1998).

Komatiite-Associated Cu–Ni–PGE Mineralization
Komatiite-associated Cu–Ni–PGE mineralization occurs in two styles: 1) basal massive to disseminated (type I of Lesher...
Orogenic Gold Deposits

Epigenetic gold deposits are variously known as lode gold deposits (Poulsen et al. 2000), mesothermal gold deposits, and orogenic gold deposits (Goldfarb et al. 2005). Mineralization is syn- to late-deformational, post-metamorphic peak, and associated with regional-scale alteration, hence the term ‘orogenic gold’ is preferred. They occur mainly in tholeiitic and variolitic basalts and iron-formation units, proximal to the major transcurrent structures forming the faulted margins of successor basins within Archean greenstone belts (Robert and Poulsen 1997; Poulsen et al. 2000; Dubé et al. 2004; Goldfarb et al. 2005; Dubé and Gosselin 2007). There are rare examples almost wholly within metasedimentary units (e.g. Gaillard et al. 2014). The deposits are associated with regional-scale Fe-carbonate and silica alteration of greenstone belt units (Dubé and Gosselin 2007). The mineralization occurs in quartz or quartz-carbonate fault-fill vein arrays, hydrothermal breccias, and shallowly dipping extensional veins cutting the greenstones. The deposits are hosted in greenschist- to amphibolite-facies metamorphic rocks, reflecting development at an intermediate depth of 5–10 km, and thus represent temperatures of 325–400°C (Goldfarb et al. 2005). Gold is confined to the vein and breccia systems, but given recent increases in the price of gold, not only are the vein arrays economic, but extensive hydrothermal aureoles around the vein systems are also exploited (e.g. Gaillard et al. 2014). The timing of this style of mineralization varies systematically across complex cratons such as the Superior Province, in which the age of deposits becomes younger from north to south (Fyon et al. 1992). The timing is also synchronous with magmatism spatially associated with major tran- current faults cutting the greenstone belts and successor basins, representing the later stages of greenstone belt tectonism. Berger (2001) has shown that post-Archean vertical movements along the Porcupine–Destor fault have exposed along-strike variability in the style of gold mineralization. The deposit style along this structure varies from brittle in the west to ductile to the east, and deposit style varies within fault segments that are bounded by Proterozoic crosscutting structures.

Syngenetic models for orogenic gold deposits are no longer viable (Goldfarb et al. 2005), although gold may have been added to the greenstone belt system through seafloor hydrothermal processes producing Au-rich pyrite (Large et al. 2011). Gold transport and deposition are probably related to metamorphic processes, given the CO₂ and S-rich nature of the fluids, the decrease in abundance of gold-associated elements (As, Sh, W, Ba, etc.) as metamorphic grade increases, and the association of these deposits with greenschist- to amphibolite-grade metamorphism (Goldfarb et al. 2005). Bleeker (2012) relates the gold-mineralizing event to regional-scale extension of the greenstone belts, given the association with alkaline to calc-alkaline volcanic rocks in the successor basins, as discussed previously.

A new age of gold mineralization in the Wawa–Abitibi terrane is represented by the Coté deposit south of Timmins, wherein gold mineralization occurs in a brecciated phase of a granitoid intrusion adjacent to a strike-slip fault just east of the Swayze greenstone belt (Katz et al. 2015). The mineralization is in the Chester granitoid complex, which lies along the interface between the Ramsey–Algoma batholith to the south and the Kenogami Batholith to the north. The mineralization consists of orogenic-style mineralization hosted by an intrusion-related magmatic hydrothermal breccia. Significantly, the mineralization is dated at 2737 ± 8 Ma by Re–Os isotopic dat- ing, in contrast with the ca. 2680–2670 Ma age for most Abitibi gold mineralization (Ayer et al. 1999).

Structural overprinting relationships and the spatial association of lode gold deposits with successor basins and their major strike-slip structures indicate that the lode gold style of mineralization occurs late in greenstone belt evolution. The association of gold mineralization with sulfuricification, Fe-carbonate alteration and elevated LILE provides evidence that the hydrothermal system associated with the deposits circulated through the mid-to-deep crust (Goldfarb et al. 2005). Goleby et al. (2004) have shown that a relationship exists between gold mineralization in the Yilgarn craton and antclinorium associated with subjacent granitoid rocks, and more importantly, with fault systems extending from the base of the crust through to the mineralized units of the greenstone belt.

Cu–Ni–PGE and Cr Mineralization

Copper–Ni–PGE mineralization within granite–greenstone terranes occurs in: 1) concordant sills; 2) layered gabbro–anorthosite complexes; and 3) komatiitic volcanic units and coeval plutons. In the Superior Province, concordant sills include the Katimiagamak sills in the Wabigoon Subprovince (Davis and Edwards 1986), and layered gabbro–anorthosite bodies include Big Trout Lake in the North Caribou terrane (Whittaker 1986), the Bad Vermilion anorthosite in the Wabigoon subprovince (Ashwal et al. 1983), and the Weese Lake gabbro–anorthosite (Thurston and Carter 1970). PGE mineralization at Lac des Iles in the Marmion terrane is associated with late hydrothermal alteration in the so-called Roby zone (Sutcliffe et al. 1989). Fe–Ti–V mineralization is present in some layered mafic intrusions of the Abitibi greenstone belt, such as the Dore Lake complex in Chibougamau and the Bell River complex in Matagami (Allard 1976; Daigneault and Allard 1990; Taner et al. 2000).

Because of their economic importance, synvolcanic komatiite–tholeiite sequences and their related intrusions are better known. They account for about 25% of the world nickel resource for deposits grading >0.8% Ni (Lesher 1989). These deposits are located close to the basal contact of individual komatiitic flows and consist of massive and brecciated sulphides toward the base of flows, and matrix-textured and...
disseminated sulphides throughout the flows. In general, this type of mineralization requires a sulphur-undersaturated magma, which becomes sulphur-saturated by assimilation of sulphur-rich rock types enroute to eruption. The massive style of mineralization reflects late assimilation, whereas the more disseminated mineralization reflects slightly earlier assimilation of sulphur. This style of mineralization is found in the Yilgarn craton at Kambalda, where the komatiites consist of thin, extensive sheet flows and thicker, channelized flows (Perring et al. 1994; Hill et al. 1994). The channelized flows may be up to 15 km long and 100 m thick; mineralization is concentrated at the base of flows in masses up to 3 km long and 5 m thick. Similar mineralization is found in komatiites of the Tisdale and Kidd–Mušu assemblages of the Abitibi greenstone belt (Fyon et al. 1992; Ayer et al. 2002a) and in the Zimbabwe craton (Prendergast and Wingate 2013).

Syndiagenic sills and intrusions of broadly komatiitic affinity also host Cu–Ni–PGE and Cr mineralization, e.g. the Bird River Sill in the Winnipeg River subprovince (formerly the Bird River subprovince; Scoates and Scoates 2013), the Shebandowan intrusion in the Wabigoon subprovince (Morin 1973), the Big Trout Lake intrusion in the North Caribou terrane (Whittaker 1986), the Kemi intrusion in the Baltic shield (Tormaen and Karinen 2011), and sills related to the Bulawayan Group komatiites (Prendergast and Wingate 2013). Largely post-tectonic intrusions also host Cu–Ni–PGE mineralization in the Superior Province, e.g. Lac des Iles (Sutcliffe et al. 1989).

High Cr, low-MgO (18–24%) komatiitic magmas may contain a distinct type of chromite mineralization that differs from the classic stratiform and podiform styles. This type occurs in the Baltic shield, Zimbabwe, Brazil and India as well as in the so-called ‘Ring of Fire’ intrusions in the eastern part of the Superior Province (Mungall et al. 2010; Carson et al. 2013). The Black Thor intrusive complex in the North Caribou Terrane (Carson et al. 2013). The Black Thor intrusive complex in the North Caribou terrane consists of lower and middle ultramafic zones and an upper ultramafic to mafic zone. The mineralization occurs mainly in the middle ultramafic zone as chromite-rich layers interstratified with dunite and peridotite. The deposit contains about 102 M tonnes, has an aggregate thickness of up to 100 m, and a strike length of 3 km within a relatively small intrusion (Carson et al. 2013; Fig. 26). The thickness and lateral extent of the chromite mineralization mitigates against in situ fractionation such as is observed in a layered intrusion. Instead, Carson et al. (2013) appeal to deposition of the large volumes of chromite in a conduit feeding superjacent komatiite-associated magmatism. Similar ages of mafic and ultramafic intrusions across the Superior Province (from the Bird River area, through the North Caribou terrane to the La Grande and Eastmain domains in Québec) suggest that mafic–ultramafic intrusions in these areas may constitute a distinct Cr–Ni–Cu–PGE–V metallotect ‘fundamentally different’ from the rest of the Superior Province (Houlé et al. 2012). Such a metallotect crossing many terrane boundaries late in Superior Province history implies a distinct, late event such as plume magmatism or crustal delamination.

Of tectonic importance is the observation of shear-bounded ultramafic intrusions along the interface between the Wabigoon subprovince and the Quetico metasedimentary subprovince to the south, which may indicate tectonic emplacement (Petitgrew and Hattori 2006). In areas removed from greenstone belts, mineralized, relatively small mafic to ultramafic intrusions occur among granitoid units. Given their limited importance, they are not discussed further.

Pegmatite-Hosted Rare Metal Deposits

Pegmatites and associated rare metal deposits occur within granitoid batholiths or as dikes in the country rock. The pegmatites originate by initial undercooling of granitoid magma to produce the outer zones of the pegmatites, followed by crystallization of very coarse-grained interiors rich in unusual minerals produced by ‘constitutional zone refining.’ This leads to build-up of fluxing components in a boundary layer, which advances within the pegmatite (London and Morgan 2012). Most Archean pegmatites occur within or proximal to peraluminous or S-type granites (Breaks and Moore 1992; Fyon et al. 1992; Stone 2005), which develop relatively late in the evolution of granitoid rocks in granite–greenstone terranes; they occur as linear plutons proximal to major transcurrent structures, and as batholiths within granite–greenstone terranes and sedimentary subprovinces. Examples of pegmatite-associated mineralization within the Superior Province include: 1) Li and Be occurrences in pegmatites located along a late structure crosscutting the central part of the North Caribou terrane.
ARCHEAN VS. PROTEROZOIC GREENSTONE BELTS

Introduction
This article has emphasized Archean greenstone belts, but when we consider a broad definition of greenstone belts as Precambrian belts of low grade, largely volcanic rocks surrounded by granitoid batholiths (e.g. Hunter and Stowe 1997), many Proterozoic orogens have regions that fulfill the definition. Examples include the Trans-Hudson orogen (Gibson et al. 2011) and the multitude of Proterozoic orogens of Africa (Allibone et al. 2002). The major differences between Archean and Proterozoic greenstone belts are summarized below.

Rock Types
Conventional wisdom has it that Proterozoic greenstone belts lack komatiites. However, the greenstone belts of West Africa (Abouchami et al. 1990) do contain komatiites. The inference is that, although there was a global mantle overturn event at approximately 2.5 Ga (Van Kranendonk 2012), komatiite generation continued for some time after. Comparisons of basalt compositions show that Proterozoic basalts do not display the high Fe content of Archean basalts (Francis et al. 1999).

Mapping in Paleoproterozoic orogens such as the Trans-Hudson orogen (Lucas et al. 1996), the Cape Smith belt (Lesher 2007), and the Fennoscandian shield (Gaál and Gorbatschev 1987) reveals the presence of oceanic floor and oceanic plateau basalts and ophiolites (Galley et al. 2007b). In contrast, there have been contrasting claims about whether or not Archean ocean floor rocks are preserved (Martin et al. 1993; Bickle et al. 1994; Kusky 1998; Kusky et al. 2001). This issue will be discussed more extensively in a subsequent section.

The abundance of TTGs decreased with time and they become lower in Al (Martin 1987); granitoid magmatism in general becomes more potassic in the Proterozoic (Fumerton 1987) reveals the presence of oceanic floor and oceanic plateau basalts and ophiolites (Galley et al. 2007b). In contrast, there have been contrasting claims about whether or not Archean ocean floor rocks are preserved (Martin et al. 1993; Bickle et al. 1994; Kusky 1998; Kusky et al. 2001). This issue will be discussed more extensively in a subsequent section.

Structural Style
In contrast to the dome-and-keel structural style of Archean greenstone belts, individual lithotectonic assemblages in Proterozoic greenstone belts are thrust-bounded packages (Lucas et al. 1996). When Proterozoic orogens as a whole are considered, they vary from clearly accretionary systems to abnormally thick crustal sections related to accretion (Korja et al. 2006).

ARCHEAN TECTONIC MODELS

General Considerations
The tectonic processes that produced the unusual rock types and structural style of Archean greenstone belts are important in developing a full understanding of the genesis of Archean granite–greenstone terranes. Identification of the processes involved centres upon the presence or absence of horizontal processes, i.e. Archean plate tectonics vs. vertical processes such as granitoid diapirism and convective overturn. If greenstone belts originate by completely autochthonous processes, this would tend to minimize the importance of horizontal tectonics. If, on the other hand, greenstone belts are allochthonous, complete with fold and thrust belts, metamorphic core complexes, ophiolites, blueschists, etc., then Archean tectonic processes should be little different from those observed in younger orogens. Like most geological problems, there are advocates on both sides of the issue; for example, Hamilton (1998), Stern (2005), and Bédard et al. (2013) favour the autochthonous model, whereas Langford and Morin (1976), Polat et al. (1998), Hollings and Kerrich (1999), and Percival et al. (2004) argue for the allochthonous model. This discussion will review the evidence for both hypotheses.

Plate Tectonic Origin for Granite–Greenstone Terranes
The plate tectonic model for the modern Earth is characterized by the presence of seafloor spreading, subduction (including its related distinctive magmatism), and continental drift. The operation of the model in the Archean should result in the preservation of rocks and primary structures representing distinct geodynamic settings: ocean floor, island arcs, continental arcs, passive margins, subduction-related mélanges, and metamorphic belts. Langford and Morin (1976) proposed a plate tectonic origin for the Superior Province. They noted the fundamentally different character of granite–greenstone terranes vs. sedimentary subprovinces in the northwestern part of the Superior Province in terms of rock types, metallogeny, stratigraphy and radiometric ages. The hypothesis was supported by a limited number of U–Pb zircon ages showing that the northern part of the Superior Province is older than the greenstone belts to the south (Krogh and Davis 1971). More recent syntheses of Superior Province geology (Card 1990; Williams et al. 1992) have fleshed out the concepts. Percival and coworkers (Percival et al. 2004, 2006; Percival and Helmstaedt 2006) established over 20 domains, terranes, subprovinces and superterranes in the Superior Province. These authors classify the various tectonic blocks as continental fragments (e.g. North Caribou, Marmion, and Winnipeg River terranes) separated by volcanic rich oceanic domains (e.g. the Wawa–Abitibi and Wabigoon terranes, and Oxford–Stull domain) and orogenic flysch belts (e.g. the English River, Quetico, and Ashuanipi belts).

Evidence favouring the plate tectonic hypothesis in the Superior Province includes: 1) the long, linear nature of the various tectonic blocks; 2) an orderly southward-younging of the ages of volcanism, plutonism, and shear zones (Fig. 27) bounding major tectonic blocks; and 3) a crustal structure observed in reflection seismic images that is consistent with accretionary tectonics (Calvert et al. 1995; Calvert and Ludden 1999; White et al. 2003; Percival et al. 2004a; Percival and Helmstaedt 2006). The plate tectonic hypothesis calls for a ca. 2720 Ma amalgamation of the Hudson Bay terrane (or Northern Superior superterrace) with the North Caribou terrane, followed by the Uchian orogeny in which the North Caribou, English River, and Winnipeg River terranes are accreted at about 2700 Ma, and finally the Shebandowanian orogeny in
which the composite Superior superterrane collides with the Wawa–Abitibi terrane at about 2690 Ma (Fig. 1).

Another major line of evidence for the plate tectonic hypothesis is the presence in greenstone belts of relatively unusual, geochemically-defined rock types having linkages to plate tectonic processes in younger orogens, as discussed previously. The most extensive research on these unusual rocks has been done in the Superior Province. They include boninites (Kerrich et al. 1998) in the komatiite–tholeiite geochemical association, and adakites, high-Mg andesites, and Nb-enriched basalts in the bimodal geochemical association. The adakites and related rocks are found in volcanic units (e.g. Hollings and Kerrich 2000; Wyman et al. 2000; Polat and Kerrich 2001; Boily and Dion 2002), syn- to late-tectonic batholiths (Feng and Kerrich 1992), and in post-tectonic diorites/sanukitoids (Smithies and Champion 2000). These unusual rock types are also documented in the Yilgarn (Angerer et al. 2013), Pilbara (Smithies 2002), Baltic (Shchipansky et al. 2004), Dharwar (Manikyamba et al. 2005; Naqvi et al. 2006; Naqvi 2008), and Kaapvaal (Wilson 2002) cratons.

Many authors point to reflection seismic images as evidence for the operation of plate tectonics in the development of the Superior Province (Percival et al. 2004, and references therein). The presence of fossil subduction zones in reflection seismic profiles has been discussed in a previous section. However, similar structures beneath the Yilgarn craton are interpreted to indicate delamination at the base of the crust (Goleby et al. 2006).

The ‘Metamorphic Core Complex’ Model
Alpine-style thrusting allied with extension can produce so-called ‘metamorphic core complexes.’ Such a model has been proposed for the Superior (Sawyer and Barnes 1994) and Pilbara (Bickle et al. 1980; Zegers et al. 1996; Blewett 2002) cratons. This style of tectonics requires extensive normal faulting and extension such that domical zones of high metamorphic grade rocks (centred on granitic batholiths) form the structures known as metamorphic core complexes. The advent of widespread geochronology in granite–greenstone terranes has ruled out the extensive duplication of strata expected with such a model in either of these cratons, as seen in more recent descriptions (Van Kranendonk et al. 2007a; Thurston et al. 2008).

The ‘Mantle Wind’ Model
The continued northward motion of the Indian microcontinent leading to collision with Eurasia has taken place over ca. 50 m.y. without the presence of a plate boundary driving force. Alvarez (2010) advanced the concept of ‘basal traction,’ or more colloquially the ‘mantle wind,’ as the driving force for this movement. This mechanism is the basis for an alternative tectonic model for the Archean (Bédard et al. 2013), as summarized in the following paragraphs.

The model requires the development of cratonic ‘roots’ or ‘keels’ that extend to or beyond the lithosphere–asthenosphere boundary. These keels obstruct upper mantle flow, which deflects around the keels and also has the effect of moving them. This process provides the force to move continental blocks, resulting in the accretion of microcontinental fragments to make cratons. The individual microcontinental blocks represent oceanic plateaux in which komatiitic to tholeiite greenstones develop, and the increasing thickness of these plateaux would bring basaltic material down to depths required to produce TTGs and TTG-related felsic volcanic rocks.

However, the oceanic plateaux suggested in the Bédard et al. (2013) model (Fig. 28) probably differ from modern equivalents. As noted by Kamber (2015), the consistent upward younging of greenstone stratigraphy described above for most greenstone belts is the essence of a volcanic plateau. Kamber (2010) also noted the existence in the Archean of a second type of landmass, based on the REE chemistry of marine chemical sediments and their Sr- and Nd-isotopic systematics. Any postulated Archean volcanic plateau would differ from modern oceanic plateaux in terms of: 1) the presence of volcanic granitoid rocks; 2) the prevailing extensive hydration of Archean basalts in greenstone belts; and 3) the presence of thick cratonic mantle keels (Kamber 2015). The thickness and higher temperature of Archean plumes would have permitted the vertical growth of thick volcanic plateaux.

In the absence of plate tectonics, how are the overprinting structural fabrics and shortening in Archean orogens explained? If the Archean lacked subduction zones, then a global oceanic spreading ridge system cannot have existed, leaving only oceanic plateau crust – broadly comparable to the mafic units of greenstone belts. In this model, contractional structures and accreted terranes would develop at the leading edge of the craton and strike-slip structures at the sides.
Missing Plate Tectonic Indicators

Numerous authors have noted the nearly complete absence of ophiolites, Atlantic-style passive margins, overprinting fold-and-thrust belts, paired metamorphic belts, ultra-high-pressure (UHP) and ultra-high-temperature (UHT) metamorphic assemblages, and subduction zone mélanges in Archean granite–greenstone terranes (Kröner 1991; Chardon et al. 1996; Hamilton 1998, 2007; Bleeker 2002; McCall 2003; Stern 2005, 2008; Brown 2006, 2007). Subsequent investigations (Bédard et al. 2013) have noted the absence in greenstone belts of most cratons, including the Superior Province (Williams et al. 1992), the Yilgarn craton (Myers and Swager 1997), the Pilbara craton (Barley 1997) and the West African craton (Attoh and Ekwueme 1997). Although Archean ophiolites have been proposed (Robinson et al. 1997). The presence of distinctive sheeted dike arrays within ophiolites is a function of the balance between spreading rate and magmatism (Robinson et al. 2009). Although Archean ophiolites have been proposed (Helmstaedt et al. 1986; de Wit et al. 1987; Kusky 1998; Kusky et al. 2001; Dilek and Polat 2008), nowhere is a full ophiolite section of Archean age preserved. In a putative example of Archean oceanic crust reported by Kusky and Kidd (1992), Bickle et al. (1994) found basal unconformities rather than tectonic contacts, xenocrystic zircons indicating interaction with older crust, isotopic and geochemical evidence of crustal contamination, and intrusive relationships between older basement and the internal stratigraphy of the purported ophiolite. If Archean oceanic crust were thicker than modern oceanic crust (Sleep and Windley 1982; Hoffman and Ranalli 1988), deeper crust characterized by distinctive ophiolite features such as sheeted dikes may well have been subducted (Condie and Benn 2006). The proposed ophiolite in the Kam Group of the Yellowstone greenstone belt in the Slave Province (Eckerd 1986) has been disproved using trace element geochemistry and Nd isotopic data (Cousens 2000). Similarly, the proposed 2.5 Ga Dongwanzi ophiolite (Kusky et al. 2001) has subsequently been questioned (Zhao et al. 2002).

Atlantic-Style Passive Margins

Atlantic-style passive margins featuring widespread units of shallow-water carbonate and siliciclastic rocks do not exist in Archean granite–greenstone terranes. In the La Grande subprovince, lateral transitions over a distance of 5−8 km have been observed from shallow-water quartz arenites displaying cross-stratification and mud drapes, to submarine fans containing sheet sandstones (Goutier 2006). Sedimentary carbonate units in the Archean are rare and of limited lateral extent (Ojakangas 1985). However, Condie and Benn (2006) point to sequences such as the Moodies Supergroup of South Africa (Lowe et al. 1999) as possible analogues of Atlantic margins.

Deep-Water Sedimentary Rocks

Metasedimentary rocks, especially mudrocks, make up only a very small proportion of volcanic successions in Archean greenstone belts of most cratons, including the Superior Province (Williams et al. 1992), the Yilgarn greenstone (Myers and Swager 1997), the Pilbara craton (Barley 1997) and the West African craton (Attoh and Ekwueme 1997). Although wacke–pelite sequences are rare in greenstones of the Superior and Kaapvaal cratons, they do make up much of the sedi-
mentary subprovinces of the Superior craton (Williams et al. 1992) and the Limpopo belt of the Kaapvaal craton (Eglington and Armstrong 2004). In contrast, the Slave craton has areally extensive sediments overlying the greenstone belts (Bleeker and Hall 2007). In modern orogens, deep-water sedimentary rocks consist of ~70% mudstones (Aplin and Macquaker 2011).

Fold and Thrust Belts
There are numerous descriptions of thrusting within greenstone belts on most cratons (de Wit et al. 1987; Devaney and Williams 1989b; Van Kranendonk et al. 2002; Bleeker 2012; Furnes et al. 2013). The crucial question is whether the thrusting is local or larger in scale. Greenstone belts in the Superior craton (Williams et al. 1992), the Pilbara craton (Van Kranendonk et al. 2004), and in Zimbabwe (Pendergast 2004), as typical examples, feature upward-facing, upward-younging stratigraphy, and no major thrust-based stratigraphic duplication or long-distance tectonic transport by thrusts. Reflection seismic images (Goleby et al. 2004; Snyder et al. 2008) show that there is no kilometre-scale thrust transport of greenstone sequences, in contrast to the structural style of Phanerozoic accretionary orogens (Percival et al. 2004).

Blueschists, Ultra-High-Pressure Rocks, and Paired Metamorphic Belts
Blueschist metamorphic rocks typical of subduction zones are not known in the Archean, probably because of higher thermal gradients (Hamilton 1998) and the difficulty of rapid exhumation (Ernst and Liou 1999). Likewise, ultra-high-pressure rocks of Archean age are rare (Brown 2007; Stern 2008), although they are found at Gridino on the White Sea in the Karelian craton (Perchuk and Morgunova 2014). Paired metamorphic belts consist of a trench-proximal, high pressure, low temperature belt succeeded inland by a low pressure, high temperature belt. Such pairings, typical of subduction settings (Miyashiro 1973), are not found in the Archean, again a likely function of the Archean thermal regime (Komiya et al. 2002).

Structural Style
The dome-and-keel structural style of Archean greenstone belts is unique and not repeated in subsequent earth history (Bédard et al. 2013). Although there is a southward younging of plutonism, volcanism, and shear zones in the Superior Province, each major terrane has a unique, specific assemblage of rock types and event ages (Percival 2007). These relationships have been interpreted in terms of a plate tectonic scenario (Percival 2007), but it must be borne in mind that these relationships are also consistent with simple lateral transport of individual terranes.

Autochthonous vs. Allochthonous Greenstone Belts
If greenstone belts are autochthonous, this would tend to support a non-plate tectonic origin; however, it is still possible to consider autochthonous greenstones to represent some sort of continental arc setting. Listed below are characteristics of greenstones supporting an autochthonous origin.

1) Diking relationships in the Abitibi greenstone belt (Ayer et al. 2005) and the Confederation Lake greenstone belt of the North Caribou terrane (Rogers et al. 2000) show that dikes cutting older units are feeders to overlying volcanic units (Fig. 29), thus, older units in two major Superior Province greenstone belts were present when younger units were deposited. This may represent a limited dataset, but it is in two critical areas for interpretation of Archean tectonics in the Superior Province: the North Caribou superterrane and the Abitibi greenstone belt.

2) Isotopic inheritance is seen in recent U–Pb zircon age determinations in about 15% of samples from the Abitibi greenstone belt. The xenocrystic zircon grains are found in younger greenstone units and represent the ages of underlying volcanic units (Ayer et al. 2005). Similar inheritance patterns are seen in the Marmion terrane (Buse et al. 2010) and in the North Caribou terrane (Parks et al. 2006) of the Superior Province. In the Murchison domain of the Yilgarn craton (Van Kranendonk et al. 2013), 39 of 117 U–Pb zircon ages (mainly of greenstone belt units) show xenocrystic zircons. Extensive isotopic inheritance is described in the Pilbara terrane (Van Kranendonk et al. 2007a). However, the Abitibi greenstone belt units are largely juvenile and gener-
contaminated in contemporaneous depleted mantle (Corfù and Noble 1992; Carignan et al. 1993; Vervoort et al. 1994). Nevertheless, Hf isotope data show that the western edge of the Abitibi greenstone belt was underlain by 2.8e2.9 Ga crust (Ketchum et al. 2008).

3) **Contamination** of Archean basalts, based on negative Ti, Nb and Ta anomalies, is postulated to represent contamination of basaltic magmas through contact with granitoid rocks (Thurston 2002, and references therein), although these features can also be explained by magma origins in subduction systems (Polat et al. 1998; Hollings and Kerrich 2000) or by melting of over-thickened mafic crust (Hoffmann et al. 2011).

4) **Basal unconformities** between basement and greenstone belt units imply either a continental arc setting for a given belt, or autochthonous development (Thurston 2002). Basal unconformities are widespread in the North Caribou terrane (Thurston et al. 1991), at Steeprock in the Marmion terrane of the Superior Province (Wilks and Nisbet 1988), in the Slave craton (Bleeker 2002), and in the Belingwe greenstone belt of Zimbabwe (Bickle et al. 1994). Subtle cryptic unconformities can be marked by leaching of underlying greenstones (Thurston and Kozhevnikov 2000).

5) **Stratigraphic patterns:** The volcanic units in most major greenstone belts worldwide display upward-facing sequences, along with the younging of volcanic units away from granitoid bodies, indicating facing sequences, along with the younging of volcanic units away from granitoid bodies, indicating the batholiths and surrounding volcanic rocks represent a series of crustal sections (Van Kranendonk et al. 2002; Thurston et al. 2008). In the larger greenstone belts, some fundamental conundrums exist. For example, the seven volcanic assemblages of the Abitibi greenstone belt (Thurston et al. 2008) represent a total stratigraphic thickness of at least 45 km. However, the greenstone belt is at sub-greenschist to greenschist grade (Easton 2000), which is difficult to reconcile with an average geothermal gradient of 25e30°C/km. Have large greenstone belts (Fig 2) undergone thrust-based condensation of stratigraphy? Is there some sort of volcanicism-induced subsidence (Hargraves 1976), or is the stratigraphic thickness a function of onlapping stratigraphic lenses? In contrast to Phanerozoic orogens, most greenstone belts do not display evidence for large-scale horizontal tectonic transport. For example, in the Abitibi greenstone belt, Thurston et al. (2008) note a lack of evidence for large-scale thrusting, whereas in detailed seismic sections (Snyder et al. 2008), there are few out-of-sequence volcanic units (Ayer et al. 2005), and detailed structural studies (Benn and Peschler 2005) all indicate no large-scale thrusting. The stratigraphic map of the Abitibi greenstone belt (Thurston et al. 2008; Fig. 18) demonstrates off-lapping stratigraphic geometry. Similar patterns of upward-facing, upward-younging stratigraphy are seen in the North Caribou greenstone belt (Thurston et al. 1991; Sanborn-Barrie et al. 2001), the Wabigoon subprovince (Sanborn-Barrie and Skulski 2006), and the Pilbara (Van Kranendonk et al. 2007a), Yilgarn (Van Kranendonk et al. 2013), and Zimbabwe (Bickle et al. 1994) orogenic belts.

The stratigraphy of plume-related units in the Abitibi greenstone belt shows some interesting patterns involving potential structural controls. There are basically three plume events in the Abitibi greenstone belt: 1) the 2723e2720 Ma StoughtoneRoquemaure episode; 2) the 2719e2711 Ma KiddeMunro episode (including the 2717e2714 Ma LalometteeVassan Group in Québec); and 3) the 2710e2704 Ma episode (Tisdale in Ontario and Jacola in Québec), collectively related to a single plume in which magma separation occurred at increasingly shallower depths (Sproule et al. 2002; Dostal and Mueller 2013). The komatiites occur along two crustal-scale fault zones, suggesting that the plume either created or followed these zones of weakness. Interdigitation of compositionally different komatiites and tholeiites in small-volume (1e10 km³) flows suggests a compositionally heterogeneous plume; selective tapping of various plume zones would then explain this style of compositional variation. Dostal and Mueller (2013) compare this situation to the Yellowstone hotspot, which developed over ca. 17 m.y. and had a diameter of about 300 km.

Archean greenstone belts present a paradox, in that rocks of the komatiite–tholeiite association are of plume derivation and make up 80e90% of many greenstone belts (Ayer et al. 2005; Van Kranendonk et al. 2007a; Thurston et al. 2008; Barnes and Van Kranendonk 2014), whereas interbedded calcalkaline units have been interpreted to represent convergent margin processes. Plume–arc interaction has been invoked (Kerrich et al. 1998; Wyman et al. 2002), but a scale problem and a mechanical problem both emerge when one observes that, in the Yilgarn (Barnes and Van Kranendonk 2014), extensive plume-related komatiites and tholeiites are accompanied by minor accumulations of calc-alkaline andesite to dacite/rhyolite. In the Abitibi greenstone belt there is a fourfold repetition of this pattern (Ayer et al. 2002b), requiring an appeal to multiple episodes of arc–plume interaction (Bédard 2013; Bédard et al. 2013). Wyman and Kerrich (2009) respond by proposing a subduction zone along the entire south margin of the Superior Province.

Evidence for Modern Plate Tectonic Interpretations

The term, ‘oceanic domains,’ is controversial. The ‘oceanic domains’ of Percival (2007) should display no isotopic inheritance, however, it must be borne in mind that an age difference between two units of at least 150 m.y. is necessary for discernible evidence of inheritance to be apparent in the Sm–Nd and Lu–Hf systems (Larbi et al. 1999). Second, the process of searching for datable zircon grains in a geochronological lab involves a general process of: 1) ignoring high-U grains, in that they are strongly discordant; and 2) concentration on one or two zircon populations in order to obtain a crystallization age. Thus, 20th century U–Pb zircon geochronology rarely found discernible evidence of inheritance to be apparent in the Sm–Nd and Lu–Hf systems (Larbi et al. 1999). Second, the process of searching for datable zircon grains in a geochronological lab involves a general process of: 1) ignoring high-U grains, in that they are strongly discordant; and 2) concentration on one or two zircon populations in order to obtain a crystallization age. Thus, 20th century U–Pb zircon geochronology rarely found discernible evidence of inheritance to be apparent in the Sm–Nd and Lu–Hf systems (Larbi et al. 1999). Second, the process of searching for datable zircon grains in a geochronological lab involves a general process of: 1) ignoring high-U grains, in that they are strongly discordant; and 2) concentration on one or two zircon populations in order to obtain a crystallization age. Thus, 20th century U–Pb zircon geochronology rarely found discernible evidence of inheritance to be apparent in the Sm–Nd and Lu–Hf systems.
greenstone belt (Ayer et al. 2005) and the Marmion terrane (Tomlinson et al. 2003; Buse et al. 2010). Similar patterns of xenocrystic zircons subjacent units are now found in other cratons, such as the East Pilbara (Van Kranendonk 2012) and the Yilgarn (Claué-Long et al. 1988).

Much of the evidence for any plate tectonic interpretation of granite–greenstone terranes lies in the geochemistry of the volcanic units and the post-TTG granitoid rocks. As described previously, geochemical signatures of ‘arcs’ are found both in the mafic and the felsic volcanic units within greenstone belts. The geochemical signature of modern arcs consists of: 1) enrichment of LILE (Sr, K, Rb, Ba) vs. HFSE (Th–Yb), which exhibit MORB-like concentrations. In addition, arc rocks show distinctive negative anomalies for Ti, Nb and Ta. However, the stratigraphic/tectonic location of Archean greenstones with the ‘arc’ signature is critical to their interpretation. ‘Arc’ rocks in greenstone belts occur mainly in the bimodal geochemical association in both the basaltic basal zones of these sequences and in the isolated felsic eruptive centres (Ayer et al. 2005) and, more rarely, in distinct tectonically-bounded zones of greenstone belts (Lodge et al. 2013).

There is evidence for large-scale tectonic transport of terranes (as distinct from stratigraphic units) in the Superior Province; this is seen in the uniform northward vergence of structures associated with terrane margins (White et al. 2001). In addition, the provenance of sedimentary rocks in the sedimentary subprovinces indicates derivation from terranes on the north margins of, for example, the English River (Breaks 1991; Hrabi and Cruden 2006) and the Quetico (Williams 1991) subprovinces. Inevitably, the margins of cratonic blocks in Archean orogens will demonstrate structural complexity. For example, Kusky and Polat (1999) describe the intercalation, along the south margin of the Wawa–Abitibi terrane, of tholeiitic to calc-alkaline basalts (island arc?) and metasedimentary rocks that are collectively interpreted to represent an accretionary collage. The thrust-telescoped transition along the south margin of the Wabigoon subprovince, from alluvial metasedimentary rocks and back arc basalts, through submarine fan sedimentary rocks and arc basalts, to abyssal wackes and oceanic basalts (Tomlinson et al. 1996), has been interpreted to record plate-related accretion (Devaney and Williams 1989).

Inconsistencies in the Plate Tectonic Model for Archean Greenstone Belts
In this section, the various inconsistencies in the plate tectonic model for Archean greenstone belts are enumerated, with emphasis on the Superior Province.

Geochemistry and Stratigraphy
Researchers of the Kerrich school (Kerrich, Wyman, Polat and Hollings) have found small volumes of unusual rock types such as boninites, adakites, Nb-enriched basalts and magnesium andesites within greenstone belts of the Superior Province, as described above. Similar features are found in the Pilbara craton (Smithies 2002; Smithies et al. 2005, 2007). Given the fact that approximately 90% of greenstone belt stratigraphic sections are plume-derived tholeiites and komatiites, arc–plume interaction (Wyman and Hollings 1998; Wyman and Kerrich 2009) is the conventional explanation for an apparent strati-
ments to demonstrate the difficulty of generating the great volumes of TTGs in middle to deep crust by subduction processes. For example, given the 40 km thickness of northeastern Superior Province crust and its width of 500 km, some 20,000 km3 of TTG/km of strike length must be generated in the 300 m.y. interval from 3.0 to 2.7 Ga. Furthermore, when the 2740–2720 Ma actual range of TTG ages in the northeastern Superior Province is factored in, 10,000 km3 of TTG/km of strike length must be generated in a 20 m.y. period. If this is accomplished by 10% melting of a 10 km thick slab moving at 1.2 cm/year, then only 3600 km3 of TTGs are generated in 300 m.y. In short, to generate the observed volume of TTGs in the northeastern Superior Province, six subduction zones operating an order of magnitude faster is required. These calculations assume melting of the entire 10 km thickness of the oceanic slab, which is also not realistic.

Role for Lateral Accretion?

Early investigators (Langford and Morin 1976; Card 1990) interpreted the southward younging of the ages of volcanic rocks, granitoid rocks, and terrane-binding shear zones in the Superior Province in terms of plate tectonic processes. The argument can also be advanced that the southward-younging ages of shear zones, in particular, can be explained by lateral accretion of terranes onto an older (~3 Ga) central nucleus, the North Caribou Terrane, without requiring subduction (Bédard et al. 2013). In fact, the detritus in the sedimentary accumulations on the margins of granite–greenstone terranes (e.g. the English River and Quetico terranes in the Superior Province) are derived from the adjacent granite–greenstone terranes to the north of these metasedimentary subprovinces (Davis 1990, 1993).

Other Models

The geochemical arguments about rutile retention and production of the observed large volumes of TTGs in granite–greenstone terranes suggest that a serious re-examination of alternatives is required. Bédard et al. (2013) support a so-called ‘mantle wind’ model involving mantle currents laterally displacing oceanic plateaux. In this model, there would be contractional structures and accreted terranes at the leading edge of cratons, strike-slip and oblique extensional structures at the sides, and major shear zones in the cratonic interiors.

CONCLUSIONS

Secular Variation

In the Archean Earth, radioactive heat production was concentrated in the crust, given the greater concentration of K, U, and Th in the crust compared to the mantle. With heat production concentrated in the crust, the crust became strong. The temperature of the Archean asthenosphere was not uniform; rather, it was concentrated in mantle plumes (Kamber 2015). The proportion of komatiites was higher, and these rocks were distinctly different from their modern analogues (Arndt et al. 2008). TTGs were more abundant, and the high-Al type was more abundant than the low-Al type (Martin 1987; Bradley 2011).

Additional Constraints on Archean Tectonic Regimes

Condie and Benn (2006) provide an elegant summary of constraints on Archean tectonic regimes that forms the basis for the following analysis. Although the dome-and-keel structural style of Archean greenstone belts is more readily attributed to vertical tectonics (Van Kranendonk et al. 2004), the upright regional-scale folds and transpressive shear zones are more easily explained by rigid lithospheric plates (Choukroune et al. 1997). The large volume of Archean crust produced at ~2.7 Ga is not an artefact of preservation, in that it is mirrored by: 1) the abundance of komatiites and changes in shale geochemistry, a proxy for a major change in crustal composition (Taylor and McLennan 1985); and 2) variations in the composition of sub-continental lithospheric mantle (Griffin et al. 2003). Archean cratons have unusually thick, depleted lithosphere that formed at about the same time as the overlying crust (Begg et al. 2009) and the buoyant oceanic plates beneath the continent, yet Archean eclogitic and granulite xenoliths are not common on Archean cratons (Condie and Benn 2006). Many Archean greenstones contain rocks with ‘arc-like’ geochemistry, a key indicator of plate tectonics. Plume-derived greenstones form up to 80% of Archean greenstone belts (Condie and Benn 2006), which is greater than the proportion seen in younger orogenic systems. Paleomagnetic data from the Kaapvaal craton (Layer et al. 1989) and Superior craton (Hale and Lloyd 1989) indicate that there was significant polar wandering in the Archean.

In the face of these factors, how is a definitive conclusion reached with respect to the operative processes in Archean tectonics? The modern style of plate tectonics requires the Earth to have cooled sufficiently to generate decompression melting at mid-ocean ridges, in turn allowing oceanic lithosphere to develop sufficient negative buoyancy after a few tens of millions of years to initiate subduction. A conservative point of view states that unequivocal plate tectonics did not begin until ca. 1.9 Ga (Lucas et al. 1996) or perhaps 1 Ga (Condie et al. 2006; Stern 2008). More moderate points of view (Dhuime et al. 2012; Laurent et al. 2014) would have plate tectonics begin at some point between 3.0 and 2.5 Ga. In reality, plate tectonics probably made a few ‘false starts’ prior to becoming the prevailing system we know today (Silver and Behn 2008).

At this time there are few explanations for the absence of key rock types such as andesites that are indicative of plate tectonics. Although some may not agree with the discussion of TTG generation and volumes of TTGs presented by Bédard et al. (2013), this author prefers to conclude that, while there are geochemical features interpreted as evidence of subduction, the missing rock types are a powerful argument for the ‘mantle wind’ hypothesis. Modifications of that hypothesis are contained in the work of Kamber (2015).

ACKNOWLEDGEMENTS

Aspects of this paper have been aided by a recent review of Archean greenstones concentrating largely on the Kaapvaal craton (Anhaeusser 2014) and an interesting review of Precambrian geodynamics (Kamber 2015). This review came about through an invitation from Jarda Dostal, an associate editor of Geoscience Canada. My knowledge of granite–greenstone terranes has benefited from my experience with the Ontario Geological Survey, as well as my subsequent tenure in the Department of Earth Sciences at Laurentian University. At Laurentian, I was aided by NSERC Discovery Grants to pursue various topics centred on greenstone belt geology. This contribution was improved by early reviews from colleagues Harold Gibson and Matt Leybourne, and by the work of journal referees Pierre-Simon Ross and

Kelemen, PB., 1995, Genesis of high Mg# anodesites and the continental crust: Contributions to Mineralogy and Petrology, v. 120, p. 1–19, http://dx.doi.org/10.1007/BF00311004.

Received August 2014
Accepted as revised May 2015