Géographie physique et Quaternaire

The Cordilleran Ice Sheet: One Hundred and Fifty Years of Exploration and Discovery
L’Inlandsis de la Cordillère : cent cinquante ans d’exploration et de découvertes
Die Kordilleren-Eisdecke: 150 Jahre Erforschung und Entdeckung

Lionel E. Jackson, and John J. Clague

Article abstract

Present concepts about the Cordilleran Ice Sheet are the product of observations and ideas of several generations of earth scientists. The limits of glaciation in the Cordillera were established in the last half of the nineteenth century by explorers and naturalists, notably G. M. Dawson, R. G. McConnell, and T. C. Chamberlin. By the turn of the century, the gross configuration of the Cordilleran Ice Sheet had been determined, but the causes of glaciation and ice-sheet dynamics remained poorly understood. This early period of exploration and discovery was followed by a transitional period, from about 1900 to 1950, during which a variety of glacial landforms and deposits were explained (e.g., Channeled Scablands of Washington; “white silts” of southern British Columbia), and conceptual models of the growth and decay of the ice sheet were proposed. Shortly after World War II, there was a dramatic increase in research into all aspects of glaciation in the Canadian Cordillera which has continued unabated to the present. Part of the research effort during this period has been directed at resolving the Cordilleran Ice Sheet in both time and space. Local and regional fluctuations of the ice sheet have been reconstructed through stratigraphic and sedimentological studies, supported by radiocarbon and other dating techniques. Compilations of late Pleistocene ice-flow directions have shown that the Cordilleran Ice Sheet was a mass of coalescent glaciers flowing in a complex fashion from many montane source areas. During the postwar period, research has also begun or advanced significantly in several other disciplines, notably glaciology, process sedimentology, geomorphology, paleoecology, and marine geology. Attempts are now being made to quantitatively model the Cordilleran Ice Sheet using computers and the geological database assembled by past generations of earth scientists.
THE CORDILLERAN ICE SHEET: ONE HUNDRED AND FIFTY YEARS OF EXPLORATION AND DISCOVERY*

Lionel E. JACKSON, Jr. and John J. CLAGUE, Geological Survey of Canada, 100 West Pender Street, Vancouver, British Columbia V6B 1R8.

ABSTRACT Present concepts about the Cordilleran Ice Sheet are the product of observations and ideas of several generations of earth scientists. The limits of glaciation in the Cordillera were established in the last half of the nineteenth century by explorers and naturalists, notably G. M. Dawson, R. G. McConnell, and T. C. Chamberlin. By the turn of the century, the gross configuration of the Cordilleran Ice Sheet had been determined, but the causes of glaciation and ice-sheet dynamics remained poorly understood. This early period of exploration and discovery was followed by a transitional period, from about 1900 to 1950, during which a variety of glacial landforms and deposits were explained (e.g., Channeled Scablands of Washington; “white silts” of southern British Columbia), and conceptual models of the growth and decay of the ice sheet were proposed. Shortly after World War II, there was a dramatic increase in research into all aspects of glaciation in the Canadian Cordillera which has continued unabated to the present. Part of the research effort during this period has been directed at resolving the Cordilleran Ice Sheet in both time and space. Local and regional fluctuations of the ice sheet have been reconstructed through stratigraphic and sedimentological studies, supported by radiocarbon and other dating techniques. Compilations of late Pleistocene ice-flow directions have shown that the Cordilleran Ice Sheet was a mass of coalescent glaciers flowing in a complex fashion from many montane source areas. During the post-war period, research has also begun or advanced significantly in several other disciplines, notably glaciology, process sedimentology, geomorphology, paleoecology, and marine geology. Attempts are now being made to quantitatively model the Cordilleran Ice Sheet using computers and the geological database assembled by past generations of earth scientists.

* Geological Survey of Canada Contribution No. 45190
Manuscrit reçu le 10 décembre 1990; manuscrit révisé accepté le 21 mars 1991
INTRODUCTION

This paper traces the evolution of ideas about the last Cordilleran Ice Sheet and its glacial deposits and landforms from the middle 1800s to the present. It emphasizes seminal contributions that led to a better understanding of glaciation in the Canadian Cordillera, and also traces changes in thinking and research methodology through time.

Research on glaciation and glacial deposits in the Canadian Cordillera has passed through three phases:

1. The initial recognition of past glaciation in the Cordillera and definition of the limits of glaciation through observations made on marine, overland, and river traverses. This phase began around 1840 and was essentially complete by 1900.

2. A transitional period, from 1900 to 1950, featuring documentation of geologic events and processes along the margins of the Cordilleran Ice Sheet and better conceptual models of ice sheet form, growth, and decay. The packhorse was increasingly eclipsed by the automobile and floatplane during this period.

3. The present epoch, marked by an explosion of research into all aspects of glaciation in the Cordillera, using tools such as airphotos and satellite imagery, helicopters, and a variety of analytical techniques. This coincided with a dramatic increase in government and industry support for Quaternary studies in Canada and the training of Quaternary specialists in universities.

1840-1900, BEGINNINGS

The first suggestion that the Canadian Cordillera had once been more extensively covered by glaciers was made by J. D. Dana (1849: p. 677) based upon his observations while a member of the United States Naval Exploring Expedition between 1838 and 1842. Dana put forward this hypothesis as an explanation for the contrasting morphologies of the linear coastline of what is now Oregon and Washington and the fiord-cut coast of British and Russian North America. He also proposed that the glacial elevation had occurred as a result of elevation of the Cordillera considerably above its present elevation and that this elevation was followed by subsidence which submerged the glaciated valleys creating fjords.

The notion that this largely unexplored region had been extensively glaciated was a bold suggestion at the time. The iceberg-origin of drift was widely accepted (Lyell, 1833) and Agassiz's glacial theory was still controversial. It was not until the 1850s that the glacial theory was widely accepted on both sides of the Atlantic (Imbrie and Imbrie, 1979) and the scientific notion for the contrasting morphologies of the linear coastline was eclipsed by the automobile and floatplane during this period.

While Dawson was exploring British Columbia, complementary evidence for ice sheet glaciation in southern and central Yukon Territory was being gathered by R. G. McConnell. He defined the northern limit of glaciation in the Yukon and documented deep weathering of bedrock beyond this limit (McConnell, 1891).

In 1885, T. C. Chamberlin (Fig. 2), the other great progenitor of the Cordilleran and Laurentide ice sheets, began his legendary exploration of the Canadian northwest as a member of the North American Boundary Survey and later as an officer and finally Director of the Geological Survey of Canada. By the end of the decade, Dawson, along with J. Richardson, had documented former glaciation along the coast of British Columbia and the Alaska panhandle and demonstrated that glaciers had once covered what is now the continental shelf (Richardson, 1876; Dawson, 1877, 1879, 1889, 1890, 1890, 1891, 1895; Dawson and McConnell, 1885, 1895; Fig. 1). On these traverses, he described surficial deposits, measured the directions of striations, noted erratics and located their sources. In 1878, he announced that widespread glaciation had occurred in the interior of British Columbia. In his words: "In several cases, I have observed grooving at such heights and with such bearings as to preclude the possibility of its being attributed to glaciers moving from any of the present mountain-systems, and seeming to require for its explanation ice-action on a very much greater scale." (Dawson, 1879a, p. 100).

In his 1888 paper, Dawson first spoke of a "Cordilleran glacier", with a central divide and ice flow independent of topography. The following year, he reconstructed former ice sheet thicknesses and surface elevations for part of the Interior Plateau of British Columbia (Dawson, 1889).

While Dawson was exploring British Columbia, complementary evidence for ice sheet glaciation in southern and central Yukon Territory was being gathered by R. G. McConnell. He defined the northern limit of glaciation in the Yukon and documented deep weathering of bedrock beyond this limit (McConnell, 1891).

In 1885, T. C. Chamberlin (Fig. 2), the other great progenitor of the Cordilleran and Laurentide ice sheets, and R. D. Salisbury mapped the southern limits of glaciation across the

1. Dana also made the parallel observation that a similar transformation of coastal morphology occurs with increasing southerly latitude along the west coast of South America. It was on this expedition that Dana made his better known observations on coral atolls which corroborated Darwin's observations made during the voyage of the H. M. S. Beagle (1832-1836).

2. Although Dall is credited with the first description of an extinct vertebrate fauna in what is now known as Beringia, he was not the first to recognize these fossils. Robert Campbell, a Hudson Bay Company explorer and trader, collected vertebrate bones from gravels near Fort Selkirk, Yukon Territory, between 1848 and 1852. A single mammoth leg bone reached the British Museum from Campbell's collection (Dawson, 1894).
FIGURE 1. Traverses of early geologists/explorers who defined the extent of glaciation in the Canadian Cordillera.

3. The term "Cordilleran Ice Sheet" first appeared on a map by Upham (1896, Plate 2).
4. The past existence of a Cordilleran ice sheet was not universally accepted. Tyrrell (1919) was still questioning the idea well into this century.

northern United States on behalf of the United States Geological Survey (Chamberlin, 1886, 1888). In 1894, he produced his "ideal map of North America during the Ice Age", showing a remarkably accurate reconstruction of the ice sheets that covered Canada and the northern United States during the late Pleistocene (Fig. 3, 34). Although not the first map depicting the limits of past glaciation in North America (Plate XXV in Shaler and Davis, 1881), this and a more detailed colour map of "The Southern part of glacial deposits of the United States and Canada" (Plate XV in Geikie, 1894) were major contributions to knowledge at the time and strongly influenced subsequent thinking.

The last significant explorations of this period were carried out by I. C. Russell (1890) and C. H. Hayes (1892) of the United States Geological Survey in the Yukon River basin (Fig. 1). Hayes made the first traverse of the glacier-clad Saint Elias Mountains and documented Pleistocene glaciation in southwestern Yukon. Russell traversed the basin from central Alaska to the headwaters of Yukon River.

CONCEPTUAL MODEL OF THE CORDILLERAN ICE SHEET

Although the general limits of the late Pleistocene ice sheet in western Canada had been documented by the end of the last century, the hows and whys of glaciation remained poorly understood and controversial. Knowledge of glacier flow and mass balance and contemporary glacial environments was almost totally lacking. Only a few glaciological studies were carried out prior to 1900, and the investigation of the sedimentology of present-day and Pleistocene glacial deposits was in its infancy (Jopling, 1975). Even the linkage between climate change and glaciation e.g., Chamberlin, (1895) was not accepted universally. Dawson (1895; see also Johnston, 1932), for example, thought that it was just as likely that glaciation in the Cordillera had been caused by uplift of the land as a lowering of the firn line as had been proposed almost half a century before by Dana (1849).

Even with these limitations, Dawson's (1889) reconstruction of the "Cordilleran glacier" provided a reasonable basis for speculating on ice-sheet flow, growth, and decay. It featured radial outward flow from a central divide between 55° and 59°N latitude, at an elevation of about 3050 m. This ice sheet was similar in appearance to the present-day Greenland Ice Sheet. Dawson's view of the growth of the ice sheet has persisted essentially unchanged to the present and is the philosophical
FIGURE 2. G. M. Dawson (left) and T. C. Chamberlin (right), the two geologists most responsible for developing the concept of the Cordilleran Ice Sheet.

FIGURE 3. Chamberlin’s representation of the vanished ice sheets of North America (Plate XIV in Geike, 1894).

La répartition en Amérique du Nord des glaciers disparus, selon Chamberlin (planche XIV in Geike, 1894).

underpinning of recent conceptual and quantitative models of glaciation in this region: “It may be supposed that, under certain not improbable combinations of conditions, the mountainous country to the north... became preeminently the condensor of the Northern Pacific, and, from the mere accumulation of snow and ice, the focus of glacier-action and point of radiation of great glaciers. If the central plateau was ever filled thus by a great glacier-mass, the ice must have poured southward through the gaps on the 49th parallel, and westward across the Coast range, in a manner similar to that in which the ice supposed by Professor Geikie to have filled the Gulf of Bothnia must have crossed the Scandinavian peninsula.” (Dawson, 1878a, p. 119).

1900-1950, TRANSITIONS

Science took a back seat to world events during much of this tumultuous period, which included two world wars and a great depression. Transportation technology, spurred in part by these wars, advanced rapidly, and airplanes and helicopters increasingly were used in support of field operations. Airphotos were first used during the latter part of this period. The automobile displaced the packhorse in areas with roads, and the outboard motor replaced the pole and paddle on lakes and rivers.

Between 1900 and 1950, relatively little additional information was gathered about glacial limits, except in central Yukon Territory (McConnell, 1903; Bostock, 1934, 1936) and in the Puget Sound-Juan de Fuca Strait area (Bretz, 1913, 1920). Observations related to the effects of glaciation and former ice flow directions, however, were routinely recorded by government geologists while mapping bedrock throughout the
Cordillera. These observations were subsequently synthesized by scientists with strong interests in Quaternary geology and glaciation, for example, Johnston (1926), Kerr (1934, 1936), Mathews (1944), and Armstrong and Tipper (1948) in northern and north-central British Columbia.

With the documentation of a former ice sheet in the Cordillera, previously mysterious geomorphic features and sediments could be explained. Implications of the Cordilleran Ice Sheet for other disciplines, such as glaciology and climatology, also became apparent. In the interior valleys of the Cordillera, extensive bedded silts, called “white silts” by Dawson (1888) and regarded by him to have been deposited during a postglacial marine incursion, were shown to be products of ice-marginal and proglacial lake ponding during deglaciation (Daly, 1912; Flint, 1935). A knowledge of glaciation was instrumental in explaining the geologic setting of placer gold deposits in central British Columbia (Johnston, 1926; Johnston and Uglow, 1926, 1933). The Channeled Scablands of eastern Washington were recognized as having formed during enormous floods from Glacial Lake Missoula, a large lake dammed by a lobe of the Cordilleran Ice Sheet (Wood, 1892; Pardee, 1910; Bretz, 1923a, 1923b, 1925, 1928a, 1928b, 1928c).

A controversy over the nature of the contact and interaction between the Cordilleran and Laurentide ice sheets began in the nineteenth century but it was not until 1927, when artifacts were discovered in association with extinct ice age vertebrates at Folsom, New Mexico, that the issue generated widespread interest. Questions immediately arose as to whether or not humans could reach middle latitudes of North America during the late Pleistocene via an “ice-free corridor” between the two ice sheets. W. A. Johnston (1933) was the first to suggest this possibility, based on his field investigations along the eastern side of the Rocky Mountain (Johnston and Wickenden, 1931), and arguments pro and con have raged ever since. Although still not resolved, this controversy has stimulated research on a variety of Quaternary topics along the eastern margin of the Cordillera in both Canada and the northern United States.

A better understanding of the Cordilleran Ice Sheet also stimulated interest in its effects on the crust and mantle.

5. Traversing British Columbia from the Pacific coast, Dawson naturally thought that much of the silts and “boulder clays” were marine in origin. He attributed them to an incursion of the Arctic Ocean during a period of tectonic depression of the Cordillera following glaciation (Dawson, 1876a, 1888, 1891), an idea which apparently started with J. D. Dana (1849). Although, isostatic depression due to glacier loading was recognized as early as 1868 in Scotland (Jamiessie, 1868), it was not until 1890 that I. C. Russell suggested that it may have played a role in ponded former glacial lakes in southern Yukon (Russell, 1890). The notion of a postglacial marine incursion into the centre of the Cordillera survived until the first decade of this century (Osborn, 1910, p. 442).

6. Chamberlain (1882) suggested that the two ice sheets had coalesced, whereas Dawson and McConnell (1895) placed the western limit of the Laurentide Ice Sheet hundreds of kilometres east of the Cordillera.

7. The coexistence of humans and late Pleistocene faunas in the New World was first suggested in the early nineteenth century (see Osborn (1910) for a discussion), but the Folsom discovery in 1927 was the first with incontrovertible evidence.

The term “ice-free corridor” was coined by Antevs (1937). Johnston (1921) presented evidence for rapid sea-level change on the British Columbia coast during the Pleistocene, which he attributed to eustatic effects and to isostatic depression and rebound along the margin of the ice sheet. In 1934, R. A. Daly published his influential “The changing world of the ice ages”, which included the first comprehensive synthesis of isostatic and eustatic effects of ice sheets, based in part on evidence from British Columbia. This work heralded recent research on this topic in Canada and elsewhere.

ICE SHEET MODELLING DURING THE TRANSITIONAL YEARS

During the transitional period, more details were added to the picture of ice sheet morphology, flow, growth, and decay. Cross-sectional and conceptual reconstructions of the Cordilleran Ice Sheet grew in complexity. Daly (1912) constructed the first complete cross-section of the ice sheet along the International Boundary. Several depictions of the ice sheet from the early years of the twentieth century were based on the Greenland Ice Sheet analogue proposed by Dawson in the late 1880s (e.g., Chamberlin, 1907, 1913).

In the 1920s, detailed study of ice-flow patterns in northern British Columbia led Johnston (1926) to abandon Dawson’s Greenland Ice Sheet analogue. Instead, he suggested that the Cordillera was covered by a coalescent “system of intermontane, piedmont and valley glaciers” (a similar reconstruction for the Selwyn lobe in Yukon Territory has been made by L. E. Jackson et al. in this volume).

Analysis of ice-flow patterns and montane geomorphic features, such as rounded summits at high elevations, led Kerr (1934) and Davis and Mathews (1944) to formalize a four-phase model of glaciation in the Cordillera (Fig. 4). As climate deteriorated early during a glacial episode, small mountain ice fields grew and alpine glaciers advanced (alpine phase). With continued cooling and perhaps increased precipitation, glaciers expanded and coalesced to form a more extensive cover of ice in mountain areas (intense alpine phase). During long sustained cold periods, these glaciers advanced across plateaus and lowlands and eventually grew into large confluent masses of ice (mountain ice sheet phase). Throughout this period, the major mountain systems remained the principal sources of glaciers, and ice flow was controlled by topography. During the final phase, which was infrequently achieved, ice thickened to such an extent that domes with surface flow radially away from their centres became established over the interior of British Columbia and southern Yukon Territory (continental ice sheet phase).

1950-PRESENT, A NEW ERA OF EXPLORATION AND DISCOVERY

Governments, recognizing the importance of Quaternary deposits and processes for planning and development, initiated surficial geology mapping programs in the Canadian Cordillera after World War II. This coincided with the establishment of Quaternary geology courses in Canadian and United States universities. The result was a great increase in the number of Quaternary scientists and students working in the Cordillera, as well as an increase in the number and range of Quaternary
L. E. JACKSON, Jr. and J. J. CLAGUE

FIGURE 4. Conceptual model of growth and decay of the Cordilleran Ice Sheet (Clague, 1989, Fig. 1.13). A) Mountain area at the beginning of a glaciation. B) Development of a network of valley glaciers. C) Coalescence of valley and piedmont lobes to form an ice sheet. D) Decay of ice sheet by downwasting. E) Residual dead ice masses confined to valleys. Stages A-C follow the model of ice-sheet growth proposed by Kerr (1934) and Davis and Mathews (1944); stages D-E follow the ice-sheet model of Fulton (1967).

studies. This began around 1950, accelerated markedly in the 1960s and 1970s, and continues today.

Part of this research effort has been directed at resolving the Cordilleran Ice Sheet in both space and time. Aerial photographs, satellite images, float planes, and helicopters have permitted the detailed mapping of formerly inaccessible areas in Yukon Territory and northern British Columbia. This, in turn, has provided a better understanding of the characteristics and history of the northern part of the Cordilleran Ice Sheet (Bostock, 1966; Hughes et al., 1969; also see J. M. Ryder and D. Maynard in this volume).

Local and regional fluctuations of the ice sheet have been reconstructed by studying the stratigraphy and sedimentology of Quaternary deposits (Ryder and Clague, 1989; Jackson et al., 1989), and radiocarbon dating has provided a chronological framework for these events (Fulton, 1971; Clague, 1980, 1981, 1989; Jackson and Pawson, 1984). Prior to 1950, detailed Pleistocene stratigraphic reconstructions had been attempted only for the Puget Lowland area of northwestern Washington (Willis, 1898, Brezt, 1913) and the Foothills of southwestern Alberta (Dawson and Mcconnell, 1895). Since 1950, two generations of Quaternary scientists have modified existing schemes and established new stratigraphies in many other areas (Table I).

TABLE I

Examples of papers that established regional stratigraphic frameworks for areas covered by the Cordilleran Ice Sheet and satellite glaciers

<table>
<thead>
<tr>
<th>Location</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Yukon</td>
<td>Bostock, 1966,</td>
</tr>
<tr>
<td></td>
<td>Hughes et al., 1969</td>
</tr>
<tr>
<td>Southwestern Yukon</td>
<td>Denton and Stuiver, 1967;</td>
</tr>
<tr>
<td></td>
<td>Rampton, 1971</td>
</tr>
<tr>
<td>Southeastern Yukon</td>
<td>Klassen, 1978, 1987</td>
</tr>
<tr>
<td>Peace River basin, British Columbia</td>
<td>Rutter, 1976, 1977;</td>
</tr>
<tr>
<td></td>
<td>Mathews, 1978</td>
</tr>
<tr>
<td>Central British Columbia</td>
<td>Clague, 1987, 1988</td>
</tr>
<tr>
<td>South-central British Columbia</td>
<td>Fulton and Smith, 1978</td>
</tr>
<tr>
<td>Southern Rocky Mountain Trench,</td>
<td>Clague, 1975</td>
</tr>
<tr>
<td>British Columbia</td>
<td></td>
</tr>
<tr>
<td>Fraser Lowland, British Columbia</td>
<td>Armstrong et al., 1965;</td>
</tr>
<tr>
<td></td>
<td>Willis, 1898,</td>
</tr>
<tr>
<td></td>
<td>Armstrong et al., 1965,</td>
</tr>
<tr>
<td></td>
<td>Easterbrook, 1969, 1986</td>
</tr>
<tr>
<td>Vancouver Island, British Columbia</td>
<td>Fyles, 1963;</td>
</tr>
<tr>
<td>Oldman River basin, Alberta</td>
<td>Dawson and Mcconnell, 1985;</td>
</tr>
<tr>
<td></td>
<td>Alley, 1975; Alley and Harris, 1974;</td>
</tr>
<tr>
<td></td>
<td>Stalker and Harrison, 1977</td>
</tr>
<tr>
<td>Bow River basin, Alberta</td>
<td>Rutter, 1972;</td>
</tr>
<tr>
<td>North Saskatchewan River basin,</td>
<td>Jackson, 1980</td>
</tr>
<tr>
<td>Alberta</td>
<td>Boydell, 1978</td>
</tr>
<tr>
<td>Athabasca River basin, Alberta</td>
<td>Roed, 1975</td>
</tr>
</tbody>
</table>
A major contribution of this stratigraphic and sedimentological work has been the documentation of a lengthy interstadial period in the Canadian Cordillera during the Middle Wisconsinan. Nonglacial deposits of Middle Wisconsinan age are more extensive and better dated in the southern Cordillera than anywhere else in Canada (Fulton, 1968, 1971; Westgate and Fulton, 1975; Armstrong and Clague, 1977; Alley, 1979; Alley et al., 1986; Clague et al., 1990). The presence of these deposits near source areas of the Cordilleran Ice Sheet indicates that ice cover in western Canada was restricted during the Middle Wisconsinan. This has implications for Wisconsinan climatic reconstructions and ice sheet modelling.

Observations of sedimentological processes operating beneath and at the margins of extant glaciers (e.g., Boulton, 1972, 1978; Church and Gilbert, 1975; Boulton and Eyles, 1979; Eyles and Miall, 1984) have been brought to bear in the study and interpretation of Quaternary sediments in the Cordillera (see N. Eyles and J. J. Clague in this volume). This has occurred in tandem with major advances in glaciology in the post-war era.

A few sedimentological studies in the Canadian Cordillera during the modern era can be considered benchmark contributions. An investigation of postglacial deposits in British Columbia valleys led Church and Ryder (1972) to document the role of glaciation in controlling patterns and rates of sedimentation during interglacial and postglacial periods (the concept of paraglacial sedimentation, Fig. 5). Other examples are the early studies of glaciomarine sediments near Vancouver by Armstrong and Brown (1954) and on Vancouver Island by Fyles (1956). These were perhaps the first detailed documentation in North America of marine sedimentation at the margin of a decaying ice sheet. They were necessary antecedents of, and set the stage for, later studies of transient crustal deformation and sea-level change induced by the growth and decay of the Cordilleran Ice Sheet (Mathews et al., 1970; Clague et al., 1982b; Clague, 1983).

Prior to 1950, relatively little was known about glaciation in the northern Cordillera. Important publications by H. S. Bostock in 1966 and O. L. Hughes and coworkers in 1969 and 1972 stimulated interest in the Quaternary geology of this region and triggered a recent major increase in research both inside and beyond the limits of glaciation. One of the most intensively studied areas in recent years has been the Old Crow area of northern Yukon Territory, which was inundated by a large proglacial lake during the last glaciation (Hughes, 1972; Thorson and Dixon, 1983). Stratigraphic, paleoecological, geochronological, and other studies of exposures along Old Crow and Porcupine River have revealed a complex history of sedimentation, erosion, and paleoenvironmental change in northern Yukon extending from the late Tertiary to the present (Hughes et al., 1989, and references therein).

Compilations of late Pleistocene ice-flow directions in British Columbia and Yukon Territory (Wilson et al., 1958; Prest et al., 1986; Hughes et al., 1969; Prest, 1984; Clague, 1989) have shown that the Cordilleran Ice Sheet was a mass of coalescent glaciers flowing from many montane source areas (Fig. 6). Flow was strongly controlled by topography in areas of high relief, but was largely independent of topography over the Interior and Yukon plateaus. Local, probably short-lived coalescence of Cordilleran and Laurentide ice masses occurred along the "ice-free corridor" at the eastern margin of the Cordillera adjacent to the Rocky and Mackenzie Mountains (Jackson et al., 1989).

Research has also begun in several new areas during the current phase of exploration and discovery. For example, large areas of the British Columbia continental shelf have been surveyed from government-operated research ships during the last 30 years. Using methods such as seismic profiling and coring, marine geologists have provided information on the effects and extent of glaciation on the shelf (e.g., Carter, 1973, 1974; Luternauer and Murray, 1983; Barrie and Bornhold, 1989). This work has been complemented by regional mapping and by geomorphic and stratigraphic studies on northern and western Vancouver Island and the Queen Charlotte Islands (Sutherland Brown, 1968; Howes, 1981a, 1981b, 1983; Clague et al., 1982a). New dating and correlation techniques, including thermoluminescence and amino-acid dating, paleomagnetism, and tephra characterization, have also been extensively applied to Quaternary deposits in the Cordillera (Clague, 1989). Finally, studies of plant and animal fossils have provided important insights on past climates in this region (Clague and MacDonald, 1989; Mathewes, this volume). Some of the fossiliferous sediments were deposited at times of extensive ice cover, and the paleoclimatic inferences that can be drawn from them are important for modelling northern hemisphere ice sheets.

1968; Hughes et al., 1969; Prest, 1984; Clague, 1989) have shown that the Cordilleran Ice Sheet was a mass of coalescent glaciers flowing from many montane source areas (Fig. 6). Flow was strongly controlled by topography in areas of high relief, but was largely independent of topography over the Interior and Yukon plateaus. Local, probably short-lived coalescence of Cordilleran and Laurentide ice masses occurred along the "ice-free corridor" at the eastern margin of the Cordillera adjacent to the Rocky and Mackenzie Mountains (Jackson et al., 1989).

Research has also begun in several new areas during the current phase of exploration and discovery. For example, large areas of the British Columbia continental shelf have been surveyed from government-operated research ships during the last 30 years. Using methods such as seismic profiling and coring, marine geologists have provided information on the effects and extent of glaciation on the shelf (e.g., Carter, 1973, 1974; Luternauer and Murray, 1983; Barrie and Bornhold, 1989). This work has been complemented by regional mapping and by geomorphic and stratigraphic studies on northern and western Vancouver Island and the Queen Charlotte Islands (Sutherland Brown, 1968; Howes, 1981a, 1981b, 1983; Clague et al., 1982a). New dating and correlation techniques, including thermoluminescence and amino-acid dating, paleomagnetism, and tephra characterization, have also been extensively applied to Quaternary deposits in the Cordillera (Clague, 1989). Finally, studies of plant and animal fossils have provided important insights on past climates in this region (Clague and MacDonald, 1989; Mathewes, this volume). Some of the fossiliferous sediments were deposited at times of extensive ice cover, and the paleoclimatic inferences that can be drawn from them are important for modelling northern hemisphere ice sheets.
FIGURE 6. Maximum extent of Pleistocene glaciation in the Canadian Cordillera and adjacent areas, and ice flow pattern during the last glaciation (Late Wisconsinan) (modified from Clague, 1989, Fig. 1.12). The glacier complex shown in this figure includes the Cordilleran Ice Sheet and independent and nearly independent glacier systems in some peripheral mountain ranges. Nunataks were small in ice sheet areas at the climax of glaciation. In contrast, there were large ice free areas in some peripheral mountain ranges. Extent of glaciation, in part, from Crandell (1965), Lemke et al. (1965), Richmond et al. (1965), Prest et al. (1969), and Porter et al. (1983); ice flow pattern from Prest et al. (1969); data on upper limit of glaciation from Wilson et al. (1958).

L'étendue maximale de la glaciation au Pléistocène dans la Cordillère du Canada et les régions avoisinantes et l'écoulement glaciaire au cours de la dernière glaciation (Wisconsinien supérieur) (d'après Clague, 1989, fig. 1.12), Le complexe glaciaire illustré comprend l'Inlandsis de la Cordillère et les systèmes glaciaires autonomes ou en partie autonomes de certaines chaînes de montagnes périphériques. À l'optimum glaciaire, les nunataks étaient petits dans la région de l'Inlandsis. Par contre, il y avait de vastes régions libres de glace dans les régions montagneuses périphériques. Données sur l'étendue glaciaire: Crandell (1965), Lemke et al. (1965), Richmond et al. (1965), Prest et al. (1969), and Porter et al. (1983); réseau d'écoulement glaciaire; Prest et al. (1969); données sur l'altitude limite des glaciations: Wilson et al. (1958).
ICE SHEET MODELLING

The four-phase model of glaciation proposed by Kerr (1934) and Davis and Mathews (1944) provides a useful framework for conceptualizing the growth of the Cordilleran Ice Sheet. Until the 1960s, it was assumed that the pattern of decay of the ice sheet was the exact opposite of this, i.e. plateaus and valleys became ice free before highlands. R. J. Fulton (1967), working in south-central British Columbia, was the first to suggest that this was not the case. He proposed that deglaciation of areas of low and moderate relief proceeded through four stages: (1) active ice phase — regional flow continued but diminished as ice thinned; (2) transitional upland phase — highest uplands appeared through the ice sheet, but regional flow continued in major valleys; (3) stagnant ice phase — ice was confined to valleys but was still thick enough to flow; and (4) dead ice phase — valley tongues thinned to the point where plasticity was lost. In such a model, highlands are the first areas to become deglaciated and valleys the last. This model has been applied with minor modifications to other parts of British Columbia and Yukon Territory (Tipper, 1971a, 1971b; Heginbottom, 1972; Ryder, 1976, 1981; Howes, 1977; also see L. E. Jackson et al., and J. M. Ryder et al. in this volume). It laid the groundwork for our present understanding of the precarious nature of the mass balance of the Cordilleran Ice Sheet and the rapidity of its decay.

Attempts are now being made to model the Cordilleran Ice Sheet quantitatively, using computers and the database gathered by past generations of geologists and geomorphologists. Previous modelling was conceptual, by analogy, or relied on simple reconstructive techniques such as the construction of surface profiles or the use of contour maps where ice limits around nunataks could be established and linked with ice flow directions. The computer simulations that are now being made (Roberts, 1990, this volume) allow us to test our hypotheses about ice sheet growth and decay and climate change by growing and wasting ice sheets in compressed time.

THE FUTURE

Over the past 150 years, it has been demonstrated that most of the Canadian Cordillera has been repeatedly glaciated. The limits of the most recent Cordilleran Ice Sheet have been established in both space and time, and local and regional patterns of ice flow have been documented. In addition, an understanding of how the ice sheet grew and decayed has been gained. We conclude with a few speculations about the directions that research into the Cordilleran Ice Sheet may take in coming decades.

Quaternary deposits and landforms have not been mapped for much of the area covered by the ice sheet. It is expected that significant efforts will be made by the Geological Survey of Canada and the British Columbia Geological Survey to map areas in central and northern British Columbia and Yukon Territory where little or no information is available and to upgrade existing surficial geology maps. Only when this task is well advanced or finished will a complete reconstruction of the last ice sheet be possible.

The use of computers to simulate the Cordilleran Ice Sheet, and as a tool in the analysis of various aspects of glaciation, will expand greatly over the next decade. This undoubtedly will facilitate research and hopefully will provide a more rigorous, quantitative foundation for models of ice-sheet evolution.

It is expected that much research will be devoted to refining existing absolute age dating methods and, perhaps, to developing new ones. Chronological control is crucial to many fields of earth science, but none more so than Quaternary geology. New developments in radiocarbon dating (e.g., accelerator mass spectrometry method) will allow the chronology of the last Cordilleran Ice Sheet to be refined. Relatively new methods, such as amino acid and thermoluminescence dating, offer the promise that older glaciations may someday be as precisely dated as the last.

Lastly, much more effort will be devoted in coming years to three-dimensional analysis of sedimentary sequences ("basin analysis") in the Cordillera (Eyles et al., 1985). This will require an interdisciplinary research effort, bringing together experts in geophysics, geomorphology, sedimentology, stratigraphy, paleontology, and other fields. Basin analysis holds the promise of not only expanding our understanding of the Cordilleran Ice Sheet, but also applying this understanding to practical issues such as land-use planning, groundwater supply, and foundation studies.

ACKNOWLEDGMENTS

The authors gratefully acknowledge assistance from Miss Mary Akehurst, Mrs. Fontane Hwang and Mr. Paul Nepote. Constructive and thoughtful reviews were provided by Drs. R. J. Fulton and M. C. Wilson.

REFERENCES

— 1878a. Report on explorations in British Columbia, chiefly in the basins of
the Blackwater, Salmon and Nechako Rivers and on François Lake. Geologi
— 1879a. Notes on the glaciation of British Columbia. Canadian Naturalist,
— 1879b. Preliminary report on the physical and geological features of the
southern portion of the interior of British Columbia. Geological Survey of
— 1880. Report on the Queen Charlotte Islands. Geological Survey of
— 1881. Report on an exploration from Port Simpson on the Pacific coast,
to Edmonton on the Saskatchewan, embracing a portion of the northern part
of British Columbia and the Peace River country. Geological Survey of
— 1886. Preliminary report on the physical and geological features of that
portion of the Rocky Mountains between latitudes 49° and 50°30'. Geologi
— 1887. Report on a geological examination of the northern part of
Vancouver Island and adjacent coasts. Geological Survey of Canada,
— 1888. Recent observations on the glaciation of British Columbia and
adjacent regions. American Geologist, 3: 249-253 [also Geological
— 1889. Glaciation of high points in the southern interior of British Columbia.
— 1890. On the glaciation of the northern part of the Cordillera, with an
attempt to correlate the events of the glacial period in the Cordillera and
— 1891. On the later physiographical geology of the Rocky Mountain region
in Canada, with special reference to changes in elevation and to the history
of the glacial period. Transactions of the Royal Society of Canada, 9(4):
5-74.
— 1894. Notes on the occurrence of mammoth remains in the Yukon district
of Canada and in Alaska. Quarterly Journal of the Geological Society of
of the Bow and Belly rivers, North-West Territory. Geological Survey of
— 1895. Glacial deposits of southwestern Alberta in the vicinity of the Rocky
Denton, G. H. and Stuiver, M., 1967. Late Pleistocene glacial stratigraphy and
chronology, northeastern St. Elias Mountains, Yukon Territory. Canadian
Easterbrook, D. J., 1969. Pleistocene chronology of the Puget Lowland and San
Juan Islands, Washington. Geological Society of America Bulletin, 80:
2273-2286.
— 1896. Stratigraphy and chronology of Quaternary deposits of the Puget
Lowland and Olympic Mountains of Washington and Oregon. In V. Sibbrava,
D. O. Bowen and G. M. Richmond, ed., Quaternary glaciations in the
The application of basin analysis techniques to glaciated terrains: an exam­
ple from the Lake Oriantio Basin, Canada. Geoscience Canada, 12: 22-32.
Fulton, R. J., 1967. Deglaciation studies in Kamloops region, an area of moder­
ate relief, British Columbia. Geological Survey of Canada, Bulletin 154,
30 p.
Fulton, R. J. and Smith, G. W., 1978. Late Pleistocene stratigraphy of south­
Fyles, J. G., 1956. Surficial geology of the Hone Lake and Parksville map-areas,
Vancouver Island, British Columbia. Ph.D. thesis, Ohio State University,
Columbus, 283 p.
— 1963. Surficial geology of Hone Lake and Parksville map-areas,
Vancouver Island, British Columbia. Geological Survey of Canada, Memoir
318, 142 p.
Gibbs, G., 1874. Physical geography of the northwestern boundary of the United
Gibson, R. G., 1956. Surfidal geology of the Home Lake and Parksville map-areas,
Vancouver Island, British Columbia. Geological Survey of Canada, Paper
318, 142 p.
Gibson, R. G., 1956. Surfidal geology of the Home Lake and Parksville map-areas,
Vancouver Island, British Columbia. Geological Survey of Canada, Paper
318, 142 p.
Gibbs, G., 1874. Physical geography of the northwestern boundary of the United
p. 38-52. In S. C. Porter, ed., Late-Quaternary environments of the United
States, Volume 1, The late Pleistocene. University of Minnesota Press,
Minneapolis, 407 p.
Hayes, C. W., 1892. An expedition through the Yukon district. National
Geographic Magazine, 4: 117-162.
Howes, D. E., 1977. Terrain inventory and late Pleistocene history of the south­
ern part of the Nechako Plateau. British Columbia Ministry of Environment,
Resource Analysis Branch, Bulletin 1, 27 p.
— 1891a. Late Quaternary sediments and geomorphic history of north­
— 1891b. Terrain inventory and geological hazards: northern Vancouver
— 1893. Late Quaternary sediments and geomorphic history of northern
Hughes, O. L., 1972. Surficial geology of northern Yukon Territory and north­
western District of Mackenzie, Northwest Territories. Geological Survey of
Hughes, O. L., Campbell, R. B., Muller, J. E. and Wheeler, J. D., 1896. Glacial
limits and flow patterns, Yukon Territory south of 65 degrees north latitude.
Unglaciated areas [Quaternary stratigraphy and history, Canadian
Cordillera], p. 68-70. In R. J. Fulton, ed., Quaternary geology of Canada and
Imbrie, J. and Imbrie, K. P., 1979. Ice ages; solving the mystery. Enslow
Publishers, Short Hills (Jew Jersey), 224 p.
Jackson, L. E., Jr., 1980. Glacial history and stratigraphy of the Alberta portion
of the Kananaskis Lake map area. Canadian Journal of Earth Sciences, 17:
459-477.
83-25, 27 p.
Jackson, L. E., Jr., Rutter, N. W., Hughes, O. L. and Clague, J. J., 1889.
Glaciated fringe [Quaternary stratigraphy and history, Canadian
Cordillera], p. 63-66. In R. J. Fulton, ed., Quaternary geology of Canada and
Jamieson, T. F., 1886. On the last geological changes in Scotland. Quarterly
Johnson, W. A., 1921. Pleistocene oscillations of sea-level in the Vancouver
region, British Columbia. Transactions of the Royal Society of Canada,
— 1926. The Pleistocene of Cariboo and Cassiar districts, British Columbia.

