Géographie physique et Quaternaire

Fabric, paleomagnetism, and interpretation of pre-illinoian diamictons and paleosols on Cloudy Ridge and Milk River Ridge, Alberta and Montana

Orientation, paléomagnétisme et interprétation des diamictons et des paléosols du pré-Illinoien provenant du Cloudy Ridge et du Milk River Ridge, en Alberta et au Montana

Orientation, paleomagnetismo e interpretación de los diamictones y paleo suelos del pre-illinois provenientes del cloudy ridge y del milk river ridge en Alberta y Montana, Canadá

Eric T. Karlstrom and Rene W. Barendregt

Volume 55, Number 2, 2001

URI: https://id.erudit.org/iderudit/008299ar
DOI: https://doi.org/10.7202/008299ar

See table of contents

Publisher(s)
Les Presses de l’Université de Montréal

ISSN
0705-7199 (print)
1492-143X (digital)

Explore this journal

Cite this article

Article abstract
Pebble fabrics and sedimentological properties indicate that pre-Wisconsinan diamictons (Kennedy Drift) on Cloudy Ridge (Alberta) and Milk River Ridge (Montana) are of glacial rather than colluvial origin. S_1 and S_3 eigenvalues of the upper units on the two ridges are typical of undeformed lodgement till whereas those of the lower unit on Milk River Ridge are typical of glacigenic sediment flow. Other properties, including compact matrices, striations on stones, mean pebble dip angles, and Schmidt equal-area stereonet patterns, suggest each unit is lodgement or basal till. Pedogenic features indicate weathering zones capping the tills are paleosols. Degree of rubification, clay, iron and aluminum buildup, and clay mineral alteration resembles those of very strongly developed soils formed in warmer and moister environments. The argument that “soil-like features” of the Cloudy Ridge unit resulted from post-burial diagenesis is disproven because nearly identical paleosols occur at the surface on Milk River Ridge and other interfluves to the south. Each unit examined has normal polarity. Based on comparisons with similar till/paleosol sequences exposed in Kennedy Drift sections on nearby interfluves, the Cloudy Ridge till and the upper till on Milk River Ridge were probably deposited during the early to middle Brunhes Normal Chron (780 ka to present) whereas the lower till on Milk River Ridge is of earlier Brunhes age or dates back to the Olduvai (1.98 to 1.76 Ma) Normal Subchron or the Gauss Normal Chron (3.6 to 2.6 Ma).
Milk River Ridge and other interburial diagenesis is disproven because near the Cloudy Ridge unit resulted from post-Chron (3.6 to 2.6 Ma).

Normal Subchron or the Gauss Normal River Ridge were probably deposited during Cloudy Ridge till and the upper till on Milk till/paleosol sequences exposed in Kennedy integrity. Based on comparisons with similar meniments. The argument that soils formed in warmer and moister environmments. The argument that "soil-like features" of the Cloudy Ridge unit resulted from post-burial diagenesis is disproven because near-identical paleosols occur at the surface on Milk River Ridge and other interfluves to the south. Each unit examined has normal polarity. Based on comparisons with similar till/paleosol sequences exposed in Kennedy Drift sections on nearby interfluves, the Cloudy Ridge till and the upper till on Milk River Ridge were probably deposited during the early to mid-till Bruhes Normal Chron (780 ka to present) whereas the lower till on Milk River Ridge is of earlier Bruhes age or dates back to the Olduvai (1.98 to 1.76 Ma) Normal Subchron or the Gauss Normal Chron (3.6 to 2.6 Ma).

FABRIC, PALEOMAGNETISM, AND INTERPRETATION OF PRE-ILLINOIAN DIAMICTONS AND PALEOSOLS ON CLOUDY RIDGE AND MILK RIVER RIDGE, ALBERTA AND MONTANA

Eric T. KARLSTROM* and Rene W. BARENCREST, Department of Anthropology and Geography, California State University, Stanislaus, Turlock, California 95382, U.S.A., and Department of Geography, University of Lethbridge, Lethbridge, Alberta T1K 3M4.

ABSTRACT Pebbly fabrics and sedimentologi- cal properties indicate that pre-Wisconsinian diamictons (Kennedy Drift) on Cloudy Ridge (Alberta) and Milk River Ridge (Montana) are of glacial rather than colluvial origin. S1 and S2 eigenvalues of the upper units on the two ridges are typical of undetformed lodgement till whereas those of the lower unit on Milk River Ridge are typical of glaciogenic sediment flow. Other properties, including compact matrices, striations on stones, mean pebble dip angles, and Schmidt equal-area stereo- net patterns, suggest each unit is lodgement or till. Pedogenic features indicate weath- ering zones capping the tills are paleosols. Degree of rubification, clay and alumin- um buildup, and clay mineral alteration resembles those of very strongly developed soils formed in warmer and moister environ- ments. The argument that "soil-like features" of the Cloudy Ridge unit resulted from post-burial diagenesis is disproven because near-identical paleosols occur at the surface on Milk River Ridge and other interfluves to the south. Each unit examined has normal polarity. Based on comparisons with similar till/paleosol sequences exposed in Kennedy Drift sections on nearby interfluves, the Cloudy Ridge till and the upper till on Milk River Ridge were probably deposited during the early to mid-till Bruhes Normal Chron (780 ka to present) whereas the lower till on Milk River Ridge is of earlier Bruhes age or dates back to the Olduvai (1.98 to 1.76 Ma) Normal Subchron or the Gauss Normal Chron (3.6 to 2.6 Ma).

RESUMEN Orientación paleomagnética e interpretación de los diamictones y paleosuelos del pre-Illinoiense procedentes del clouded ridge y del milk river ridge en Alberta y Montana, Canadá. Las propiedades sedi- mentológicas y la orientación de las rocas indican que los diamictones (Drift de Kennedy) del pre-wisconsiniano en la región de Cloudy Ridge (Alberta) y Milk River Ridge (Montana) son de origen glacial y no coluvial. Los valores propios S1 y S2 de las unidades superiores de las dos cadenas de montañas son características de la acumulación de tilli- tas no deformadas mientras que las de la uni- dad inferior del Milk River ridge son carac- terísticas de una acumulación de sedimentos glaciares. Otras propiedades, que incluyen la matriz compacta, la estilización de las rocas, el ángulo de inclinación medio de las rocas y las proyecciones equivalentes de Schmidt parecen indicar que cada unidad es ya sea tillitas de acumulación o tillitas basales. Las características pédologicas indican que las zonas que recubren las tillitas son paleosue- los. El grado de rubificación, de acumulación de arcilla, de hierro y de aluminio así como la alteración de los minerales que la componen, se asemejan a los solos fuertemente desar- rollados formados en ambientes más cálidos y húmedos. El argumento según el cual las características del «pseudo-suelo» de la uni- dad del Cloudy Ridge resultan de una diage- nesis post-enterramiento son poco fundadas ya que los paleosuelos casi idénticos están presentes en la superficie del Milk River Ridge y en otras regiones interfluviadas hacia el sur. Cada una de las unidades estudiables presenta una polaridad normal. De acuerdo a las comparaciones hechas entre las secuencias de paleosoles, tillitas simi- lares aparecen en las capas del Drift de Kennedy situadas en las interfluvas aleñadas, las tilli- tas en la región del Cloudy Ridge y de la región superior del Milk River ridge fueron probablemente depositadas al inicio o a mediados del cron normal de Bruhes (aproximadamente 780 ka) mientras que las tillitas inferiores del Milk River Ridge datan de una época anterior al período de Bruhes, anterior al subcron normal de Olduvai (1.98 a 1.76 Ma) o bien al cron normal de Gauss (3,6 a 2,6 Ma).

Manuscrit reçu le 16 novembre 2000; manuscrit révisé accepté le 16 octobre 2001
* E-mail: estrom@ftos.csustan.edu
INTRODUCTION

Accurate identification of glacigenic deposits and interglacial markers such as paleosols is required in order to interpret past glacial and interglacial environments from sediments and paleosols. However, positive identification of old tills not associated with topographic features and very old paleosols can be problematic. Several authors have noted the resemblance between fan material (especially mudflow) and till (Blackwelder, 1928; Van Houten, 1957; Ryder, 1981). Likewise, pedologists have noted that interpretation of paleosols requires differentiation between features produced by pedogenic and geologic processes and that legitimate disagreements can arise regarding identification of paleosols (Yaalon, 1971; Birkeland, 1999).

These issues bear upon the reconstruction of pre-Wisconsinan glacial/interglacial history of the Waterton-Glacier International Peace Park area of Alberta and Montana. Here, thick weathering zones, considered very strongly developed paleosols, cap pre-Illinoian diamictons of the Kennedy Drift (Alden, 1932) on a series of interfluves east of the Lewis Range. Most of these interfluves are remnants of the (Miocene-Pliocene) Flaxville, or number 1 bench, erosion surface (Alden, 1932; Fig. 1). Multiple, diamicton/paleosol units occur within the Kennedy Drift on several interfluves; the most complete sequences include five superposed diamicton/paleosol units at Mokowan Butte and Saint Mary Ridge (Karlstrom, 1988, 2000, Figs. 1 and 2). Although most workers have assumed that the Kennedy Drift is mostly till (Alden and Stebinger, 1913; Horberg, 1956; Richmond, 1957; Wagner, 1966; Karlstrom, 1987), others (Wills, 1902; Daly, 1912; Taylor, 1987; Little, 1998) suggest the material may consist mostly of mudflow and alluvial fan deposits. Similarly, whereas most have assumed that the strong weathering zones capping Kennedy drift units are paleosols (Horberg, 1956; Richmond, 1965; Karlstrom, 1988, 1991), Taylor (1987) asserts that the...
weathering zone capping the Cloudy Ridge diamicton is not a paleosol at all, but rather its features were mostly formed by post-burial diagenetic alterations.

Paleomagnetic analyses indicate the antiquity of the Kennedy Drift. At Saint Mary Ridge, the upper two diamicton/paleosol units have normal polarity whereas the lower three units are reversed (Cioppa et al., 1995; Figs. 1 and 2). On Mokowan Butte, the uppermost and lowest two diamicton/paleosol units are normally magnetized and two middle units have reversed polarity (Barendregt et al., 1991; Cioppa et al., 1996; Shackleton et al., 1990).

![Stratigraphy and magnetic orientation](image_url)
Taylor (1987) interprets the Cloudy Ridge diamicton as Pleistocene tills and palesols are rare in Canada and possibly position, 2) describe characteristics of the associated paleosols RIdge (Montana) in order to better assess their mode of dep- toton/paleosol units on Cloudy Ridge (Alberta) and Milk River pebble fabrics and other sedimentological properties of diamic- origin of the Kennedy Drift on Mokowan Butte and Cloudy the diamicton. Little (1995, 1998) also considers the glacial old of the Kennedy Drift on Mokowan Butte and Cloudy Ridge unproven. Therefore, we herein: 1) provide analyses of pebble fabrics and other sedimentological properties of diamic- tor/paleosol units on Cloudy Ridge (Alberta) and Milk River Ridge (Montana) in order to better assess their mode of dep- osition, 2) describe characteristics of the associated paleosols that pertain to their genesis, and 3) present new paleomag- netic data which help determine the antiquity of these units.

CHARACTER OF KENNEDY DRIFT

Observations at sites on nine Flaxville surface remnants (Karlstrom, 1988) indicate that unweathered Kennedy Drift is typically massive, homogeneous, matrix-supported, boudery, sandy loam with weak to no bedding. Diamictons are 4- to over 10-m thick, laterally continuous, and include a heteroge- neous mix of Precambrian Belt (Porcupine) Group sedimentary rocks derived from the Rocky Mountains. Lithologies typically include about 65 to 75 % red and green argillite, 20 to 30 % limestone and dolomite, 5 to 10 % quartzite, and 0 to 5 % sandstone, and 0 to 5 % drite and basalt. Clasts, generally subrounded, include boulders up to 3 m in diameter in some sections. Zones of predominantly rounded gravels and stones (probably water-washed), occur in some sections but are much less common than the massive, matrix-supported mate- rial. Siltstones are common on more resistant clasts, particu- larly the green argillites. Some stones have smooth, striated upper surfaces and irregular bottoms where they may have been plowed into the sediments. Stone pavements are rare but have been noted at two locales where they include bullet boulders and rocks with striated upper surfaces. Plucking fea- tures and beginnings of crescentic fractures and friction cracks are apparent on the upper surface of some clasts.

Diamictons are generally capped by thick weathering zones interpreted as strongly to very strongly developed paleosols (Karlstrom, 1988, 1991). Upper portions of diamicton/paleosol units are normally leached of primary carbonates whereas lower portions may be partly or completely carbonate-cemented. The extreme thickness (1.5 to 4+ m) of paleoargillic hori- zons and their degree of weathering, clay buildup, rubifica- tion, and clay mineral alteration suggests considerable anti- quity (10^5 to 10^6 years) for both the paleosols and associated diamictons (Karlstrom, 1988, 1991). Antiquity of diamicton/ paleosol units, also indicated by their height above modern stream level (122 to 580 m), is confirmed by paleomagnetic data (Cioppa et al., 1995).

As noted, Taylor (1987) concludes that these weathering zones are not ancient soils. Although he acknowledges that the profile is “undoubtedly related to a landscape of the past, he postulates that the “soil-like features” (structure, redness, clay films, etc.) at Cloudy Ridge and the Cypress Hills in east- ern Alberta were produced by diagenetic processes such as compaction, groundwater flow, recently precipitated hematite, etc., after the sediments were buried. However, the fact that relict paleosols occurring at the surface on Milk River Ridge and numerous other Flaxville surface remnants have virtual- ly identical characteristics as these buried weathering zones (Karlstrom, 1988, 1991) invalidates this argument. SEDIMENTOLOGICAL PROPERTIES AND PEBBLE FABRIC ANALYSES

METHODS

The diamicton/paleosol units of this study are exposed in a series of natural landslip scars on Cloudy Ridge and Milk River Ridge (Fig. 1). Stratigraphic interpretation follows Karlstrom (1988, Fig. 2). Trenches previously excavated were re-opened in order to expose undisturbed material for pebble fabric analysis. Trend and plunge of the long axes of 50 peb- bles was measured for each unit sampled. Prolate stones between about 1 and 50 cm in diameter were examined. Pebble orientations are plotted on 3-dimensional Schmidt equal-area nets using a computer program based on Kamb (1959) and traditional, 2-dimensional rose diagrams using 20° intervals (Andrews, 1971). Statistical evaluation of the fabric data is based on the eigenvalue method (Marx, 1973). Three mutually perpendicu- lar axes (eigenvectors V1, V2, and V3) are determined, the longest of which (V1) lies in the direction of maximum pebble clustering. Orientation of the V1 eigenvector corresponds with mean lineation azimuth and plunge. Eigenvalues (S1, S2, S3) measure the strength of clustering around each correspon- ding (V1, V2, V3) axis and eigenvalue S3 is inversely propor- tional to the strength of the preferred plane of the fabric. Lawson (1979) and Dowdeswell et al. (1985) note that eigen- values (S1, S2, S3) provide a particularly useful means of describing and interpreting the genesis of diamictons.

CRITERIA FOR IDENTIFICATION OF GLACIGENIC SEDIMENTS

Various terms and classification systems have been applied to glaciogenic sediments (Lawson, 1981; Dreimanis, 1989; Ham and Michelson, 1994; Hart, 1994). Dowdeswell and Sharp (1986) distinguish four main types of sedimentary facies near modern terrestrial glaciers: basal melt-out till, deformed
and undeformed lodgement till, sediment flows, and ice slope colluvium. They note that each facies has particular diagnostic properties, including pebble orientation (Figs. 3 and 4), eigenvalues, and other sedimentary properties. Melt-out till, deposited by melting of a glacier’s stratified, clast-rich basal zone (Lawson, 1979, 1981), typically has a single mode of clast orientation and the degree of scattering around the direction of maximum clustering (S_1) is only slightly less than for pebbles in the basal zone of glacier ice.

Lodgement till is generally highly consolidated material deposited by accretion onto the bed from the sliding of an active glacier. Clasts are strongly oriented and commonly are rounded due to subglacial and post-depositional abrasion at the till surface. Boulder pavements may form when deposition of lodgement till is interrupted and erosion surfaces develop. Pavements may include bullet-shaped stones with striated upper surfaces and tapered ends pointing upglacier (Boulton, 1968) which are thought to be plowed into the till as ice flows over and around them (Hicock, 1991). Lodgement till fabrics show a slightly greater dispersion around the mean V_1 axis than melt-out till (Dowdeswell et al., 1985). Whereas Mark (1973) asserts that a-planes usually dip upglacier, Ham and Mickelson (1994) note that pebble imbrication in basal till may be oriented both up and down in the direction of glacier flow. Lawson (1979) also asserts that pebble imbrication does not necessarily indicate the direction of glacier flow for the same reason.

A type of lodgement till deformed from pressures exerted from overriding ice is termed “deformation till” (Dreimanis, 1993) or “deformation lodgement till” (Dowdeswell and Sharp, 1986). Mechanisms thought to produce it include advancing freezing fronts, suitable subglacial conditions (Boulton and Dobbie, 1993), and the squeezing of previously deposited sediments directly by ice. Deformation lodgement till may exhibit shear zones or layering, folds, and dewatering structures such as diapirs and flame structures and commonly exhibit a “two layer” structure, including a structureless and friable upper layer ($0-7$ m) overlying a very compact diamicton with horizontal platy structure. High pore water pressure in the sediment may cause rotation of clasts within the sediment; hence, orientation and dip of pebbles is more dispersed in the upper friable zone than in the lower compact zone (Dowdeswell and Sharp, 1986). Pebble fabrics commonly display a-axes both transverse and parallel to ice movement and girdle-type distributions on Schmidt equal-area stereonets (Fig. 3).

Lawson (1981) notes that the primary process that deposits diamicton near the Matanuska Glacier terminus is sediment

![FIGURE 3. Typical Schmidt equal area stereonet diagrams for different facies near modern terrestrial glaciers (after Dowdeswell and Sharp, 1986). Arrows indicate the observed direction of glacier or sediment flow.](image-url)
flow, or "the downslope transport of sediment-water mixtures under the force of gravity". Orientation of pebbles reflects the direction of sediment flow rather than the direction of ice movement. Dowdeswell et al. (1985) note that fabrics of these flows, which they term "glaciogenic sediment flows", are typically weaker and more dispersed than those of melt-out or lodgement tills (Fig. 3). One or more axis of pebble orientation may lie transverse to the main direction (Mark, 1973). Finally, ice-surface flow of sediment is produced by ablation along steep to overhanging slopes in active basal zone ice along the glacier terminus. As in sediment flows, a poorly defined fabric commonly parallels the ice slope rather than the direction of glacier movement (Fig. 3). In contrast, Ham and Mickelson (1994) examined pebble fabrics of 27 samples near the Burroughs Glacier, Alaska, concluding that all are "basal tills" produced by progressive stagnation of debris-rich ice beneath a moving glacier during deglaciation.

Because fabric alone may not always be indicative of sediment genesis, most workers (Lawson, 1979; Dowdeswell and Sharp, 1986) suggest that it should be used in conjunction with other observations on sedimentological properties of materials. Lindsay (1968), for example, notes that, theoretically, mudflows could sometimes produce fabrics similar to tills. Additionally, Harris (1975) notes that after a sediment is deposited, its fabric may be modified by various agents, including the readvance of an ice sheet, ice pressing, soil creep, and frost action. Thus, Dowdeswell and Sharp (1986) suggest that an assemblage of characteristics, which may not all be present at any given site, be documented for identification of sediment as glaciogenic. They conclude that relatively strong fabrics for melt-out and lodgement tills are more likely to be diagnostic than weaker fabrics.

MILK RIVER RIDGE DIAMICTONS

Milk River Ridge is a relatively narrow, flat, west-east-trending interfluve considered a remnant of the Flaxville bench (Alden, 1932). A trench excavated on the southern flank of Milk River Ridge (NE1/4, SW1/4 Sec. 8, T33N., R13W.: UTM 53887 N., 3278 E.; Fox Creek 7.5 minute Quadrangle, USA) exposes two superposed diamicton/paleosol units within Kennedy Drift that are distinguished on the basis of the intercalated paleosol and the fact that clasts are considerably more weathered in the lower unit (Figs. 1, 2, and 5). Here, the interfluve stands about 323 m above the level of the North Fork of the Cut Bank Creek to the south and 183 m above the level of the North Fork of the Milk River to the north. As is typical of Kennedy Drift, both diamictons are massive, with weak to no bedding, and have considerable thickness (about 4 and 6+ m) and horizontal extent. They include numerous lithologies of Precambrian Belt (Purcell) Supergroup sedimentary rocks, with about 71 to 86% red and green argillite, 6 to 20% quartzite, 0 to 10% sandstone, and 0 to 1% diorite or basalt. Texture of relatively unweathered diamicton is stony to very stony sandy loam, with approximately 46 to 48% fines, whereas paleoargillic horizons have about 59 to 70% stony sandy loam, with approximately 46 to 48% fine sands and 59 to 70% silt. The upper diamicton/paleosol unit has a strong unimodal S-N orientation of glacier during deglaciation. The Schmidt equal-area net and rose diagram indicate that an assemblage of characteristics, which may not all be present at any given site, be documented for identification of sediment as glaciogenic. They conclude that relatively strong fabrics for melt-out and lodgement tills are more likely to be diagnostic than weaker fabrics.

FIGURE 4. Plot of S1 and S3 eigenvalues for diamict/paleosol units on Cloudy and Milk River ridges as compared to average values for melt-out till, undeformed lodgement till, deformed lodgement till, glaciogenic sediment flows (Dowdeswell and Sharp, 1986) and basal till (Ham and Mickelson, 1994).

Grocliche sediment flow of Dowdeswell and Sharp (1986).
Basal till (n = 27) Ham and Mickelson (1994).
Deformed lodgement till
Undeformed lodgement till
Melt-out till

Cloudy Ridge (1)
Milk River Ridge (1-2)
FABRIC, PALEOMAGNETISM, AND INTERPRETATION OF DIAMICTONS AND PALEOSOLS

Fabric (Fig. 5). S1 and S3 values (0.772 and 0.064) are typical for undeformed lodgement till or possibly melt-out till. The Schmidt stereonet most closely resembles the pattern typical of undeformed lodgement till (Figs. 3 and 4). Measured pebble dip, averaging 14 to 16 degrees to the south, southwest and southeast, suggests, but does not prove, that the diamicton was deposited by a glacier flowing from south to north, transverse to the trend of modern drainages (Fig. 1). This ice direction would follow the northward regional slope (up to 5.5 m/km) of the Flaxville surface remnants east of Glacier National Park (Fig. 2). However, because pebble imbrication may be in either up- or down-glacier directions, flow also could have been southward.

Fabric of the lower diamicton is less well defined. There is a predominantly WSW-ENE trend but the degree of scattering around mean direction of pebble orientation is much greater (Fig. 5). The girdle pattern of the Schmidt equal-area net is more characteristic of deformed lodgement till or glacigenic sediment flows than undeformed lodgement till (S1 and S3 values (0.502 and 0.083, respectively) fall within the range of glacigenic sediment flows (Fig. 4). However, the mean lineation plunge of pebbles (V1; 11° to the SW) indicates the kind of imbrication typical of lodgement till. And mean pebble dip (15°) is closer to the norm for deformed lodgement till (17°) than glacigenic sediment flow (20°; Johnson, 1990). Hence, although fabric of the lower unit is weaker than that of the other units examined, based on the suite of sedimentological characteristics observed (striated stones, compact matrix, weak stone pavement, etc.), it is most probably either deformed lodgement till and/or was originally deposited as undeformed lodgement till and its fabric was later altered during the emplacement of the overlying till. Owing to the lack of sedimentary features typical of deformation till such as shear zones, folding, diapirs, etc., the latter interpretation seems more likely.

CLOUDY RIDGE DIAMICTON

The surface here referred to as Cloudy Ridge is a gently-sloping (10 %), northeast-trending, approximately 3-km-long interfluve at the base of the mountain front, which straddles the northeastern corner of Waterton Park, Alberta (Figs. 1 and 2). Horberg (1954) considered this surface a possible remnant of Alden’s (1932) Number 2 bench (early Pleistocene; Figs. 1 and 2). The interfluve stands about 122 m above the level of Dungarvan Creek to the south and Yarrow Creek to the north. A series of lateral moraines mantling the northern portion of the interfluve were probably deposited by alpine glacier ice from the north during the last glaciation. Also, during the last glaciation, granitic erratics of Laurentide provenance were deposited on the eastern part of Cloudy Ridge to an elevation of 1585 m. These erratics have been dated (Jackson et al., 1999) by the cosmogenic Chlorine 36 method, yielding a Late Wisconsinan age (about 15 ka). Wagner (1966) examined sediments exposed beneath the surface of Cloudy Ridge and concluded they are tills deposited during two Cordilleran glaciations (Illinoian? and Late Wisconsinan). Likewise, Stalker and Harrison (1977) conclude that the older material is till that probably dates back to the early Illinoian glaciation. Perhaps because this interfluve directly abuts the mountain front and slopes approximately 10 % to the northeast, Taylor (1987) argues that it is underlain mostly by Tertiary or early...
Pleistocene colluvium. He concludes that the sediment exposed here is not glacigenic and the weathering zone is not pedogenic.

A 20 m, vertical trench excavated on the southeastern flank of the interfluve (54°54′ N., 72°2 E., Waterton Lakes, 82 H/4, Canada) about 2.2 km NNE of the mountain front exposes a diamicton similar to the Kennedy Drift on Flaxville surfaces to the south. The upper 80 cm of the section consists of a brown, cumulic A horizon developed in angular, gravelly material of local origin with a primarily downslope orientation, interpreted as colluvium (Karlstrom, 1981). Underlying the colluvium is approximately 19 m of diamicton capped by a thick, strongly oxidized paleosol. The diamicton is massive, generally unstratified, and includes about 35 to 50 % rounded and subangular gravels with stones up to 1+ m in diameter, including a majority of allochthonous red and green argillite and some basalt clasts. Whereas the upper approximately 3.5 m of the diamicton/paleosol are leached of primary carbonates, the lower approximately 15 m is cemented by reprecipitated carbonates. Percentage of coarse fragments increases to about 75 % in the lowest, carbonate-cemented portions of the section where the material appears more alluvial or glacio-fluvial in origin.

Striations, bullet boulders, and faceted stones occur throughout the section. A weak stone pavement near the base of the unit includes bullet boulders and striations on the upper surfaces of the rocks. Fissility evident within the upper paleosol could represent either the effects of glacier unloading (Dowdeswell and Sharp, 1986) or periglacial processes (Van Vliet and Langhor, 1984).

Pebbles sampled from the upper meter of the paleosol show a strong south-north orientation (Fig. 6). S1 and S3 values (0.757 and 0.070, respectively) and the Schmidt equal-area net are typical of undeformed lodgement till or basal till deposited as ground moraine (Figs. 3, 4, and 6). Pebbles dip an average of 14° mostly toward the south and southeast. Pebbles sampled from the calcrete at depths of 8 to 15 m are also oriented S-N with imbrication toward the southeast and south. This fabric shows slightly less clustering around the mean direction (V), S1, and S3 values (0.618 and 0.111, respectively) of pebbles at this depth fall within the range of values typical of pebbles at this depth (Figs. 4 and 6). The Schmidt equal area net, however, most resembles those typical of undeformed lodgement till deposits (Figs. 2 and 6). Average pebble dip (13°) is typical of deformed lodgement till. A third fabric sample taken for the entire section is also indicative of undeformed or deformed lodgement till and/or glacigenic sediment flows (Figs. 4 and 6). Mean pebble dip (13°), predominantly toward the S and SW) and azimuth of this sample suggest glacier flow was either from south to north or from north to south. These data suggest that the diamicton on Cloudy Ridge represents one undeformed lodgement or basal till deposited by glacier ice flowing eastward or southward along the mountain front.

FIGURE 6. Stratigraphy, magnetic orientation, and pebble fabric data for diamicton/paleosol unit on Cloudy Ridge. The upper fabric was obtained from pebbles in the upper m of the paleoargillic horizon and lower fabric was taken from calcrete 8 to 15 m deep.

Geographie physique et Quaternaire, 55(2), 2001
FABRIC AND ORIGIN OF DIAMICTONS

Fabric and sedimentological properties of Kennedy Drift diamictons on Milk River Ridge, Cloudy Ridge, and other interfluves east of Waterton-Glacier National Parks (Karlstrom, 2000) exhibit many similarities. All are poorly sorted, non-stratified to weakly stratified, have a wide range of clast lithologies and sizes, and commonly include striated clasts and/or bulbous boulders. Some locally exhibit weak fissility, boulder pavements, and a compact structure typical of undeformed lodgement till. Most diamictons are capped by paleosols of varying thickness which are weathered to various degrees. Typically, there is an abrupt, smooth boundary between each paleosol and the overlying diamicton.

On each interfluve examined, the uppermost diamictons have a strong fabric (S_2 values greater than 0.650 and S_3 values less than 0.110) with a unimodal pebble orientation and pebble dip angles averaging 14 to 16°. These characteristics are typical of undeformed lodgement till (Dowdeswell and Charles, 1987) or basal till (Ham and Mickelson, 1994). The mode of pebble orientation (V_1) and imbrication within the upper diamicton on Milk River Ridge suggest that it was deposited by a glacier flowing from south to north or north to south across the interfluve at right angles to adjacent modern drainages (Fig. 1). This pattern suggests that either the associated glacier filled a shallower version of the drainage and spread laterally across the interfluve or that the interfluve then comprised a drainage bottom and subsequent reversal of topography has occurred. In this latter scenario, the drainage courses followed by these glaciers would be mostly nonexistent today.

The mode of pebble orientation (V_1) and angle of pebble dip of the diamicton at Cloudy Ridge suggests it was deposited by a glacier flowing southwest along the mountain front or by a piedmont glacier from the Waterton Valley that flowed northwest along the mountain front. The fabric of the lower diamicton/paleosol unit on Milk River Ridge is less well-defined than the others, perhaps because it was altered during emplacement of the upper diamicton. The fabric falls within the range of glaciogenic sediment flow (Fig. 4) but many of the diamicton’s sedimentary properties, including striated stones, fissility, and a weak stone pavement, suggest that it is deformed lodgement or basal till. Direction of pebble orientation and plunge suggests this diamicton was also deposited by ice flowing northwest or southward parallel to the mountain front.

Thus, numerous properties of the diamictons indicate a primarily glaciogenic rather than colluvial or alluvial fan origin. These include pebble fabrics, sedimentological characteristics such as striated stones and boulder pavements, and the wide variety of lithologies and clast sizes present. Colluvial (including mudflow) deposits, by contrast, could be expected to have less compact matrices, more homogeneous lithologies, and more angular clasts with long axes oriented in the downslope direction, whereas alluvium deposited on fan surfaces would be expected to exhibit greater sorting and rounding of clasts and less compact matrices than these diamictons. And although the Cloudy Ridge diamicton/paleosol caps a gently sloping fan-like surface which directly abuts the mountain front, Milk River Ridge and numerous other Flaxville surface remnants lie 2.2 to 10 km east of the nearest mountain (Karlstrom 1988, 1991). Finally, the diamicton/paleosol units capping the Flaxville remnants appear to have a distinctly horizontal aspect, as would be expected of material deposited subglacially, in contrast to sediment deposited by water and gravity on alluvial fan surfaces, which would slope toward the plains.

ANALYSIS OF PALEOSOLS

METHODS

Paleosol horizons were described and sampled according to the procedures of the Soil Survey Staff (1975) and Guthrie and Witty (1982). Samples were analyzed to determine particle size (Piper, 1950) using U.S. Department of Agriculture size limits, organic matter composition (Sims and Haby, 1971), and percent calcium carbonate and dolomite (Dreimanis, 1962). Percentages of free iron, aluminum, and manganese were determined for selected samples using the dithionite–citrate–bicarbonate method (Mehra and Jackson, 1960). Pebble lithologies were identified for selected horizons in order to determine parent material composition and degree of clast weathering was noted in order to assess relative age. Clay minerals were identified by X-ray diffraction (Milton, 1970). Selected samples were analyzed in greater detail in order to better identify mixed-layer clays using procedures of A. E. Foscolos (1980, personal communication; Foscolos et al., 1977).

Relative development of the paleosols is compared with modern soils using profile development (Harden, 1982) and clay-accumulation indices (Levine and Ciolkosz, 1983). Classification of paleosols can be problematic due to the possibility of post-burial diagenetic alterations. However, this does not seem to be a problem in this study because relict (surficial) paleosols closely resemble those that have been buried. The U.S. Comprehensive Soil Classification System (Soil Survey Staff, 1975) is used here rather than the Canadian System of Soil Classification (Canada Soil Survey Committee, 1978) because the paleosols better resemble soils formed in warmer, more equable climates than soils typically found in Canada.

PALEOSOLS AT MILK RIVER AND CLOUDY RIDGES

The two superposed diamictons at Milk River Ridge are each capped by thick weathering zones interpreted as very strongly developed paleosols. Primary carbonates and carbonate rocks have been entirely leached and removed from both paleosols. The paleoaerial (Bt) horizon of the upper paleosol is a 1.35-cm thick stony loam (30 % stones), which includes 24 to 26 % clay, or 13 % more clay than the underlying Bw horizon, and clay films on ped faces and some clasts (Table I). It is slightly acidic, with pH values ranging from 6.3 to 6.9. Rubification in the Bt horizon to yellowish red (6YR 5/8 moist) and strong brown (7.5YR 5/6 moist) colors coincides...
TABLE I
Summary of laboratory data for paleosols on Milk River Ridge and Cloudy Ridge and a representative local modern (post-Wisconsinan) soil

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>% sand</th>
<th>% silts</th>
<th>% clay</th>
<th>pH</th>
<th>% O.M.</th>
<th>% CaCO₃</th>
<th>% Dolom</th>
<th>% Fe</th>
<th>% Al</th>
<th>Clay Minerals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizons</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MILK RIVER RIDGE PALEOSOLS

Upper paleosol: Typic Paleudalf (Soil Survey Staff, 1975); HPI = 149; CAI = 2110

<table>
<thead>
<tr>
<th>Horizon</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>52</td>
<td>27</td>
<td>21</td>
<td>6.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Bt1</td>
<td>49</td>
<td>25</td>
<td>26</td>
<td>6.3</td>
<td>1.0</td>
</tr>
<tr>
<td>Bt2</td>
<td>42</td>
<td>34</td>
<td>24</td>
<td>6.3</td>
<td>0.0</td>
</tr>
<tr>
<td>Bt3</td>
<td>40</td>
<td>34</td>
<td>26</td>
<td>6.9</td>
<td>0.1</td>
</tr>
<tr>
<td>BC1</td>
<td>65</td>
<td>23</td>
<td>12</td>
<td>6.3</td>
<td>0.2</td>
</tr>
<tr>
<td>BC2</td>
<td>58</td>
<td>31</td>
<td>11</td>
<td>6.2</td>
<td>0.5</td>
</tr>
<tr>
<td>BC3</td>
<td>72</td>
<td>18</td>
<td>10</td>
<td>6.5</td>
<td>0.0</td>
</tr>
<tr>
<td>BC4</td>
<td>67</td>
<td>17</td>
<td>16</td>
<td>6.3</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Lower paleosol: Typic Paleudalf; HPI = 228.9; CAI = 5420

<table>
<thead>
<tr>
<th>Horizon</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>54</td>
<td>20</td>
<td>26</td>
<td>6.1</td>
<td>-</td>
</tr>
<tr>
<td>Bt1</td>
<td>60</td>
<td>16</td>
<td>24</td>
<td>6.1</td>
<td>-</td>
</tr>
<tr>
<td>Bt2</td>
<td>50</td>
<td>30</td>
<td>20</td>
<td>6.5</td>
<td>-</td>
</tr>
<tr>
<td>Bt3</td>
<td>58</td>
<td>22</td>
<td>20</td>
<td>6.3</td>
<td>-</td>
</tr>
<tr>
<td>Bt4</td>
<td>57</td>
<td>33</td>
<td>10</td>
<td>6.4</td>
<td>-</td>
</tr>
<tr>
<td>Bt5</td>
<td>95</td>
<td>29</td>
<td>10</td>
<td>6.5</td>
<td>-</td>
</tr>
<tr>
<td>Cb</td>
<td>1135-1192</td>
<td>75</td>
<td>17</td>
<td>17</td>
<td>8</td>
</tr>
</tbody>
</table>

CLOUDY RIDGE PALEOSOLS: Typic Paleudalf; HPI = 69; CAI = 2192

<table>
<thead>
<tr>
<th>Horizon</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>54</td>
<td>34</td>
<td>12</td>
<td>8.0</td>
<td>2.5</td>
</tr>
<tr>
<td>A2</td>
<td>31</td>
<td>53</td>
<td>14</td>
<td>8.1</td>
<td>1.9</td>
</tr>
<tr>
<td>2Aa</td>
<td>53</td>
<td>28</td>
<td>16</td>
<td>8.5</td>
<td>0.3</td>
</tr>
<tr>
<td>2Bb1</td>
<td>78</td>
<td>109</td>
<td>40</td>
<td>34</td>
<td>26</td>
</tr>
<tr>
<td>2Bb2</td>
<td>109-195</td>
<td>30</td>
<td>48</td>
<td>22</td>
<td>8.2</td>
</tr>
<tr>
<td>2Bb3</td>
<td>195-261</td>
<td>48</td>
<td>38</td>
<td>14</td>
<td>8.3</td>
</tr>
<tr>
<td>2Bb4</td>
<td>261-307</td>
<td>46</td>
<td>46</td>
<td>8</td>
<td>8.0</td>
</tr>
<tr>
<td>2Bb5</td>
<td>307-353</td>
<td>50</td>
<td>38</td>
<td>12</td>
<td>8.1</td>
</tr>
</tbody>
</table>

MODERN (POST-WISCONSINIAN) SOIL: Typic Cryxeript; HPI = 10.40; CAI = 0

<table>
<thead>
<tr>
<th>Horizon</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>53</td>
<td>39</td>
<td>9</td>
<td>6.9</td>
<td>5.8</td>
</tr>
<tr>
<td>E</td>
<td>22</td>
<td>61</td>
<td>17</td>
<td>7.3</td>
<td>3.7</td>
</tr>
<tr>
<td>Bw</td>
<td>14-27</td>
<td>30</td>
<td>47</td>
<td>23</td>
<td>7.5</td>
</tr>
<tr>
<td>Bk1</td>
<td>27-64</td>
<td>32</td>
<td>45</td>
<td>23</td>
<td>7.5</td>
</tr>
<tr>
<td>C</td>
<td>64-144+</td>
<td>33</td>
<td>44</td>
<td>23</td>
<td>8.1</td>
</tr>
</tbody>
</table>

- a: using U.S. Department of Agriculture size limits
- b: organic matter
- c: silts
- d: clay
- e: sand
- f: HPI = Harden profile index (Harden, 1982)
- g: CAI = clay accumulation index (Levine and Ciolkosz, 1980)

Geographie physique et Quaternaire, 55(2), 2001
with relatively high concentrations (1.98 %) of dithionite-extractable free iron and a relatively high percentage (48) of weathered clasts and "ghost stones". The underlying 242-cm-thick, cambic (Bw) horizon is slightly less oxidized and has lower concentrations of clay (10 to 16 %), free iron (1.47 %), and weathered clasts (23 %). All horizons have moderate to strong granular to subangular blocky structure.

The paleoargillic horizon of the lower paleosol is similar to that of the upper paleosol but is thicker (369 cm thick) and more weathered. It is a yellowish red to strong brown stony loam with 20 to 26 % clay, or 18 % more clay than the underlying C horizon, and thick clay films on ped faces and some clasts (Table I). It is slightly more acid (pH is 6.1 to 6.5) than the overlying paleosol and includes 1.92 % free iron, 0.46 % free aluminum, and 56 % weathered clasts and ghost stones. Again, horizons have granular to sub-angular blocky struc-
ture. The yellowish brown (10YR 5/4 moist) C horizon comes closest to representing unweathered till in this section. This horizon includes 5 to 10 % clay, 1.48 % free iron, 0.30 % free aluminum, only 11 % weathered clasts, and no (single grain) structure.

Clay mineralogy of relatively unweathered diamicton (C horizon of the lower paleosol) includes illite, chlorite, and kaolinite directly inherited from parent materials (Table I, Fig. 7). Paleoargillic (Bt) horizons of both paleosols, by contrast, are characterized by the weathering and loss of inherited chlorite and the occurrence of a mixed-layer clay mineral, tentatively identified as kaolinite-illite or halloysite-illite, which forms a broad hump between 8 and 9 Å. This mineral is characteristic of most paleosols developed in Kennedy Drift (Karlstrom, 1981, 1988). In addition, trace amounts of chlorite-vermiculite occur in the Bt1 horizon of the lower paleosol (Table II).

The weathering profile capping the Cloudy Ridge diamicton includes an 86 cm, brown ABb horizon, a 183-cm thick, yellowish red (5YR 4/6 moist) paleoargillic (Bt) horizon, and a 92-cm thick, leached, brown (7.4YR 4/4 moist) Bw horizon, overlying about 15 m of carbonate-cemented diamicton and outwash or alluvium (Table II). The upper 3.5 m of the paleosol is entirely leached of carbonates. The paleoargillic horizon is enriched in illuvial clay and includes up to 26 % clay, or 16 % more than the underlying Bw horizon (Table II). Bt horizons include moderate to thick clay films on ped faces and pebble surfaces. The Bt horizon includes only 15 to 20 % rounded clasts, many of which are highly weathered and/or "ghosts". Clay minerals include mixed-layer kaolinite-illite and chlorite-vermiculite in addition to inherited kaolinite, illite, and chlorite. Mixed-layer clays are most abundant in the paleoargillic horizon (Table I; Fig. 8). Chlorite-vermiculite commonly forms under alternating wet and dry soil forming conditions (Jackson, 1965) and/or results from partial interlayering of hydroyx aluminum or hydroyx iron material in depolymerized mica (Foscolos et al., 1977).

Although Taylor (1987) postulates that the "soil-like features" of this unit formed after the unit was buried and are therefore not pedogenic, his quantitative laboratory data are consistent with the conclusion that the unit is a buried paleosol (Fig. 9). Clay and dithionite-, oxalate- and pyrophosphate-extractable iron and aluminum are concentrated in the paleoargillic horizon of the paleosol, whereas percentages of CaCO3, anorthite (calcium feldspar) and heavy minerals in the sand fraction, and total phosphorus decrease through the profile, as would be expected in a soil exposed to pedogenic processes over time. In addition, his micromorphologi-
cal analyses indicate reorganization of plasma such that sesqui-argillans are common in the upper part and void-argillans predominate in the lower portions.

GENESIS OF PALEOSOLS

As noted, Taylor's (1987) assertion that the pre-Wisconsinan profile on Cloudy Ridge is not a paleosol because it's "soil-like features" formed during and after burial is disproven by the fact that relic paleosols with very similar features occur at the sur-
face of several Flaxville bench remnants to the south (Figs. 1 and 2). Thickness, degree of clay build-up, rubification, and clay mineral alteration of the paleosols capping Kennedy Drift diamictons suggest their considerable antiquity and probable formation under climates significantly different from today's (Karlstrom, 1991). Paleoargillic horizons on Milk River and Cloudy Ridges range between 135 and 369 cm thick, are oxi-
dized to yellowish red to strong brown colors, have up to 18 % more (absolute) clay than underlying horizons, and include mixed-layer kaolinite-illite and chlorite-vermiculite clays in addi-
tion to inherited illite, kaolinite, and chlorite. With a few excep-
tions (Foscolos, 1977; Duk-Rodkin et al., 1996), paleosols of similar antiquity have not been described elsewhere in Canada. However, similar paleosols have been identified in the U.S. Rocky Mountains (Hunt and Sokoloff, 1950; Horberg, 1956; Karlstrom, 1991).

Properties of the paleosols differ strikingly from those of typical post-Wisconsinan soils in the region, which are much thinner, less oxidized, and generally lack argillic horizons alto-
gather (Table I). A soil developed in Wisconsinan alpine later-
val moraine under forest vegetation 0.4 km south of Saint Mary, Montana (NE1/4, NW1/4, Section 3, T34N, R14W, Saint Mary

TABLE II

<table>
<thead>
<tr>
<th>Site</th>
<th>Polarity</th>
<th>n</th>
<th>D (%)</th>
<th>I (%)</th>
<th>k</th>
<th>Dme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk River Ridge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper paleosol / diamicton (Unit 2)</td>
<td>N</td>
<td>15</td>
<td>350</td>
<td>62</td>
<td>35</td>
<td>7</td>
</tr>
<tr>
<td>Lower paleosol / diamicton (Unit 1)</td>
<td>N</td>
<td>10</td>
<td>169</td>
<td>52</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>Cloudy Ridge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper paleosol / diamicton (Unit 1)</td>
<td>N</td>
<td>16</td>
<td>357</td>
<td>41</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>Lower paleosol / diamicton (Unit 1)</td>
<td>N</td>
<td>8</td>
<td>380</td>
<td>66</td>
<td>21</td>
<td>12</td>
</tr>
</tbody>
</table>

D = declination; I = inclination; k = precision parameter; Dme = circle of confidence (P = 0.05)
FIGURE 7. X-ray diffraction patterns for selected horizons of paleosols on Milk River Ridge.

Diagrammes de diffractométrie X de certains horizons de paléosols en provenance du Milk River Ridge.
Geologique physique et Quaternaire, 55(2), 2001

Quadrangle, USA), for example, is a Typic Cryochrept (Soil Survey Staff, 1975) with a 6-cm thick, very dark gray brown (10YR 3/2 dry) A horizon, an 8-cm thick, incipient light gray brown (10YR 6/2 dry) E horizon, a 13-cm thick, pale brown (10YR 6/3 dry) cambic (Bw) horizon and a 37-cm thick, brown (10YR 5/3 moist) Bk horizon (Table II).

Classification of the paleosols is problematic because they are undoubtedly polygenetic (have been subject to numerous climatic regimes) and have probably undergone some diagenetic alterations, both in buried and surface situations, particularly of reversible soil properties such as pH and organic matter content (Yaalon, 1971). Hence, although in many respects the paleosols resemble Ultisols (low base-status forest soils), they should probably be classed as Paleudalfs, or ancient high-base-status forest soils formed under a humid climate, based on properties such as percent base saturation and the persistence of relatively weatherable minerals such as mica (Soil Survey Staff, 1975). Paleudalfs typically form under mesic to thermic climatic regimes, with mean annual soil temperature between 8 to 15, and 15 to 22 °C, respectively (Soil Survey Staff, 1975). Properties of the paleosols also resemble those of fersiallitic or fersiallitic brown soils which typically form under Mediterranean-type climates with relatively hot, dry summers and cool moist winters (Duchaufour, 1977).

No similar soil types are described in the Canadian System of Soil Classification (Canada Soil Survey Committee, 1978). However, Foscolos et al. (1977) classify the similar "pre-Reid" paleosol (early Pleistocene) in the Central Yukon as a Luvisol (the Canadian Classification equivalent to Alfisol) and make similar paleoclimatic interpretations.

CLOUDY RIDGE

![X-ray diffraction patterns for selected horizons of paleosol on Cloudy Ridge.](image)

FIGURE 8. X-ray diffraction patterns for selected horizons of paleosol on Cloudy Ridge.

PALEOMAGNETIC ANALYSIS

METHODS

Oriented samples were collected in fine-grained pockets of sediments within the diamictons on Milk River Ridge and Cloudy Ridge. Cores were drilled from pebble-free zones within the cemented diamicton (calcrete) on Cloudy Ridge. Seven to 10 samples were collected in a vertical sequence with an average spacing of 10 cm. Sediments were collected by cleaning the exposure to a vertical face and inserting plastic cylinders (2.5 cm diameter) horizontally, and calcretes were drilled using a gas-powered portable water-cooled drill. Field orientations of the samples were measured using a magnetic compass. Remanence measurements were made on a AGICO JR-5A spinner magnetometer. Stepwise alternating field demagnetization was carried out using a Schonstedt GSD-5 with tumbler in peak fields up to 100 mT. Samples were demagnetized using 5-10 steps, and directions were determined by principle component analysis (Kirschvink, 1980).

Samples from the Milk River Ridge site were collected for paleomagnetic analysis at about 70 cm depth in the upper paleosol/diamicton and at about 8 to 9 m depth in a pocket of fine sediments within the lower diamicton. The samples from the upper paleosol/diamicton are characterized by a single component in a typical normal polarity direction, northerly and down-dipping (Table II, Fig. 10a). The lower unit reveal a high coercivity component with down-dipping inclination (streaked from shallow to deep) and anomalous southerly declination (Table II, Fig. 11). This unit has an isotropic magnetic grain/pebble fabric.
FIGURE 9. Plots of percent clay, anorthite, heavy minerals, and dithionite-, oxalate-, and pyrophosphate-extractable iron and aluminum, and bulk density with depth in Cloudy Ridge paleosol (data from Taylor, 1987). R1 through R7 are horizon designations.

DIAMICTON/PALEOSOL/CALCRETE UNITS

The two Milk River Ridge diamicton/paleosol units and the Cloudy Ridge calcrite/diamicton/paleosol units are all normally magnetized (Table II, Figs. 2 and 11). The magnetization of the lower paleosol at Milk River Ridge has a southerly direction (Fig. 10b), whereas the paleosol records a lightning-affected normal polarity (Fig. 10c), as indicated by the strong but easily-demagnetized overprints in widely-varying directions (mean directions given in Table II and Fig. 11).

PALEOMAGNETISM OF DIAMICTON/PALEOSOL/CALCRETE UNITS

Samples from the argillic horizon within the Cloudy Ridge paleosol (about 1 m depth) and the underlying calcrite (about 7 and 11 m depth) were sampled for paleomagnetic analysis. The calcrite records a simple, well-behaved normal polarity (Fig. 10b), whereas the paleosol records a lightning-affected normal polarity (Fig. 10c), as indicated by the strong but easily-demagnetized overprints in widely-varying directions (mean directions given in Table II and Fig. 11).

FIGURE 10. Orthogonal plots of typical demagnetization behavior. The closed (open) symbols refer to the horizontal (vertical) projection of the magnetic remanence vector after each step, in mT for alternating field demagnetization: a) simple unicomponent magnetization in the upper Milk River paleosol/diamicton; b) unicomponent magnetization in the Cloudy Ridge calcrite; c) lightning-affected magnetization from the Cloudy Ridge paleosol. Diagrammes orthogonaux illustrant le comportement caractéristique de la démagnétisation. Les cercles blancs correspondent à la projection horizontale (verticale) du vecteur de magnétisme rémanent après chacune des étapes, en mT pour la démagnétisation alternante: a) magnétisme à composante unique simple dans le diamicton/paleosol de la partie supérieure de la Milk River; magnétisme à composante unique dans les enrochements calcaires du Cloudy Ridge; c) magnétisme sensible à la foudre en provenance du paleosol du Cloudy Ridge.

The two Milk River Ridge diamicton/paleosol units and the Cloudy Ridge calcrite/diamicton/paleosol units are all normally magnetized (Table II, Figs. 2 and 11). The magnetization of the lower paleosol at Milk River Ridge has a southerly direction (smear), which may be an artifact of the depositional process (glacier advance from the south) or possibly by chemical remagnetization during soil formation, but is nevertheless normal. The upper paleosol/diamicton at Cloudy Ridge has been overprinted by lightning, but upon-magnetic cleaning by alternating field demagnetization and fitting of great circles to the stepwise cleaned directions (Kirschvink, 1980), reveals a normal magnetization. The sediments of the normally magnetized units at both sites are of glacial origin and are correlated with upper normally magnetized units of the Kennedy Drift, described previously (Cioppa et al., 1985; Barendregt et al., 1991). The Cloudy Ridge till and the upper Milk River Ridge till are assigned to the Brunhes Normal Polarity Chron (0.78 ka to present). The greater thickness and degree of weathering of the lower Milk River Ridge till suggest that it was deposited earlier during the Brunhes Chron or alternatively, during the Olduvai (1.98-1.76 Ma) Normal Subchron or possibly the Gauss Normal Polarity Chron (3.6 to 2.6 Ma).

CONCLUSION

Pebble fabric and sedimentological properties of diamicton units on Cloudy Ridge and Milk River Ridge suggest they are primarily of glacial rather than colluvial origin. Fabrics suggest that glacier flow across these surfaces was roughly orthogonal to the mountain front. Numerous properties, including thickness, degree of leaching and oxidation, concentration of clay, iron and aluminum, and extent of clay mineral alteration and depletion of anorthite, strongly suggest that...
weathering zones capping the tills are paleosols which formed over long time periods (hundreds of thousands of years) under climates probably warmer and more equable than the present. The fact that nearly identical paleosols occur both at the surface and in buried situations indicate that their properties are derived from pedogenic rather than diagenetic processes and that they are ancient soils related to landscapes of the past. Paleoclimatic evidence elsewhere, including paleobotanical markers, also indicate that early and middle Quaternary interglacial periods were warmer and moister than the present climate (Froelich, 1979).

Paleomagnetic data indicate all three units have normal polarity. The upper tills and associated paleosols on Cloudy Ridge and Milk River Ridge resemble the upper units on other nearby Flaxley surface remnants (Cioppa et al., 1995) and most likely were deposited during the middle or early portion of the Brunhes Normal Chron (790 ka to present). The lower till on Milk River Ridge may have been deposited during the early Brunhes Chron. However, based on its great thickness and degree of weathering, it may have been deposited during the Olduval (1.96 to 1.76 Ma) Normal Subchron or possibly even the Gauss Normal Polarity Chron (3.6 to 2.6 Ma).

ACKNOWLEDGMENTS

We would like to thank Barb Byron for assistance in the field and for running the pebble fabrics on computer program and Dr. B. Hickok (Department of Earth Science, University of Western Ontario) for valuable discussions in the field. Drs. D. J. Easterbrook and A. Duk-Rodkin gave valuable suggestions to improve the manuscript. Linda Marston drafted the figures.

REFERENCES

FABRIC, PALEOMAGNETISM, AND INTERPRETATION OF DIAMICTONS AND PALEOSOLS

