Abstracts
Abstract
In recent years, massive open online courses (MOOCs) have gained popularity with learners and providers, and thus MOOC providers have started to further enhance the use of MOOCs through recommender systems. This paper is a systematic literature review on the use of recommender systems for MOOCs, examining works published between January 1, 2012 and July 12, 2019 and, to the best of our knowledge, it is the first of its kind. We used Google Scholar, five academic databases (IEEE, ACM, Springer, ScienceDirect, and ERIC) and a reference chaining technique for this research. Through quantitative analysis, we identified the types and trends of research carried out in this field. The research falls into three major categories: (a) the need for recommender systems, (b) proposed recommender systems, and (c) implemented recommender systems. From the literature, we found that research has been conducted in seven areas of MOOCs: courses, threads, peers, learning elements, MOOC provider/teacher recommender, student performance recommender, and others. To date, the research has mostly focused on the implementation of recommender systems, particularly course recommender systems. Areas for future research and implementation include design of practical and scalable online recommender systems, design of a recommender system for MOOC provider and teacher, and usefulness of recommender systems.
Keywords:
- recommender system,
- massive open online course,
- MOOC,
- systematic review,
- implemented recommender system
Download the article in PDF to read it.
Download
Appendices
Bibliography
- Adamopoulos, P. (2014a, February). Novel perspectives in collaborative filtering recommender systems. In C.-W. Chung (Chair), 23rd International Conference on World Wide Web (WWW) PhD Symposium. Retrieved from https://pdfs.semanticscholar.org/3958/7fbe80b6e12bfd46209569be9f4c6698892a.pdf
- Adamopoulos, P. (2014b). On discovering non-obvious recommendations: Using unexpectedness and neighborhood selection methods in collaborative filtering systems. In B. Carterette, F. Diaz, C. Castillo, & D. Metzler (Eds.), WSDM ’14: Proceedings of the 7th ACM International Conference on Web Search and Data Mining (pp. 655-660). doi: 10.1145/2556195.2556204
- Adham, R.S., & Lundqvist, K.O. (2015). MOOCs as a method of distance education in the Arab world: A review paper. European Journal of Open, Distance and E-Learning EURODL, 18(1), 123-138. doi: 10.1515/eurodl-2015-0009
- Agrawal, A., Venkatraman, J., Leonard, S., & Paepcke, A. (2015). YouEDU: Addressing confusion in MOOC discussion forums by recommending instructional video clips. In O.C. Santos, J.G. Boticario, C. Romero, M. Pechenizkiy, A. Merceron, P. Mitros … M. Desmarais (Eds.), Proceedings of the 8th International Conference on Educational Data Mining (pp. 297-304). Retrieved from https://www.educationaldatamining.org/EDM2015/proceedings/edm2015_proceedings.pdf
- Agrebi, M., Sendi, M., & Abed, M. (2019). Deep reinforcement learning for personalized recommendation of distance learning. In Á. Rocha, H. Adeli, L. Reis, & S. Costanzo (Eds.), Advances in Intelligent Systems and Computing, Volume 931. New Knowledge in Information Systems and Technologies. WorldCIST’19 2019 (pp. 597-606). doi: 10.1007/978-3-030-16184-2_57
- Ahera, S. B., & Lobo, L. M. R. J. (2013). Combination of machine learning algorithms for recommendation of courses in E-Learning System based on historical data. Knowledge-Based Systems, 51, 1-14. doi: 10.1016/j.knosys.2013.04.015
- Alario-Hoyos, C., Leony, D., Estévez-Ayres, I., Pérez-Sanagustín, M., Gutiérrez-Rojas, I., & Kloos, C. D. (2014). Adaptive planner for facilitating the management of tasks in MOOCs. In L. B. Martínez, R. H. Rizzardini, & J. R. H. González (Eds.), Proceedings of the V Congreso Internacional sobre Calidad y Accesibilidad de la Formación Virtual (pp. 517-522). Retrieved from https://pdfs.semanticscholar.org/d007/7611bc09978ce61f489bae9b65974bfbfbea.pdf
- Apaza, R. G., Cervantes, E. V., Quispe, L. C., & Luna, J. e. O. (2014). Online courses recommendation based on LDA. In J. A. Lossio-Ventura & H. Alatrista-Salas (Eds.), Proceedings of the 1st Symposium on Information Management and Big Data—SIMBig 2014, Cusco, Peru (pp. 42-48). Retrieved from http://ceur-ws.org/Vol-1318/paper5.pdf
- Ardchir, S., Talhaoui, M. A., & Azzouazi, M. (2017). Towards an adaptive learning framework for MOOCs. In A. Esma., R. Umar, & W. Michael. (Eds.), E-Technologies: Embracing the Internet of Things. MCETECH 2017. Lecture Notes in Business Information Processing, vol 289 (pp. 236-251). Springer, Cham. https://doi.org/10.1007/978-3-319-59041-7_15
- Aryal, S., Porawagama, A. S., Hasith, M. G. S., Thorade, S. C., Kodagoda, N., & Suriyawansa, K. (2019). MoocRec: Learning styles-oriented MOOC recommender and search engine. In Alaa K. Ashmawy (Chair), 2019 IEEE Global Engineering Education Conference (EDUCOM) (pp. 1167-1172). doi: 10.1109/EDUCON.2019.8725079
- Assami, S., Daoudi, N., & Ajhoun, R. (2018). Personalization criteria for enhancing learner engagement in MOOC platforms. In C. -S. González, M. Castro, & M. -L. Nistal (Chairs), 2018 IEEE Global Engineering Education Conference (EDUCON) (pp. 1265-1272). doi: 10.1109/EDUCON.2018.8363375
- Assami S., Daoudi N., & Ajhoun R. (2019) Ontology-based modeling for a personalized MOOC recommender system. In Á. Rocha & M. Serrhini (Eds.), Information Systems and Technologies to Support Learning. EMENA-ISTL 2018. Smart Innovation, Systems and Technologies, vol. 111 (pp. 21-28). doi: 10.1007/978-3-030-03577-8_3
- Babinec, P., & Srba, I. (2017). Education-specific tag recommendation in CQA systems. In M. Bielikova & E. Herder (Chairs), UMAP ’17: Adjunct Publication of the 25th Conference on User Modeling, Adaptation and Personalization (pp. 281-286). doi: https://doi.org/10.1145/3099023.3099081
- Bassi, R., Daradoumis, T., Xhafa, F., Caballé, S., & Sula, A. (2014). Software agents in large scale open e-learning: A critical component for the future of massive online courses (MOOCs). In V. Loia & F. Xhafa (Chairs), Proceedings of the 2014 International Conference on Intelligent Networking and Collaborative Systems (INCoS) (pp. 184-188). doi: 10.1109/INCoS.2014.15
- Belarbi, N., Chafiq, N., Talbi, M., Namir, A., & Benlahmar, E. (2019a). A recommender system for videos suggestion in a SPOC: A proposed personalized learning method. In Y. Farhaoui & L. Moussaid (Eds.), Big Data and Smart Digital Environment. ICBDSDE 2018. Studies in Big Data, vol 53. (pp. 92-101). Springer, Cham. https://doi.org/10.1007/978-3-030-12048-1_12
- Belarbi, N., Chafiq, N., Talbi, M., Namir, A., & Benlahmar, E. (2019b). User profiling in a SPOC: A method based on User Video Clickstream Analysis. International Journal of Emerging Technologies in Learning (iJET), 14(1), 110-124. doi: 10.3991/ijet.v14i01.9091
- Bhatt, C., Cooper, M., & Zhao, J. (2018) SeqSense: Video recommendation using topic sequence mining. In K. Schoeffmann et al. (Eds.), Lecture Notes in Computer Science: Vol. 10705. MultiMedia Modeling. MMM 2018 (pp. 252-263). doi: 10.1007/978-3-319-73600-6_22
- Boratto, L., Fenu, G., & Marras, M. (2019) The effect of algorithmic bias on recommender systems for massive open online courses. In L. Azzopardi, B. Stein, N. Fuhr, P. Mayr, C. Hauff, & D. Hiemstra (Eds.), Lecture Notes in Computer Science: Vol. 1143. Advances in Information Retrieval. ECIR 2019 (pp. 457-472). doi: 10.1007/978-3-030-15712-8_30
- Bouchet, F., Labarthe, H., Bachelet, R., & Yacef, K. (2017) Who wants to chat on a MOOC? Lessons from a peer recommender system. In C. Delgado Kloos, P. Jermann, M. Pérez-Sanagustín, D. Seaton, & S. White (Eds.), Lecture Notes in Computer Science: Vol. 10254. Digital Education: Out to the World and Back to the Campus. EMOOCs 2017 (pp. 150-159). doi: 10.1007/978-3-319-59044-8_17
- Bouchet, F., Labarthe, H., Yacef, K., & Bachelet, R. (2017). Comparing peer recommendation strategies in a MOOC. In M. Bielikova, & E. Herder (Chairs), Adjunct Publication of the 25th Conference on User Modeling, Adaptation and Personalization (UMAP '17). Association for Computing Machinery (pp.129-134). doi: https://doi.org/10.1145/3099023.3099036
- Bousbahi, F., & Chorfi, H. (2015). MOOC-Rec: A case based recommender system for MOOCs. Procedia - Social and Behavioral Sciences, 195, 1813-1822. doi: 10.1016/j.sbspro.2015.06.395
- Brigui-Chtioui, I., Caillou, P., & Negre, E. (2017). Intelligent digital learning: Agent-based recommender system. In J.Li. & L. Huang (Chairs), Proceedings of the 9th International Conference on Machine Learning and Computing Association for Computing Machinery (pp. 71-76). doi: https://doi.org/10.1145/3055635.3056592
- Burgos, D., & Corbí, A. (2014, October). A recommendation model on personalised learning to improve the user’s performance and interaction in MOOCs and OERs. In IITE 2014: New Challenges for Pedagogy and Quality Education: MOOCs, Clouds and Mobiles. Symposium conducted at the meeting of UNESCO Institute for Information Technologies in Education, Moscow, Russia. Retrieved from https://bit.ly/33Wakle
- Campos, R., dos Santos, R. P., & Oliveira, J. (2018a, July). Recommendation systems for knowledge reuse management in MOOCs ecosystems. Paper presented at the XI Workshop de Teses e Dissertações em Sistemas de Informação (WTDSI), Caxias do Sul, RS, Brazil.
- Campos, R., dos Santos, R. P., & Oliveira, J. (2018b). Web-based recommendation system architecture for knowledge reuse in MOOCs ecosystems. In 2018 IEEE International Conference on Information Reuse and Integration (IRI) (pp. 193-200). doi: 10.1109/IRI.2018.00036
- Chanaa, A., & el Faddouli, N. E. (2019). Context-aware factorization machine for recommendation in massive open online courses (MOOCs). In R. A. Eduardo De Barros, S.B. Dosse, & H. El Fadili (Chairs), 2019 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS) (pp. 1-6). doi: 10.1109/WITS.2019.8723670
- Chen, G., Davis, D., Krause, M., Aivaloglou, E., Hauff, C., & Houben, G.-J. (2016). Can learners be earners? Investigating a design to enable MOOC learners to apply their skills and earn money in an online market place. IEEE Transactions on Learning Technologies (p. 1). Retrieved from https://angusglchen.github.io/documents/TLT16_Guanliang_Can.pdf
- Chen, G., Davis, D., Krause, M., Aivaloglou, E., Hauff, C., & Houben, G.-J. (2018). From learners to earners: Enabling MOOC learners to apply their skills and earn money in an online market place. IEEE Transactions on Learning Technologies, 11(2), 264-274. doi: 10.1109/TLT.2016.2614302
- Chen, G., Davis, D., Krause, M., Hauff, C., & Houben, G.-J. (2017). Buying time: Enabling learners to become earners with a real-world paid task recommender system. In A. Wise, P. H. Winne & G. Lynch (Chairs), Proceedings of the Seventh International Learning Analytics and Knowledge Conference (LAK '17). Association for Computing Machinery (pp 578-579). doi: https://doi.org/10.1145/3027385.3029469
- Cohen, R., Sardana, N., Rahim, K., Lam, D. Y., Li, M., Maccarthy, O.,... Guo, G. (2013). Recommending messages to users in social networks: A cross-site study. In M. A. Wani, G. Tecuci, M. Boicu, M. Kubat, T. M. Khoshgoftaar, & Naeem (Jim) Seliya(Eds.), 2013 12th International Conference on Machine Learning and Applications (pp. 445-450). doi: 10.1109/ICMLA.2013.160
- Cooper, M., Zhao, J., Bhatt, C., & Shamma, D. A. (2018a). MOOCex: Exploring educational video via recommendation. In K. Aizawa, M. Lew, & S. Satoh (Chairs), ICMR ’18: Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval (ICMR '18). Association for Computing Machinery (pp. 521-524). doi: https://doi.org/10.1145/3206025.3206087
- Cooper, M., Zhao, J., Bhatt, C., & Shamma, D. A. (2018b). Using recommendation to explore educational video. In K. Aizawa, M. Lew, & S. Satoh (Chairs), ACM International Conference on Multimedia Retrieval (ICMR). Retrieved from https://www.fxpal.com/publications/using-recommendation-to-explore-educational-video.pdf
- Corbi, A., & Burgos, D. (2014). Review of current student-monitoring techniques used in e-learning-focused recommender systems and learning analytics. The Experience API & LIME model case study. International Journal of Interactive Multimedia and Artificial Intelligence, 2(7), 44-52. doi: 10.9781/ijimai.2014.276
- Dai, K., Vilas, A. F., & Redondo, R. P. D. (2017). A new MOOCs’ recommendation framework based on LinkedIn data. In E. Popescu et al. (Eds.), Lecture Notes in Educational Technology: Innovations in Smart Learning (pp. 19-22). doi: 10.1007/978-981-10-2419-1_3
- Dakhel, G., & Mahdavi, M. (2013). Providing an effective collaborative filtering algorithm based on distance measures and neighbors’ voting. International Journal of Computer Information Systems and Industrial Management Applications, 5, 524-531. Retrieved from http://www.mirlabs.org/ijcisim/regular_papers_2013/Paper129.pdf
- Daradoumis, T., Bassi, R., Xhafa, F., & Caballé, S. (2013, October). A review on massive e-learning (MOOC) design, delivery and assessment. In F. Xhafa, L. Barolli, D. Nace, A. Bui & S. Venticinque (Eds.), 2013 Eighth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (pp. 208-213), doi: 10.1109/3PGCIC.2013.37
- De Medio, C., Gasparetti, F., Limongelli, C., Lombardi, M., Marani, A., Sciarrone, F., & Temperini, M. (2017). Towards a characterization of educational material: An analysis of Coursera resources. In T.T. Wu, R. Gennari, Y.M. Huang, H. Xie, & Y. Cao (Eds.), Lecture Notes in Computer Science: Vol. 10108. Emerging Technologies for Education. SETE 2016 (pp. 547-557). doi: 10.1007/978-3-319-52836-6_58
- dos Santos, H. L., Cechinel, C., Araujo, R. M., & Sicilia, M.-A. (2015). Clustering learning objects for improving their recommendation via collaborative filtering algorithms. In E. Garoufallou, R. Hartley, & P. Gaitanou (Eds.), Communications in Computer and Information Science. Volume 544. MTSR 2015. Metadata and Semantics Research. doi: 10.1007/978-3-319-24129-6_16
- Downes, S. (2008). Places to go: Connectivism and connective knowledge. Innovate: Journal of Online Education, 5(1). Retrieved from https://nsuworks.nova.edu/innovate/vol5/iss1/6
- Elbadrawy, A., Polyzou, A., Ren, Z., Sweeney, M., Karypis, G., & Rangwala, H. (2016). Predicting student performance using personalized analytics. Computer, 49(4), 61-69. doi: 10.1109/MC.2016.119
- Fazeli, S., Rajabi, E., Lezcano, L., Drachsler, H., & Sloep, P. (2016). Supporting users of open online courses with recommendations: An algorithmic study. In Kinshuk, R. Huang, N.-S. Chen, & P. Resta (Chair), 2016 IEEE 16th International Conference on Advanced Learning Technologies (ICALT) Volume: 1 (pp. 423-427). doi: 10.1109/ICALT.2016.119
- Fink, A. (2005). Conducting research literature reviews: From the Internet to paper. Thousand Oaks, California: Sage Publications.
- Fu, D., Liu, Q., Zhang, S., & Wang, J. (2015). The undergraduate-oriented framework of MOOCs recommender system. In H. Yang, & L.-F. Kwok (Chairs), 2015 International Symposium on Educational Technology (ISET) (pp. 115-119). doi: 10.1109/ISET.2015.31
- Gao, F., Luo, T., & Zhang, K. (2012). Tweeting for learning: A critical analysis of research on microblogging in education published in 2008-2011. British Journal of Educational Technology, 43(5), 783-801. doi: 10.1111/j.1467-8535.2012.01357.x
- Garg, V., & Tiwari, R. (2016). Hybrid massive open online course (MOOC) recommendation system using machine learning. In S. G. Malla (Chair), International Conference on Recent Trends in Engineering, Science & Technology (ICRTEST 2016) (pp. 1-5). doi: 10.1049/cp.2016.1479
- Gómez-Berbís, J. M., & Lagares-Lemos, Á. (2016). ADL-MOOC: Adaptive learning through big data analytics and data mining algorithms for MOOCs. In R. Valencia-García, K. Lagos-Ortiz, G. Alcaraz-Mármol, J. del Cioppo, & N. Vera-Lucio (Eds.), Technologies and innovation. CITI 2016. Communications in computer and information science, vol 658. (pp. 269-280). doi: https://doi.org/10.1007/978-3-319-48024-4_21
- Gope, J., & Jain, S. K. (2017). A learning styles based recommender system prototype for edX courses. In M. M. Kodabagi, S. S. Manvi, V. R. Hulipalled & S.K. Niranjan& (Eds.), 2017 International Conference on Smart Technologies for Smart Nation (SmartTechCon) (pp. 414-419). doi: 10.1109/SmartTechCon.2017.8358407
- Hajri, H., Bourda, Y., & Popineau, F. (2017). MORS: A system for recommending OERs in a MOOC. In M. Chang, N-S Chen, Kinshuk, D. G. Sampson, & R. Vasiu (Eds.), IEEE 17th International Conference on Advanced Learning Technologies (ICALT) (pp. 50-52). doi: 10.1109/ICALT.2017.89
- Hajri, H., Bourda, Y., & Popineau, F. (2018). A system to recommend open educational resources during an online course. In B. McLaren, R. Reilly, S. Zvacek, & J. Uhomoibhi (Eds.), Proceedings of the 10th International Conference on Computer Supported Education (CDSEU 2018) Vol. 1 (pp 99-109). Retrieved from https://pdfs.semanticscholar.org/24d8/1a0d8874bfb075b90afff58ff4e247ddea85.pdf
- Hajri, H., Bourda, Y., & Popineau, F. (2019). Personalized recommendation of open educational resources in MOOCs. In: B. McLaren, R. Reilly, S. Zvacek & J. Uhomoibhi (Eds.), Computer supported education. CSEDU 2018. Communications in computer and information science, vol 1022 (pp 166-190). doi: https://doi.org/10.1007/978-3-030-21151-6_9
- Harrathi, M., Touzani, N., & Braham, R. (2017). A hybrid knowlegde-based approach for recommending massive learning activities. In Y. Jararweh & K. Ghedira (Chairs), 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA) (pp. 49-54), doi: 10.1109/AICCSA.2017.150
- Harrathi, M., Touzani, N., & Braham, R. (2018). Toward a personalized recommender system for learning activities in the context of MOOCs. In G. De Pietro, L. Gallo, R. Howlett & L. Jain (Eds.), Intelligent Interactive Multimedia Systems and Services 2017. KES-IIMSS-18 2018. Smart Innovation, Systems and Technologies, vol 76 (pp. 575-583). doi: https://doi.org/10.1007/978-3-319-59480-4_57
- He, X., Liu, P., & Zhang, W. (2017). Design and implementation of a unified MOOC recommendation system for social work major: Experiences and lessons. In J. Li, B.Chapman, F. Palmieri & H. Mouftah (Chairs), 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC) (pp. 219-223), doi: 10.1109/CSE-EUC.2017.46
- Holotescu, C. (2016). MOOCBuddy: A chatbot for personalized learning with MOOCs. In A. Iftene & J. Vanderdonckt (Eds.), Proceedings of the 13th International Conference on Human-Computer Interaction RoCHI’2016 (pp. 91-94). Retrieved from https://pdfs.semanticscholar.org/832c/8de6424644765f98094c0127981120fc66e5.pdf
- Hou, Y., Zhou, P., Wang, T., Yu, L., Hu, Y., & Wu, D. (2016, October 11). Context-aware online learning for course recommendation of MOOC big data. Retrieved from arXiv database: 1610.03147
- Hou, Y., Zhou, P., Xu, J., & Wu, D. O. (2018, April). Course recommendation of MOOC with big data support: A contextual online learning approach. In D. Rawat (Chair), IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) (pp. 106-111). doi: 10.1109/INFCOMW.2018.8406936
- Hussain, M., Zhu, W., Zhang, W., Abidi, S. M. R., & Ali, S. (2018). Using machine learning to predict student difficulties from learning session data. Artificial Intelligence Review, 52, 381-407. doi: 10.1007/s10462-018-9620-8
- Iniesto, F., & Rodrigo, C. (2015). Accessible user profile modeling for academic services based on MOOCs. In Interacción ’15: Proceedings of the XVI International Conference on Human Computer Interaction (pp. 1-2). doi: 10.1145/2829875.2829922
- Iniesto, F., & Rodrigo, C. (2016). A preliminary study for developing accessible MOOC services. Journal of Accessibility and Design for All, 6(2), 125-149. doi: 10.17411/jacces.v6i2.117
- Iniesto, F., & Rodrigo, C. (2018). YourMOOC4all: A MOOCs inclusive design and useful feedback research project. In M. Castro & E. Tovar (Chairs), Learning with MOOCs (LWMOOCs) (pp. 147-150). doi: 10.1109/LWMOOCS.2018.8534644
- Iniesto, F., & Rodrigo, C. (2019). YourMOOC4all: A recommender system for MOOCs based on collaborative filtering implementing UDL. In M. Scheffel, J. Broisin, V. Pammer-Schindler, A. Ioannou, & J. Schneider (Eds.), Lecture Notes in Computer Science: Vol. 11722. Transforming Learning with Meaningful Technologies. EC-TEL 2019 (pp. 746-750). doi: 10.1007/978-3-030-29736-7_80
- Itmazi, J. A., & Hijazi, H. W. (2015, May). A suggested algorithm of recommender system to recommend crawled-Web open educational resources to course management system. In A. Al-Dahoud (Chair), CIT 2015 The 7th International Conference on Information Technology (pp. 330-337). doi: 10.15849/icit.2015.0050
- Jain, H., & Anika. (2018). Applying data mining techniques for generating MOOCs recommendations on the basis of learners online activity. In D. Garg (Ed.), 2018 IEEE 6th International Conference on MOOCs, Innovation and Technology in Education (MITE) (pp. 6-13). doi: 10.1109/MITE.2018.8747056
- Jing, X., & Tang, J. (2017). Guess you like: Course recommendation in MOOCs. In A. Sheth (Chair), WI ’17: Proceedings of the International Conference on Web Intelligence (pp. 783-789). doi: 10.1145/3106426.3106478
- Jo, Y., Tomar, G., Ferschke, O., Rosé, C. P., & Gašević, D. (2016). Expediting support for social learning with behavior modeling. In T. Barnes, M. Chi & M. Feng (Eds.), Proceedings of the 9th International Conference on Educational Data Mining (pp. 400-405). Retrieved from https://arxiv.org/pdf/1605.02836v3.pdf
- Kardan, A. A., Narimani, A., & Ataiefar, F. (2017). A hybrid approach for thread recommendation in MOOC forums. International Journal of Computer and Systems Engineering, 11(10), 2360-2366. Retrieved from https://pdfs.semanticscholar.org/43f1/cc3a373bb825aa49a7b13c68f305bf6e5f4e.pdf
- Kizilcec, R. F., Pérez-Sanagustín, M., & Maldonado, J. J. (2017). Self-regulated learning strategies predict learner behavior and goal attainment in massive open online courses. Computers and Education, 104(C), 18-33. doi: 10.1016/j.compedu.2016.10.001
- Kopeinik, S., Kowald, D., & Lex, E. (2016). Which algorithms suit which learning environments? A comparative study of recommender systems in TEL. In: K. Verbert, M. Sharples, & T. Klobučar (Eds.), Adaptive and Adaptable Learning. EC-TEL 2016. Lecture Notes in Computer Science, vol 9891. (pp. 124-138). Springer, Cham. doi: https://doi.org/10.1007/978-3-319-45153-4_10
- Labarthe, H., Bachelet, R., Bouchet, F., & Yacef, K. (2016). Increasing MOOC completion rates through social interactions: A recommendation system. In M. Khalil, M. Ebner, M. Kopp, A. Lorenz, & M. Kalz (Eds.), Proceedings of the European Stakeholder Summit on Experiences and Best Practices in and Around MOOCs (EMOOCS 2016) (pp. 471-480). Retrieved from https://www.researchgate.net/publication/293884848_Proceedings_of_the_European_Stakeholder_Summit_on_experiences_and_best_practices_in_and_around_MOOCs_EMOOCS_2016
- Labarthe, H., Bouchet, F., Bachelet, R., & Yacef, K. (2016). Does a peer recommender foster students’ engagement in MOOCs? In T. Barnes, M. Chi, & M. Feng (Eds.), Proceedings of the 9th International Conference on Educational Data Mining (pp. 418-423). Retreived from http://www.educationaldatamining.org/EDM2016/proceedings/paper\_171.pdf
- Lan, A. S., Spencer, J. C., Chen, Z., Brinton, C. G., & Chiang, M. (2019). Personalized thread recommendation for MOOC discussion forums. In: M. Berlingerio, F. Bonchi, T. Gärtner, N. Hurley & G. Ifrim (Eds.), Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2018. Lecture Notes in Computer Science, vol 11052. (pp 725-740). Springer, Cham. https://doi.org/10.1007/978-3-030-10928-8_43
- Li, X., Wang, T., Wang, H., & Tang, J. (2018). Understanding user interests acquisition in personalized online course recommendation. In L. Hou U & H. Xie (Eds.), Web and Big Data. APWeb-WAIM 2018. Lecture Notes in Computer Science, vol 11268 (pp 230-242). Springer, Cham. https://doi.org/10.1007/978-3-030-01298-4_20
- Li, Y., & Li, H. (2017). MOOC-FRS: A new fusion recommender system for MOOCs. In Y.B Zhu (Chair), 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC) (pp. 1481-1488). doi: 10.1109/IAEAC.2017.8054260
- Liyanagunawardena, T. R., Adams, A. A., & Williams, S. A. (2013). MOOCs: A systematic study of the published literature 2008-2012. The International Review of Research in Open and Distributed Learning, 14(3), 202-227. https://doi.org/10.19173/irrodl.v14i3.1455
- Lops, P., de Gemmis, M., & Semeraro, G. (2011). Content-based recommender systems: State of the art and trends. In F. Ricci, L. Rokach, B. Shapira, & P. B. Kantor (Eds.), Recommender Systems Handbook (pp. 73-105). Boston, MA: Springer US.
- Luacesa, O., Díeza, J., Alonso-Betanzosb, A., Troncosoc, A., & Bahamondea, A. (2017). Content-based methods in peer assessment of open-response questions to grade students as authors and as graders. Knowledge-Based Systems, 117, 79-87. doi: 10.1016/j.knosys.2016.06.024
- Macina, J., Srba, I., Williams, J. J., & Bielikova, M. (2017). Educational question routing in online student communities. In P. Cremonesi & F. Ricci (Chair), RecSys ’17: Proceedings of the Eleventh ACM Conference on Recommender Systems (pp. 47-55). doi: https://dx.doi.org/10.1145/3109859.3109886
- Manouselis, N., Drachsler, H., Verbert, K., & Duval, E. (2013). Recommender systems for learning. New York, USA: Springer. doi: 10.1007/978-1-4614-4361-2
- Marchal, F., Castagnos, S., & Boyer, A. (2016). A first step toward recommendations based on the memory of users. In A. Esposito (Chair), 2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI) (pp. 54-61). doi: 10.1109/ICTAI.2016.16
- Margolis, A., López-Arredondo, A., García, S., Rubido, N., Caminada, C., González, D., & Tansini, L. (2019). Social learning in large online audiences of health professionals: Improving dialogue with automated tools [Version 2]. MedEdPublish, 8. doi: 10.15694/mep.2019.000055.2
- Mawas, N. E., Gilliot, J.-M., Garlatti, S., Euler, R., & Pascual, S. (2018). Towards personalized content in massive open online courses. In,J. Uhomoibhi. (Chair). Proceedings of the 10th International Conference on Computer Supported Education—Volume 1: CSEDU (pp. 331-339). doi: 10.5220/0006816703310339
- Mi, F., & Faltings, B. (2016a). Adapting to drifting preferences in recommendation. Paper presented at the meeting of Neural Information Processing Systems Foundation (NIPS 2016), Barcelona, Spain.
- Mi, F., & Faltings, B. (2016b). Adaptive sequential recommendation using context trees. In S. Kambhampati. (Ed.), Twenty-Fifth International Joint Conference on Artificial Intelligence (pp. 4018-4019). Retireved from https://www.ijcai.org/Proceedings/16/Papers/583.pdf
- Mi, F., & Faltings, B. (2017). Adaptive sequential recommendation for discussion forums on MOOCs using context trees. In X. Hu, & T. Barnes (Chairs), Proceedings of the 10th International Conference on Educational Data Mining (pp. 24-31). Retireved from https://pdfs.semanticscholar.org/c2c5/284e50e510e9c901db995a15e10d867df975.pdf?_ga=2.189311659.1005401281.1599166549-1010863648.1562893566
- Ng, J., Ruta, D., Al-Rubaie, A., Wang, D., Powell, L., Hirsch, B.... Al-Dhanhani, A. (2014). Smart learning for the next generation education environment. In V. Callaghan, & L. Shen (Chairs), 2014 International Conference on Intelligent Environments (pp. 333-340). doi: 10.1109/IE.2014.73
- Niu, K., Niu, Z., Su, Y., Wang, C., Lu, H., & Guan, J. (2015). A coupled user clustering algorithm based on mixed data for Web-based learning systems. Mathematical Problems in Engineering, 2015, 1-14. doi: 10.1155/2015/747628
- Onah, D. F. O., & Sinclair, J. E. (2015a). Collaborative filtering recommendation system: A framework in massive open online courses. In L. Gómez Chova, A. López Martínez, & I. Candel Torres (Eds.). INTED 2015: Proceedings of the 9th International Technology, Education and Development Conference (pp. 1249-1258). doi: 10.13140/RG.2.1.5023.4409
- Onah, D. F. O., & Sinclair, J. E. (2015b). Massive open online courses: An adaptive learning framework. In INTED 2015: Proceedings of the 9th International Technology, Education and Development Conference (pp. 1258-1266). doi: 10.13140/RG.2.1.4237.0083
- Ouertani, H. C., & Alawadh, M. M. (2017). MOOCs recommender system: A recommender system for the massive open online courses. In E. Popescu, Kinshuk, M. K. Khribi, R. Huang, M. Jemni, N-S. Chen, & D.G. Sampson (Eds), Innovations in smart learning. lecture notes in educational technology (pp 139-143). doi: https://doi.org/10.1007/978-981-10-2419-1_20
- Pang, Y., Liao, C., Tan, W., Wu, Y., & Zhou, C. (2018). Recommendation for MOOC with learner neighbors and learning series. In H. Hacid, W. Cellary, H. Wang, HY Paik, & R. Zhou (Eds.), Web information systems engineering - WISE 2018. Lecture notes in computer science, vol 11234 (pp. 379-394). doi: https://doi.org/10.1007/978-3-030-02925-8_27
- Pappano, L. (2012, November 4). The year of the MOOC. The New York Times. Retrieved from https://www.nytimes.com/2012/11/04/education/edlife/massive-open-online-courses-are-multiplying-at-a-rapid-pace.html
- Paquette, G., Mariño, O., Rogozan, D., & Léonard, M. (2015). Competency-based personalization for massive online learning. Smart Learning Environments, 2(4). doi: 10.1186/s40561-015-0013-z
- Pardos, Z. A., Tang, S., Davis, D., & Le, C. V. (2017). Enabling real-time adaptivity in MOOCs with a personalized next-step recommendation framework. In C. Urrea (Chair), L@S ’17: Proceedings of the fourth (2017) ACM conference on learning @ scale (pp. 23-32). doi: http://dx.doi.org/10.1145/3051457.3051471
- Piao, G., & Breslin, J. G. (2016). Analyzing MOOC entries of professionals on LinkedIn for user modeling and personalized MOOC recommendations. In J. Vassileva & J. Blustein (Chairs), UMAP ’16: Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization (pp. 291-292). doi: http://dx.doi.org/10.1145/2930238.2930264
- Piedra, N., Chicaiza, J., López, J., & Caro, E. T. (2014, April). Supporting openness of MOOCs contents through of an OER and OCW framework based on Linked Data technologies. In J. Mottok (Chair), 2014 IEEE Global Engineering Education Conference (EDUCON) (pp. 1112-1117). doi: 10.1109/EDUCON.2014.6826249
- Popescu, I., Portelli, K., Anagnostopoulos, C., & Ntarmos, N. (2017). The case for graph-based recommendations. In R. Baeza-Yates, X. Tony Hu, & J. Kepner (Chairs), 2017 IEEE International Conference on Big Data (Big Data). (pp. 4819-4821). doi: 10.1109/BigData.2017.8258553
- Potts, B. A., Khosravi, H., Reidsema, C., Bakharia, A., Belonogoff, M., & Fleming, M. (2018). Reciprocal peer recommendation for learning purposes. In A. Pardo, K. Bartimote-Aufflick, & G. Lynch (Chairs), LAK ’18: Proceedings of the 8th International Conference on Learning Analytics and Knowledge (pp 226-235). doi: https://doi.org/10.1145/3170358.3170400
- Prabhakar, S., Spanakis, G., & Zaiane, O. (2017). Reciprocal recommender system for learners in massive open online courses (MOOCs). In H. Xie, E. Popescu, G. Hancke, & M. B. Fernández (Eds.), Advances in Web-Based Learning - ICWL 2017. ICWL 2017. Lecture Notes in Computer Science, vol 10473. (pp. 157-167). doi: https://doi.org/10.1007/978-3-319-66733-1_17
- Rabahallah, K., Mahdaoui, L., & Azouaou, F. (2018). MOOCs recommender system using ontology and memory-based collaborative filtering. In O. Camp, & J. Filipe (Chairs), Proceedings of the 20th International Conference on Enterprise Information Systems—Vol. 1 (pp. 635-641). doi: 10.5220/0006786006350641
- Rădoiu, D. (2014). Organization and constraints of a recommender system for MOOCs. Scientific Bulletin of the Petru Maior University of Tîrgu Mureş, Romania, 11(XXVIII)(1), 57-61. Retrieved from http://scientificbulletin.upm.ro/papers/2014-1/11_Radoiu%20Dumitru.pdf
- Ricci, F., Rokach, L., Shapira, B., & Kantor, P. B. (Eds.). (2011). Recommender systems handbook. New York, NY: Springer-Verlag. doi: 10.1007%2F978-0-387-85820-3
- Santos, O. C., & Boticario, J. G. (2015). Practical guidelines for designing and evaluating educationally oriented recommendations. Computers and Education, 81, 354-374. doi: 10.1016/j.compedu.2014.10.008
- Santos, O. C., Boticario, J. G., & Pérez-Marín, D. (2014). Extending web-based educational systems with personalised support through User Centred Designed recommendations along the e-learning life cycle. Science of Computer Programming, 88, 92-109. doi: 10.1016/j.scico.2013.12.004
- Shah, D. (2018, 11 December). By the numbers: MOOCs in 2018. Class Central MOOC Report. Retrieved from https://www.classcentral.com/report/mooc-stats-2018/
- Shaptala, R., Kyselova, A., & Kyselov, G. (2017). Exploring the vector space model for online courses. In I. Pichkalov (Chair), 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON) (pp. 861-864). doi: 10.1109/UKRCON.2017.8100370
- Sunar, A. S., Abdullah, N. A., White, S., & Davis, H. C. (2016). Personalisation in MOOCs: A Ccritical Lliterature Rreview. In S. Zvacek, M. T. Restivo, J. Uhomoibhi, & M. Helfert (Eds.), International Conference on Computer Supported Education CSEDU 2015. (pp 152-168). doi: https://doi.org/10.1007/978-3-319-29585-5_9
- Sunar, A. S., Abdullah, N. A., White, S., & Davis, H. C. (2015a). Analysing and predicting recurrent interactions among learners during online discussions in a MOOC. In T. Watanabe, & K. Seta (Eds.), Proceedings of the 11th International Conference on Knowledge Management ICKM 2015. Retrieved from https://eprints.soton.ac.uk/381181/1/ICKM2015_ayse_revised.pdf
- Sunar, A. S., Abdullah, N. A., White, S., & Davis, H. C. (2015b, September). Analysis of social learning networks on Twitter for supporting MOOCs education. Poster session presented at the meeting of ACM-W Europe womENcourage Celebration of Women in Computing, Uppsala, Sweden.
- Sunar, A. S., Abdullah, N. A., White, S., & Davis, H. C. (2015c). Personalisation of MOOCs: The state of the art. In M. Helfert, & M. T. Restivo (Eds.). Proceedings of the 7th International Conference on Computer Supported Education - Volume 1: CSEDU (pp. 88-97). doi: 10.5220/0005445200880097
- Symeonidis, P., & Malakoudis, D. (2016, September). MoocRec.com: Massive open online courses recommender system. Poster session presented at the 10th ACM Conference on Recommender Systems (RecSys 2016), Boston, USA. Retrieved from http://ceur-ws.org/Vol-1688/paper-01.pdf
- Symeonidis, P., & Malakoudis, D. (2018). Multi-modal matrix factorization with side information for recommending massive open online courses. Expert Systems With Applications, 118, 261-271. doi: 10.1016/j.eswa.2018.09.053
- Taha, E. A. El Kadiri, K.E., & Chrayah, M. (2017). Toward a new framework of recommender memory based system for MOOCs. International Journal of Electrical and Computer Engineering (IJECE), 7(4), 2152-2160. doi: 10.11591/ijece.v7i4.pp2152-2160
- Tan, M., & Wu, M. (2018). An association rule model of course recommendation in MOOCs: Based on edX platform. European Scientific Journal, 14(25), 284. doi: 10.19044/esj.2018.v14n25p284
- Wang, Y., Liang, B., Ji, W., Wang, S., & Chen, Y. (2017). An improved algorithm for personalized recommendation on MOOCs. International Journal of Crowd Science, 1(3), 186-196. doi: 10.1108/IJCS-08-2017-0021
- Wang, Y., Maruyama, N., Yasui, G., Kawai, Y., & Akiyama, T. (2017). A Twitter-based recommendation system for MOOCs based on spatiotemporal event detection. In W. Sterzer (Ed.), iConference 2017 Proceedings Vol. 2 (pp. 152-155). Retrieved from http://hdl.handle.net/2142/98491
- Xiao, J., Wang, M., Jiang, B., & Li, J. (2018). A personalized recommendation system with combinational algorithm for online learning. Journal of Ambient Intelligence and Humanized Computing, 9(3), 667-677. doi: 10.1007/s12652-017-0466-8
- Yang, D., Adamson, D., & Rosé, C. P. (2014). Question recommendation with constraints for massive open online courses. In A. Kobsa, & M. Zhou (Chairs), RecSys'14: 8th ACM Conference on Recommender Systems (pp. 49-56) doi: http://dx.doi.org/10.1145/2645710.2645748
- Yang, D., Piergallini, M., Howley, I., & Rosé, C. P. (2014). Forum thread recommendation for massive open online courses. In M. Mavrikis, & B. M. McLaren (Chairs), EDM 2014: 7th International Conference on Educational Data Mining (pp. 257-260). Retrieved from https://educationaldatamining.org/EDM2014/uploads/procs2014/short%20papers/257_EDM-2014-Short.pdf
- Yang, D., Shang, J., & Rosé, C. P. (2014). Constrained question recommendation in MOOCs via submodularity. In J. Li & X.S. Wang (Chairs), CIKM ’14: Proceedings of the ACM International Conference on Information and Knowledge Management (pp. 1987-1990). doi: 10.1145/2661829.2662089
- Yanhui, D., Dequan, W., Yongxin, Z., & Lin, L. (2015). A group recommender system for online course study. In S. Li, Y. Dai, & Y. Cheng. (Eds.), Proceedings of the 7th International Conference on Information Technology in Medicine and Education (ITME) (pp. 318-320). doi: 10.1109/ITME.2015.99
- Yousef, A. M. F., & Sunar, A. S. (2015, June). Opportunities and challenges in personalized MOOC experience. Paper presented at the ACM WEB Science Conference 2015, Web Science Education Workshop 2015, Oxford, UK.
- Zhang, H., Huang, T., Lv, Z., Liu, S., & Yang, H. (2019). MOOCRC: A highly accurate resource recommendation model for use in MOOC environments. Mobile Networks And Applications, 24(1), 34-46. doi: 10.1007/s11036-018-1131-y
- Zhang, H., Huang, T., Lv, Z., Liu, S., & Zhou, Z. (2018). MCRS: A course recommendation system for MOOCs. Multimedia Tools and Applications, 77(6), 7051-7069. doi: 10.1007/s11042-017-4620-2
- Zhang, H., Yang, H., Huang, T., & Zhan, G. (2017). DBNCF: Personalized courses recommendation system based on DBN in MOOC environment. In F. L. Wang, O. Au, K. K. Ng, J. Shang, & R. Kwan (Eds.), 2017 International Symposium on Educational Technology (ISET) (pp. 106-108). doi: 10.1109/ISET.2017.33
- Zhang, M., Zhu, J., Wang, Z., & Chen, Y. (2019). Providing personalized learning guidance in MOOCs by multi-source data analysis. World Wide Web, 22(3), 1189-1219. doi: 10.1007/s11280-018-0559-0
- Zhao, J., Bhatt, C., Cooper, M., & Shamma, D. A. (2018). Flexible learning with semantic visual exploration and sequence-based recommendation of MOOC videos. In R. Mandryk & M. Hancock (Chairs), CHI ’18: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (Paper 329) (pp. 1-13). doi: https://dl.acm.org/doi/abs/10.1145/3173574.3173903
- Zhou, M., Cliff, A., Krishnan, S., Nonnecke, B., Crittenden, C., Uchino, K., & Goldberg, K. (2015). M-CAFE 1.0: Motivating and prioritizing ongoing student feedback during MOOCs and large on-campus courses using collaborative filtering. In A. Settle & T. Steinbach (Chairs), Proceedings of the 16th Annual Conference on Information Technology Education SIGITE ’15. (pp. 153-158). doi: http://dx.doi.org/10.1145/2808006.2808020