NouvellesNews

Des microARN comme s’il en pleuvait…MicroRNA are everywhere[Record]

  • Jérôme Cavaillé

…more information

  • Jérôme Cavaillé
    Laboratoire de biologie moléculaire eucaryote,
    UMR 5099 Cnrs,
    Université Paul-Sabatier,
    118, route de Narbonne,
    31062 Toulouse Cedex,
    France.
    cavaille@ibcg.biotoul.fr

Il y a maintenant dix ans, le groupe de V. Ambros décrivait lin-4, un gène de C. elegans ne codant pas pour une protéine mais pour un ARN d’environ 21-23 nucléotides (nt) dont l’invalidation affectait de façon très importante le développement du ver [1]. D’abord perçu comme « une bizarrerie » propre à C. elegans, des petits ARN apparentés à lin-4 sont maintenant décrits aussi bien chez A. thaliana (~ 20), D. melanogaster (~ 70), C. elegans (~ 100), M. musculus (~ 120), H. sapiens (~ 130). De façon remarquable, certains d’entre eux sont très conservés au cours de l’évolution, suggérant une fonction biologique importante. Les membres de cette nouvelle classe d’ARN n’ayant pas de fonction codante ont été collectivement appelés microARN ou miARN. Bien que notre connaissance de l’étendue de ce microcosme d’ARN soit encore balbutiante, on estime actuellement qu’il en existe au minimum 250 chez l’homme, un nombre correspondant à ~ 1 % de l’ensemble des gènes codant pour des protéines et identifiés à ce jour (pour revue, voir [2, 3]). Les mécanismes moléculaires de la biosynthèse des miARN sont relativement bien compris. Apparemment, tous les miARN sont synthétisés sous forme d’ARN précurseurs de grande taille dont la maturation fait intervenir au moins deux protéines apparentées à l’ARNase III : Drosha et Dicer [4, 5] ((→) m/s 2004, n° 1, p. 26). Drosha intervient initialement dans le nucléoplasme, où elle convertit un transcrit primaire (ou pri-miARN) en une structure en épingle à cheveux irrégulière d’environ 70 nt (ou pré-miARN). Ce pré-miARN est par la suite pris en charge par Dicer qui façonne un intermédiaire de maturation transitoire, nommé miARN:miARN*, dont un seul des deux brins formera le microARN mature (généralement c’est le brin dont l’extrémité 5’ est la plus faiblement appariée) [6, 7]. D’autres facteurs participent vraisemblablement à la biosynthèse des miARN, notamment l’exportine 5 qui assure le transport nucléocytoplasmique du pré-miARN (Figure 1). La biosynthèse des miARN n’est donc pas sans rappeler celle des petits ARN interférents (ou siARN) impliqués dans les phénomènes d’ARN interférence (ou ARNi) qui, eux aussi, sont produits par Dicer à partir de longs ARN double-brins [8]. Les miARN, une fois libérés des pré-miARN, ou au cours de leur processus de maturation à partir du pré-miARN, interagissent avec des protéines spécifiques pour former un complexe ribonucléoprotéique stable nommé RISC-miRNP (RNA-induced silencing complex-micro-ribonucleoprotein). Au sein de ce complexe, le miARN, par un jeu d’appariement de bases, interagit avec des ARNm. Les modalités d’action de RISC-miRNP sont relativement mal comprises, mais semblent contrôlées par la qualité du duplex miARN:ARNm mis en jeu. Si cette complémentarité est parfaite, RISC-miRNP induit alors un clivage au milieu de l’hybride miARN:ARNm entraînant la dégradation rapide de l’ARNm. Ainsi, non seulement les miARN partagent la même voie de biosynthèse que les siARN mais, tout comme eux, ils peuvent aussi promouvoir l’ARN interférence. En revanche, si cette complémentarité est irrégulière (présence dans le duplex de nucléotides non appariés), on observe alors l’inhibition de la traduction de l’ARNm cible sans pour autant que sa stabilité soit affectée. De tels appariements imparfaits prennent place généralement dans la région 3’ non traduite des ARNm (ou 3’UTR) et les mécanismes moléculaires du blocage de la traduction restent à élucider (Figure 1). Alors que leur nombre ne cesse de croître, la fonction biologique des miARN est très mal comprise. Chez les plantes, nombreux sont les miARN présentant des complémentarités parfaites avec des ARNm ; c’est notamment le cas de ceux codant pour des facteurs de transcription impliqués dans le développement [9]. En revanche, chez les métazoaires, …

Appendices