Abstracts
Résumé
Dans la nature, certaines espèces, animales comme végétales, se reproduisent par parthénogenèse, c’est-à-dire uniquement à partir du gamète femelle, sans participation du gamète mâle. Chez les mammifères, la parthénogenèse naturelle n’a jamais été observée, ce qui suggère que le développement d’un embryon de mammifère requiert la présence des deux génomes maternel et paternel. Cela est dû à un phénomène, découvert au début des années 1980, appelé « empreinte génomique parentale » : il apparaît que, chez tous les mammifères, les génomes mâle et femelle qui se rencontrent dans l’oeuf fécondé sont marqués d’un sceau différent, nommé empreinte. Par la suite, l’identification de gènes spécifiques soumis à empreinte parentale a permis de montrer que cette empreinte conduit à une expression monoallélique, dépendante de l’origine parentale. Les caractéristiques moléculaires de ce phénomène de marquage épigénétique ont maintenant été décrites et permettent d’expliquer certaines maladies humaines liées à des gènes soumis à empreinte.
Summary
Genomic imprinting leads to parent-of-origin-specific monoallelic expression of about 60 known genes in the mammalian genome. It was discovered 20 years ago and the aim of this review is to summarize its main characteristics. The nature of the imprint, still unknown, is characterized by differential chromatin structure and DNA methylation. The imprint is reset at each generation during gametogenesis, which can be observed by demethylation in the PGCs, then gamete-specific remethylation. The imprinted genes are usually located in clusters and regulated by cis sequences such as imprinting centres, trans factors such as the insulator protein CTCF and/or large non coding antisense RNAs. Genetic and epigenetic abnormalities of the imprinted clusters can lead to human diseases such as Prader-Willi, Angelman or Beckwith-Wiedemann syndromes.
Appendices
Références
- 1. McGrath J, Solter D. Completion of embryogenesis requires both the maternal and paternal genomes. Cell 1984 ; 37 : 179-83.
- 2. Surani MA, Barton S, Norris M. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 1984 ; 308 : 548-50.
- 3. Cattanach BM, Kirk M. Differential activity of maternally and paternally derived chromosome regions in mice. Nature 1985 ; 315 : 496-8.
- 4. Cattanach BM, Beechey CV, Peters J. Interactions between imprinting effects in the mouse. Genetics 2004 ; 168 : 397-413.
- 5. DeChiara TM, Efstratiadis A, Robertson EJ. A growth deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by gene targeting. Nature 1990 ; 345 : 78-80.
- 6. Barlow DP, Stoger R, Hermann BG, et al. The mouse insulin-like growth factor type 2 receptor is imprinted and closely linked to the Tme locus. Nature 1991 ; 349 : 84-7.
- 7. Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 1992 ; 69 : 915-26.
- 8. Hata K, Okano M, Lei H, Li E. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 2002 ; 129 : 1983-93.
- 9. Bourc’his D, Xu GL, Lin CS, et al. Dnmt3L and the establishment of maternal genomic imprints. Science 2001 ; 294 : 2536-9.
- 10. Li E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 2002 ; 3 : 662-73.
- 11. Mager J, Montgomery ND, de Villena FP, Magnuson T. Genome imprinting regulated by the mouse Polycomb group protein Eed. Nat Genet 2003 ; 33 : 502-7.
- 12. Umlauf D, Goto Y, Cao R, et al. Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nat Genet 2004 ; 36 : 1296-300.
- 13. Lewis A, Mitsuya K, Umlauf D, et al. Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation. Nat Genet 2004 ; 36 : 1291-5.
- 14. Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science 2001 ; 293 : 1089-93.
- 15. Lucifero D, Mann MR, Bartolomei MS, Trasler JM. Gene-specific timing and epigenetic memory in oocyte imprinting. Hum Mol Genet 2004 ; 13 : 839-49.
- 16. Obata Y, Kaneko-Ishino T, Koide T, et al. Disruption of primary imprinting during oocyte growth leads to the modified expression of imprinted genes during embryogenesis. Development 1998 ; 125 : 1553-60.
- 17. Kono T, Obata Y, Wu Q, et al. Birth of parthenogenetic mice that can develop to adulthood. Nature 2004 ; 428 : 860-4.
- 18. Lopes S, Lewis A, Hajkova P, et al. Epigenetic modifications in an imprinting cluster are controlled by a hierarchy of DMRs suggesting long-range chromatin interactions. Hum Mol Genet 2003 ; 12 : 295-305.
- 19. Hark AT, Schoenherr CJ, Katz DJ, et al. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 2000 ; 405 : 486-9.
- 20. Lee MP, DeBaun MR, Mitsuya K, et al. Loss of imprinting of a paternally expressed transcript, with antisense orientation to KVLQT1, occurs frequently in Beckwith-Wiedemann syndrome and is independent of insulin-like growth factor II imprinting. Proc Natl Acad Sci USA 1999 ; 96 : 5203-8.
- 21. Wutz A, Smrzka OW, Schweifer N, et al. Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature 1997 ; 389 : 745-9.
- 22. Sleutels F, Zwart R, Barlow DP. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 2002 ; 415 : 810-3.
- 23. Rougeulle C, Cardoso C, Fontes M, et al. An imprinted antisense RNA overlaps UBE3A and a second maternally expressed transcript. Nat Genet 1998 ; 19 : 15-6.
- 24. Landers M, Bancescu DL, Le Meur E, et al. Regulation of the large (approximately 1000 kb) imprinted murine Ube3a antisense transcript by alternative exons upstream of Snurf/Snrpn. Nucleic Acids Res 2004 ; 32 : 3480-92.
- 25. Rougeulle C, Heard E. Antisense RNA in imprinting: spreading silence through Air. Trends Genet 2002 ; 18 : 434-7.
- 26. Thakur N, Tiwari VK, Thomassin H, et al. An antisense RNA regulates the bidirectional silencing property of the Kcnq1 imprinting control region. Mol Cell Biol 2004 ; 24 : 7855-62.
- 27. Verona RI, Mann MR, Bartolomei MS. Genomic imprinting: intricacies of epigenetic regulation in clusters. Annu Rev Cell Dev Biol 2003 ; 19 : 237-59.
- 28. Drewell RA, Brenton JD, Ainscough JF, et al. Deletion of a silencer element disrupts H19 imprinting independently of a DNA methylation epigenetic switch. Development 2000 ; 127 : 3419-28.
- 29. Gosden R, Trasler J, Lucifero D, Faddy M. Rare congenital disorders, imprinted genes, and assisted reproductive technology. Lancet 2003 ; 361 : 1975-7.