Abstracts
Résumé
Le vieillissement est un processus qui continue à fasciner les biologistes de tous horizons, qu’ils s’intéressent à l’évolution, à la génétique, à la signalisation ou à la toxicité de l’environnement. De nombreuses théories, parfois contradictoires, sont proposées pour rendre compte des mécanismes du vieillissement, perçus par certains comme le résultat d’un programme inéluctable, par d’autres comme le fruit d’une suite d’agressions qui pourraient être évitées ou réparées. L’hypothèse « radicalaire » du vieillissement met au premier plan l’accumulation d’agressions oxydantes provoquées par les radicaux libres provenant principalement du métabolisme de l’oxygène et de l’azote. Cette hypothèse, proposée il y a une cinquantaine d’années, demeure l’une des plus populaires chez les spécialistes, même si certaines de ses prédictions n’ont pas été vérifiées de manière satisfaisante. Cet article présente les fondements de cette hypothèse, ses relations avec les autres théories, mitochondriales, métaboliques et génétiques, et la confronte à la réalité têtue des observations expérimentales pour proposer une vision plus intégrée des relations entre vieillissement et stress cellulaires.
Summary
A number of theories have attempted to account for ageing processes in various species. Following the « rate of living » theory of Pearl, Harman suggested fifty years ago that the accumulation of oxidants could explain the alteration of physical and cognitive functions with ageing. Oxygen metabolism leads to reactive species, including free radicals, which tend to oxydize surrounding molecules such as DNA, proteins and lipids. As a consequence various functions of cells and tissues can be altered, leading to DNA instability, protein denaturation and accumulation of lipid byproducts. Oxidative stress is an adaptive process which is triggered upon oxidant accumulation and which comprises the induction of protective and survival functions. Experimental evidence suggests that the ageing organism is in a state of oxidative stress, which supports the free radical theory. A number of other theories have been proposed ; some of these are actually compatible with the free radical theory. Caloric restriction is among the best models to increase life span in many species. While the relationship between caloric restriction and corrected metabolic rate is controversial, the decrease in ROS production by mitochondria appears to be experimentally supported. The ROS and mitochondrial theories of ageing appear to be compatible. Genetic models of increased life span, particularly those affecting the Foxo pathway, are usually accompanied by an increased resistance to oxidative insult. The free radical theory is not consistent with programmed senescence theories involving the cell division dependent decrease in telomere length ; however, oxidants are known to alter telomere structure. An appealing view of the role of oxidative stress in ageing is the trade-off principle which states that a phenotypic trait can be evolutionarily conserved because of its positive effects on development, growth or fertility, and despite its negative effect on somatic functions and ageing. It is likely that most cellular stresses which comprise adaptive and toxic functions follow such a rule.
Appendices
Références
- 1. Lane N. Oxygen, the molecule that made the world. New York : Oxford University Press, 2003 : 366 p.
- 2. Gardès-Albert M, Jore D. Aspects physicochimiques des radicaux libres centrés sur l’oxygène. In : Delattre JB, Bonnefont-Rousselot D, eds. Radicaux libres et stress oxydant. Aspects biologiques et pathologiques. Paris : Lavoisier, 2005 : 1-23.
- 3. Morel Y, Barouki R. Repression of gene expression by oxidative stress. Biochem J 1999 ; 342 : 481-96.
- 4. Roussel AM, Nève J, Hininger I. Antioxydants et nutrition. In : Delattre JB, Bonnefont-Rousselot D, eds. Radicaux libres et stress oxydant. Aspects biologiques et pathologiques. Paris : Lavoisier, 2005 : 261-80.
- 5. Barouki R, Morel Y. Repression of cytochrome P450 1A1 gene expression by oxidative stress : mechanisms and biological implications. Biochem Pharmacol 2001 ; 61 : 511-6.
- 6. Beaudeux JL, Vasson MP. Sources cellulaires des espèces réactives de l’oxygène. In : Delattre JB, Bonnefont-Rousselot D, eds. Radicaux libres et stress oxydant. Aspects biologiques et pathologiques. Paris : Lavoisier, 2005 : 45-86.
- 7. Finkel T. Oxidant signals and oxidative stress. Curr Opin Cell Biol 2003 ; 15 : 247-54.
- 8. Morel Y, Barouki R. Influence du stress oxydant sur la régulation des gènes. Med Sci(Paris) 1998 ; 14 : 713-21.
- 9. Beckman KB, Ames BN. Endogenous oxidative damage of mtDNA. Mutat Res 1999 ; 424 : 51-8.
- 10. Delattre J, Thérond P, Bonnefont-Rousselot D. Espèces réactives de l’oxygène, antioxydants et vieillissement. In : Delattre JB, Bonnefont-Rousselot D, eds. Radicaux libres et stress oxydant. Aspects biologiques et pathologiques. Paris : Lavoisier, 2005 : 281-309.
- 11. Desaint S, Luriau S, Aude JC, et al. Mammalian antioxidant defenses are not inducible by H2O2. J Biol Chem 2004 ; 279 : 31157-63.
- 12. Harman D. Aging : a theory based on free radical and radiation chemistry. J Gerontol 1956 ; 11 : 298-300.
- 13. McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 1969 ; 244 : 6049-55.
- 14. Kayo T, Allison DB, Weindruch R, Prolla TA. Influences of aging and caloric restriction on the transcriptional profile of skeletal muscle from rhesus monkeys. Proc Natl Acad Sci USA 2001 ; 98 : 5093-8.
- 15. Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell 2005 ; 120 : 483-95.
- 16. Berlett BS, Stadtman ER. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 1997 ; 272 : 20313-6.
- 17. Sohal RS, Mockett RJ, Orr WC. Mechanisms of aging : an appraisal of the oxidative stress hypothesis. Free Radic Biol Med 2002 ; 33 : 575-86.
- 18. Kirkwood TB. Understanding the odd science of aging. Cell 2005 ; 120 : 437-47.
- 19. Sohal RS, Weindruch R. Oxidative stress, caloric restriction, and aging. Science 1996 ; 273 : 59-63.
- 20. Heilbronn LK, Ravussin E. Calorie restriction and aging : review of the literature and implications for studies in humans. Am J Clin Nutr 2003 ; 78 : 361-9.
- 21. Pearl R. The rate of living. New York : Knopf, 1928.
- 22. Barja G. Mitochondrial free radical production and aging in mammals and birds. Ann NY Acad Sci 1998 ; 854 : 224-38.
- 23. Bordone L, Guarente L. Calorie restriction, SIRT1 and metabolism : understanding longevity. Nat Rev Mol Cell Biol 2005 ; 6 : 298-305.
- 24. Pecqueur C, Alves-Guerra MC, Gelly C, et al. Uncoupling protein 2, in vivo distribution, induction upon oxidative stress, and evidence for translational regulation. J Biol Chem 2001 ; 276 : 8705-12.
- 25. Guarente L, Kenyon C. Genetic pathways that regulate ageing in model organisms. Nature 2000 ; 408 : 255-62.
- 26. Purdom S, Chen QM. Linking oxidative stress and genetics of aging with p66Shc signaling and forkhead transcription factors. Biogerontology 2003 ; 4 : 181-91.
- 27. Holzenberger M, Dupont J, Ducos B, et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 2003 ; 421 : 182-7.
- 28. Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000 ; 403 : 795-800.
- 29. Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 1999 ; 13 : 2570-80.
- 30. Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004 ; 303 : 2011-5.
- 31. Gutteridge JM, Halliwell B. Free radicals and antioxidants in the year 2000. A historical look to the future. Ann NY Acad Sci 2000 ; 899 : 136-47.
- 32. Orr WC, Sohal RS. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 1994 ; 263 : 1128-30.
- 33. Schriner SE, Linford NJ, Martin GM, et al. Extension of murine lifespan by overexpression of catalase targeted to mitochondria. Science 2005 ; 308 : 1909-11.
- 34. Hagen TM, Liu J, Lykkesfeldt J, et al. Feeding acetyl-L-carnitine and lipoic acid to old rats significantly improves metabolic function while decreasing oxidative stress. Proc Natl Acad Sci USA 2002 ; 99 : 1870-5.
- 35. Barouki R. La cellule stressée. Med Sci(Paris) 1999 ; 15 : 1359-61.
- 36. Petropoulos I, Friguet B. Protein maintenance in aging and replicative senescence : a role for the peptide methionine sulfoxide reductases. Biochim Biophys Acta 2005 ; 1703 : 261-6.
- 37. Lombard DB, Chua KF, Mostoslavsky R, et al. DNA repair, genome stability, and aging. Cell 2005 ; 120 : 497-512.