Abstracts
Résumé
Les rythmes biologiques constituent un avantage adaptatif puisqu’ils permettent d’harmoniser les rapports entre l’organisme et les variations cycliques de l’environnement. Avec l’âge, apparaissent des perturbations rythmiques caractérisées, le plus souvent, par des baisses d’amplitude et des décalages de phase. Hormis l’homme, les recherches sur les primates restent encore fragmentaires. Néanmoins, les données actuelles suggèrent que l’affaiblissement rythmique de l’organisme vieillissant procèderait d’un dysfonctionnement des noyaux suprachiasmatiques. Ces noyaux présentent des oscillations endogènes entraînées par la lumière et, avec l’âge, les capacités de réponses à la lumière seraient diminuées, se traduisant par une désynchronisation interne. La connaissance précise des altérations rythmiques liées à l’âge devrait suggérer, à terme, des traitements assurant le maintien ou la restauration de rythmes biologiques chez l’homme vieillissant, gage d’une meilleure qualité de vie et même de survie.
Summary
All living organisms exhibit rhythmic activities in a wide variety of endocrine and behavioural parameters. These biological rhythms are endogenously generated by a circadian clock, and they are entrained by cyclic variations of environmental factors called synchronizers. Aging is associated with changes in amplitude and temporal organization of many daily and seasonal rhythms. In humans, daily rhythms of sleep, thermoregulation and hormonal secretion are severely altered with aging. Except in humans, studies on primates are scarce. However, age-related effects on biological rhythms are relatively consistent among primate species studied to date, including humans. Therefore, non human primates are of valuable use for such investigations. Most studies have been performed on the Rhesus macaque (longevity 35-40 years) and on the gray mouse lemur (longevity 10-12 years). Like in humans, the rest-activity rhythm becomes fragmented in aged primates, and shows an increased activity during the resting period. Aging induces a decrease in amplitude of the body temperature rhythm and an increase in energy consumption. Various hormonal secretions exhibit a decrease with aging, but the rhythmic components of these declines have not always been depicted. Moreover, changes (amplitude or phase) in daily variations depended of the hormonal secretion tested. Taken together, these results suggest that the biological clock in the brain would be a primary target of aging. The main central clock is located in the suprachiasmatic nucleus of the hypothalamus whose endogenous oscillations are entrained by light. In this brain structure, cellular function and sensitivity to light show drastic changes with age in the mouse lemur. The precise knowledge of age-related alterations of biological rhythms in primates can have important consequences on the development of new treatments to maintain or restore biological rhythmicity in the elderly.
Appendices
Références
- 1. Brock MA. Chronobiology and aging. J Am Geriatr Soc 1991 ; 39 : 74-91.
- 2. Touitou Y, Haus E. Biologic rhythms in clinical and laboratory medicine. Berlin : Springer-Verlag, 1992 : 730 p.
- 3. Perret M. Change in photoperiod cycle affects life span in a prosimian primate (Microcebus murinus). J Biol Rhythms 1997 ; 12 : 136-45.
- 4. Hurd MW, Ralph MR. The significance of circadian organization for longevity in the golden hamster. J Biol Rhythms 1998 ; 13 : 430-6.
- 5. Touitou, Y. Human aging and melatonin. Clinical relevance. Exp Gerontol 2001 ; 36 : 1083-100.
- 6. Wehr TA, Moul DE, Barbato G, et al. Conservation of photoperiod-responsive mechanisms in humans. Am J Physiol 1993 ; 265 : R846-57.
- 7. Masoro EJ. Aging : current concepts. In : Schneider EL, Rowe JW eds. Handbook of the biology of aging. San Diego : Academic Press, 1996 : 3-21.
- 8. Perret M, Aujard F. Daily hypothermia and torpor in a tropical primate: synchronization by 24-h light-dark cycle. Am J Physiol 2001 ; 281 : R1925-33.
- 9. Perret M, Aujard F. Regulation by photoperiod of seasonal changes in body mass and reproductive function in gray mouse lemurs (Microcebus murinus): differential responses by sex. Int J Primatol 2001 ; 22 : 5-24.
- 10. Van Someren EJ, Raymann RJ, Scherder EJ, et al. Circadian and age-related modulation of thermoreception and temperature regulation : mechanisms and functional implications. Ageing Res Rev 2002 ; 1 : 721-78.
- 11. Monk TH, Buysse DJ, Carrier J. Inducing jet-lag in older people : directional asymmetry. J Sleep Res 2000 ; 9 : 101-16.
- 12. Moscrip TD, Ingram DK, Lane MA, et al. Locomotor activity in female Rhesus monkeys: assessment of age and calorie restriction effects. J Gerontol 2000 ; 55 : B373-80.
- 13. Cayetanot F, Van Sommeren EJW, Perret M, Aujard F. Shortened seasonal photoperiodic cycles accelerate aging of the diurnal and circadian locomotor activity rhythms in a primate. J Biol Rhythms 2005 ; 20 : 461-9.
- 14. Florez-Duquet M, McDonald RB. Cold-induced thermoregulation and biological aging. Physiol Rev 1998 ; 78 : 339- 58.
- 15. Woller MJ, Everson-Binotto G, Nichols E, et al. Aging-related changes in release of growth hormone and luteinizing hormone in female rhesus monkeys. J Clin Endocrinol Metab 2002 ; 87 : 5160-7.
- 16. Raynaud-Simon A, Lafont S, Berr C, et al. Plasma insulin-like growth factor 1 levels in the elderly: relation to plasma dehydroepiandrosterone sulfate levels, nutritional status, health and mortality. Gerontology 2001 ; 47 : 198-206.
- 17. Chambers KC, Resko JA, Phoenix CH. Correlation of diurnal changes in hormones with sexual behavior and age in male Rhesus macaques. Neurobiol Aging 1982 ; 3 : 37-42.
- 18. Saal vom FS, Finch CE, Nelson JF. Natural history and mechanisms of reproductive aging in humans, laboratory rodents, and other selected vertebrates. In : Knobil E, Neill JF eds. The physiology of reproduction. New York : Raven Press, 1994 : 1213-4.
- 19. Morley JE, Kaiser F, Raum WJ, et al. Potentially predictive and manipulable blood serum correlates of aging in the healthy human male: progressive decreases in bioavailable testosterone, dehydroepiandrosterone sulfate, and the ratio insulin-like growth factor 1 to growth hormone. Proc Natl Acad SciUSA 1997 ; 94 : 7537-42.
- 20. Goncharova ND, Lapin BA. Age-related endocrine dysfunction in nonhuman primate. Ann NY Acad Sci 2004 ; 1019 : 321-5.
- 21. Shideler SE, Gee NA, Chen J, Lasley BL. Estrogen and progesterone metabolites and follicle-stimulating hormone in the aged macaque female. Biol Reprod 2001 ; 65 : 1718-25.
- 22. Zhao ZY, Xie Y, Fu YR, et al. Circadian rhythm characteristics of serum cortisol and dehydroepiandrosterone sulfate in healthy Chinese men aged 30 to 60 years. A cross-sectional study. Steroids 2003 ; 68 : 133-8.
- 23. Urbanski HF, Downs JL, Garyfallou VT, et al. Effect of caloric restriction on the 2-hour plasma DHEAS and cortisol profiles of young and old male rhesus macaques. Ann NY Acad Sci 2004 ; 1019 : 443-7.
- 24. Labrie F, Bélanger A, Cusan L, et al. Marked decline in serum concentrations of adrenal C19 sex steroid precursors and conjugated androgen metabolites during aging. J Clin Endocrinol Metab 1997 ; 82 : 2396-402.
- 25. Roth GS, Lesnikov V, Lesnikov M, et al. Dietaric restriction prevents the age-related decline in plasma melatonin levels of Rhesus monkeys. J Clin Endocrinol Metab 2001 ; 86 : 3292-5.
- 26. Aujard F, Dkhissi-Benyahya O, Fournier I, et al. Artificially accelerated aging by shortened photoperiod alters early gene expression (Fos) in the suprachiasmatic nucleus and sulfatoxymelatonin excretion in a small primate, Microcebus murinus. Neuroscience 2001 ; 105 : 403-12.
- 27. Hofman MA. The human circadian clock and aging. Chronobiol Int 2000 ; 17 : 245-59.
- 28. Yamazaki S, Straume M, Tei H, et al. Effects of aging on central and peripheral mammalian clocks. Proc Natl Acad Sci USA 2002 ; 99 : 10801-6.
- 29. Kolker DE, Fukuyama H, Huang DS. Aging alters circadian and light-induced expression of clock genes in golden hamsters. J Biol Rhythms 2003 ; 18 : 159-69.
- 30. Lane MA, Ingram DK, Roth GS. Nutritional modulation of aging in non human primates. J Nutr Health Aging 1997 ; 3 : 69-76.