Abstracts
Abstract
Wheat (Triticumaestivum) relatives are sources of useful genes for disease resistance. Chromosomally segregating populations of intergeneric hybrids between wheat and its distantly related species provide opportunity to study and introgress multiple disease resistance. While introgressing resistance to barley yellow dwarf virus (BYDV) from Thinopyrum into wheat, which is susceptible to BYDV, we scored powdery mildew (Erysiphaegraminis) and leaf rust (Pucciniatriticina) resistance, and chromosome numbers in second and third backcrosses (BC2 and BC3) of intergeneric hybrids of wheat with Thinopyrum ponticum and Thinopyrumintermedium. The frequency of multiple resistance to all the three diseases was low or became low when selection was applied for BYDV resistance and low chromosome numbers. Selection for fewer alien chromosomes while maintaining BYDV resistance was more effective in wheat x T. intermedium than in the wheat x T. ponticum cross. Mean chromosome numbers were significantly different in BC3 generation between BYDV resistant and susceptible plants in both crosses. Significant negative correlations between chromosome numbers and enzyme-linked immunosorbent assay (ELISA) values showed that as the critical Thinopyrum chromosome(s) were eliminated, susceptibility to BYDV increased. Results indicated that it is unlikely that genes for full resistance to all three diseases can be transferred simultaneously from Thinopyrum to wheat.
Résumé
Les espèces proches du blé (Triticumaestivum) sont à l’origine de gènes utiles pour la résistance aux maladies. Les populations à ségrégation chromosomique d’hybrides intergénériques entre le blé et des espèces peu apparentées nous offrent la chance de procéder à l’étude et à l’introgression de la multirésistance aux maladies. Alors que nous introgressions la résistance au virus de la jaunisse nanisante de l’orge (BYDV) de Thinopyrum dans le blé, qui est sensible au BYDV, nous avons coté la résistance à l’oïdium (Erysiphaegraminis) et à la rouille des feuilles (Pucciniatriticina), et compté le nombre de chromosomes dans les deuxième et troisième rétrocroisements (BC2 et BC3) d’hybrides intergénériques entre le blé et le Thinopyrum ponticum ou le Thinopyrumintermedium. Le taux de multirésistance aux trois maladies était bas ou est devenu bas lorsqu’une sélection a été faite pour la résistance au BYDV et pour un faible nombre de chromosomes. La sélection pour un plus faible nombre de chromosomes étrangers tout en maintenant la résistance au BYDV a été plus efficace pour le croisement de blé x T. intermedium que pour celui de blé x T. ponticum. À la génération du BC3, pour les deux croisements, le nombre moyen de chromosomes était significativement différent entre les plantes résistantes et celles sensibles au BYDV. Des corrélations négatives significatives entre le nombre de chromosomes et les valeurs du test immunoenzymatique ELISA ont démontré qu’à mesure que le ou les chromosomes déterminants du Thinopyrum étaient éliminés, la sensibilité au BYDV augmentait. Les résultats montrent qu’il est peu probable que les gènes conférant une résistance complète aux trois maladies puissent être transférés simultanément du Thinopyrum au blé.
Appendices
References
- Anderson, J., D. Bucholtz, A. Greene, M. Francki, S. Gray, H. Sharma, H. Ohm, and K. Perry. 1998. Characterization of wheatgrass-derived barley yellow dwarf virus resistance in wheat alien chromosome substitution line. Phytopathology 88 : 851-855.
- Baltenberger, D., H. Ohm, and J. Foster. 1987. Reactions of oats, barley and wheat to infection with barley yellow dwarf virus isolates. Crop Sci. 27 : 195-198.
- Brettell, R., P. Banks, Y. Cauderon, X. Chen, Z. Cheng, P. Larkin, and P. Waterhouse. 1988. A single wheatgrass chromosome reduces the concentration of barley yellow dwarf virus in wheat. Ann. Appl. Biol. 113 : 599-603.
- Cauderon, Y., B. Saigne, and M. Dauge. 1973. The resistance to wheat rusts of Agropyronintermedium and its use in wheat improvement. Int. Wheat Genet. Symp. 4 : 401-407.
- Comeau, A., and A. Plourde. 1987. Cell, tissue culture and intergeneric hybridization for barley yellow dwarf virus resistance in wheat. Can. J. Plant Pathol. 9 : 188-192.
- Comeau, A., K. Makkouk, F. Ahmad, and C. St-Pierre. 1994. Bread wheat x agrotricum crosses as a source of immunity and resistance to the PAV strain of BYDV luteovirus. Agronomie 14 : 153-160.
- Damania, A. 1993. Biodiversity and wheat improvement. John Wiley & Sons, West Sussex, UK. 434 pp.
- Dvorak, J. 1979. Metaphase I pairing frequencies of indivi-dual Agropyronelongatum chromosome arms with Triticum chromosomes. Can. J. Genet. Cytol. 21 : 243-254.
- Ellneskog, S. 2002. Relationship in the Triticeae genomes and wide hybridizations. Acta Univ. Agric. Sueciae Agraria 357 : 1-85.
- Fedak, G. 1999. Molecular aids for integration of alien chromatin through wide crosses. Genome 42 : 584-591.
- Franke, R., R. Nestrowicz, A. Senula, and B. Staat. 1992. Intergeneric hybrids between Triticumaestivum L. and wild Triticeae. Hereditas 116 : 225-231.
- Friebe, B., J. Jiang, W. Raupp, R. McIntosh, and B. Gill. 1996. Characterization of wheat-alien translocations with resistance to diseases and pests: current status. Euphytica 91 : 59-87.
- Hegde, S., J. Valkoun, and J. Waines. 2002. Genetic diversity in wild and weedy Aegilops, Amblyopyrum and Secale species – a preliminary survey. Crop Sci. 42 : 608-614.
- Hu, X., H. Ohm, and I. Dweikat. 1997. Identification of RAPD markers linked to the gene PM1 for resistance to powdery mildew in wheat. Theor. Appl. Genet. 94 : 832-840.
- Johnson, R., and G. Kimber. 1967. Homoeologous pairing of chromosomes from Agropyronelongatum with those of Triticumaestivum and Aegilopsspeltoides. Genet. Res. 10 : 63-71.
- Knott, D. 1978. The transfer of genes for rust resistance to wheat from related species. Int. Wheat Genet. Symp. 5 : 354-357.
- Kochumadhavan, M., S. Tomar, and P. Nambisan. 1988.Agropyron-derived specific genes in common wheat and their adult plant response to wheat pathogenes. Indian J. Genet. Plant Breed. 48 : 383-387.
- Larkin, P., P. Banks, E. Lagudah, R. Appels, X. Chen, Z. Xin, H. Ohm, and R. McIntosh. 1995. Disomic Thinopyrumintermedium addition lines in wheat with barley yellow dwarf virus (BYDV) resistance and with rust resistances. Genome 38 : 385-394.
- Li, L., X. Yang, X. Li, Y. Dong, and X. Chen. 1998. Intro-duction of desirable genes from Agropyroncristatum to wheat by intergeneric hybridization. Sci. Agric. Sin. 31 : 1-5.
- Metz, S., H. Sharma, T. Armstrong, and P. Mascia. 1988. Chromosome doubling and aneuploidy in anther-derived plants from two winter wheat lines. Genome 30 : 177-181.
- Patterson, F., G. Shaner, J. Foster, and H. Ohm. 1990. A historical perspective for the establishment of research goals for wheat improvement. J. Prod. Agric. 3 : 30-38.
- Price, R. 1970. Stunted patches and dead heads in Victorian cereal crops. Page 165 in Technical Pub. No. 23. Dept. Agric. Victoria, Australia.
- SAS Institute. 1999. SAS/STAT user’s guide. Version 8. SAS Inst., Cary, NC.
- Scott, D. 1968. Effect of barley yellow dwarf virus infection on the development of root rot caused by Colchiobolussativa in Avenasativa and Triticum durum. Ph.D. Thesis, University of Illinois, USA. 106 pp.
- Shaner, G., G. Buechley, and W. Niquist. 1997. Inheritance of latent period of Pucciniarecondita in wheat. Crop Sci. 37 : 748-756.
- Sharma, H., and B. Gill. 1983. New hybrids between wheat and Agropyron. 2. Production, morphology and cytogenetic analysis of F1 hybrids and backcross derivatives. Theor. Appl. Genet. 66 : 111-121.
- Sharma, H., B. Gill, and J. Uyemoto. 1984. High levels of resistance in Agropyron species to barley yellow dwarf and wheat streak mosaic viruses. Phytopathol. Z. 110 : 143-147.
- Sharma, H., H. Ohm, R. Lister, J. Foster, and R. Shukle. 1989. Response of wheatgrasses and wheat x wheatgrass hybrids to barley yellow dwarf virus. Theor. Appl. Genet. 77 : 369-374.
- Sharma, H., J. Foster, H. Ohm, and F. Patterson. 1992. A note on resistance to Hessian fly (Mayetioladestructor Say) [Diptera: Cecidomyiidae] biotype L in tribe Triticeae. Phytoprotection 73 : 79-82.
- Sharma, H., H. Ohm, L. Goulart, R. Lister, R. Appels, and O. Benlhabib. 1995. Introgression and characterization of barley yellow dwarf virus resistance from Thinopyrumintermedium into wheat. Genome 38 : 406-413.
- Sharma, H., H. Ohm, and R. Lister. 1997a. Reaction of near relatives of wheat to P-PAV isolate of BYDV. Barley Yellow Dwarf Newsl. 6 : 7-8.
- Sharma, H., H. Ohm, and K. Perry. 1997b. Registration of barley yellow dwarf virus resistant wheat germplasm line P29. Crop Sci. 37 : 1031-1032.
- Singh, R. 1993. Genetic association of gene Bdv1 for tolerance to barley yellow dwarf virus with genes Lr34 and Yr18 for adult plant resistance to rust in bread wheat. Plant Dis. 77 : 1103-1106.
- Sinigovets, M. 1976. Effect of single Agropyron chromosome on wheat. Genetika 12 : 15-21.
- Smith, H. 1962. Is barley yellow dwarf virus a predisposing factor in the common root rot disease of wheat in Cana-da? Can. Plant Dis. Survey 42 : 143-148.
- Wienhues, A. 1963. Transfer of rust resistance of Agropyron to wheat by addition, substitution and translocation. Int. Wheat Genet. Symp. 2 : 328-341.