Abstracts
Résumé
La perspective biopsychologique systémique des émotions de base est un modèle heuristique permettant de mieux comprendre comment l’individu apprend à s’adapter à son environnement grâce aux différentes émotions qui se sont développées progressivement en même temps que la myélinisation des circuits neurohormonaux, de la naissance jusqu’à environ vingt et un ans. Ce sont ces mêmes émotions, agissant en complémentarité, qui vont permettre à l’individu de maintenir son équilibre tout au long de sa vie.
Cinq émotions de base ont été retenues, car dans la documentation scientifique, cinq circuits neuronaux associés aux émotions sont définis, soit les cinq circuits décrits par Panksepp : celui de l’agressivité (rage-colère), celui du stress (peur-surprise), développé par LeDoux, celui de la récompense (recherche-joie), développé par Tassin, celui de l’empathie (panique-tristesse), développé par Decety, et celui de la conscience (conscience-bonheur), développé par Damasio.
Mots-clés :
- émotions,
- circuits neurohormonaux,
- neurosciences,
- équilibre
Abstract
The systemic biopsychological perspective of basic emotions is a heuristic model that allows a better understanding of how people learn to adapt to their environment through different emotions that developed gradually along neurohormonal circuit myelination from birth until about the age of twenty-one. These same emotions, acting in complementarity, will allow the individual to maintain a balance throughout his life.
Five basic emotions were retained in line with the five emotions related to neuronal circuits, which are defined in the literature, and these are the five circuits described by Panksepp as follows: aggressiveness (Rage, angry), stress (Fear- surprise), developed by LeDoux, reward (Seeking-joy), developed by Tassin, empathy (Panic-sadness), developed by Decety, and consciousness (consciousness-happiness), developed by Damasio.
Several studies on myelination (Kinney, 1988, Parazzini, 2002, Deoni, 2012), Miller, 2012, and Welker, 2012) provide us with a scientific platform to determine the order of development of the neurohormonal circuits underlying basic emotions.
Neurohormonal circuits development begins at conception and will continue up until the age of 20-30 years. This article specifically addresses the first three years of life. It offers a systemic biopsychological perspective of basic emotions developed from the latest data in neuroscience. These informations have been integrated into a coherent whole that allows understanding the origin, the development and the functioning of basic emotions.
In addition to the information output from the thalamus to the midbrain that set in motion the somatic nervous system there exist, according to Roberge (1998), two other brain information sources that are managed by the hypothalamus (the limbic system). These two information sources allow the refining of the behavioural responses and they favour the homeostasis of the organism. The first information source goes from the midbrain to the hypothalamus to activate the peripheral nervous system. The latter is divided into two: the sympathetic (norepinephrine) that accelerates the motor response and the parasympathetic (acetylcholine), which slows it down. These two systems work in tandem. As for the second release of information, it is endocrine, thus it will follow the hypothalamus-pituitary-adrenal axis to cortisol, the hypothalamus-pituitary axis to endorphin and oxytocin and the hypothalamus-pineal axis to melatonin. The different emotional behaviours result from one of these two sources of information or from a combination of these two and are then managed by the limbic system, which is in continuous connection with the neocortex.
In short, no specific centre totally controls human behaviour. Control is achieved through a group of brain structures and relays, permitting adaptive behaviour and maintenance of balance by means of permanent exchanges. Anger, for instance, is a survival emotion, which allows protecting one’s physical integrity. It is very useful as an immediate response in an emergency situation, but it can also be harmful if it is used extensively in all situations, giving way to conduct disorders. Thus, the other neurohormonal circuits will regulate anger.
Emotions are an integral part of human behaviour. They allow the individual to constantly adapt to the physical and social environment. This approach brings a new perspective to understand how each person maintains balance to avoid the onset of clinical disorders. The understanding of neurochemical mechanisms underlying basic emotions opens up the door to several clinical applications.
Keywords:
- emotions,
- neurohormonal circuits,
- neuroscience,
- balance
Appendices
Bibliographie
- Anacker, C., O’Donnell, K. J. et Meaney, M. J. (2014). Early life adversity and the epigenetic programming of hypothalamic-pituitary-adrenal function. Dialogues Clinical Neuroscience, 16, 321-333.
- Damasio, A. (2010). L’autre moi-même, les nouvelles cartes du cerveau, de la conscience et des émotions. Paris, France : Éditions Odile Jacob.
- Decety, J. (2010). La force de l’empathie. Cerveau & Psycho. 38, 43-49.
- Deoni, S. C. L., Dean, D. C., O’Muircheartaigh, J., Dirks, H. et Beth A. Jerskey, B. A. (2012). Investigating white matter development in infancy and early childhood using myelin water faction and relaxation time mapping. Neuroimage, 63(3), 1038–1053.
- Dietrich, R. B., Bradley, W. G., Zaragoza, E. J., Ottd, R. J., Taira, R. K., Wilson, G. H. et Kangarloo, H. (1988). MR Evaluation of Early Myelination Patterns in Normal and Developmentally Delayed Infants. AJNR 9,69-76.
- Ditzen, B., Schaer, M., Gabriel, B., Bodenmann, G., Ehlert, U. et Heinrichs, M. (2009).Intranasal oxytocin increases positive communication and reduces cortisol levels during couple conflict. Biology Psychiatry, 1 ; 65(9), 728-731.
- Ekman, P. (2007). Emotions Revealed, Second Edition : Recognizing Faces and Feelings to Improve Communication and Emotional Life. New York : Holt Paperbacks.
- Giedd, J. N. et al. (1999). Brain development during childhood and adolescence : a longitudinal MRI study. Nature neuroscience, 2(10), 861-863.
- Ginger, S. (2010). Cerveau féminin, cerveau masculin. Récupéré le 26 mars 2012 sur le site de l’auteur : http://sergeginger.net/resources/Cerveau+f$C3$A9minin$3Acerveau+masculin.pdf
- Hayakawa, K., Konishi, Y., Kuriyama, M., Konishi. K. et Matsuda, T. (1991). Normal brain maturation in MRI. European Journal of Radiolology, 12(3), 208-215.
- Jack, R. E., Garrod, O. G. B. et Schyns, P. G. (2014). Dynamic Facial Expressions of Emotion Transmit an Evolving Hierarchy of Signals over Time. Current Biology, 24(2), 187-192.
- Jaeger, C. (2012). La mélatonine. Dans Les techniques de lutte contre le vieillissement, 95-110, Que Sais-je, no 3463, Paris, France : PUF.
- Kinney, H. C., Brody, B. A., Kloman, A. S. et Gilles, F. H. (1988). Sequence of central nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants. J. Neuropathology Exp Neurology, 47(3), 217-234.
- Laborit, H. (1970). L’agressivité détournée : Introduction à une biologie du comportement social. Éd. Union Générale d’Edition, coll. « 10/18 ».
- Lacombe, M. (2007). Le Lacombe : précis d’anatomie et de physiologie humaine, volume 1. France, Éditions Lamarre.
- LeDoux, J. (1998). The Emotional Brain. London, U.K. : Weidenfeld & Nicolson.
- Le plaisir et la douleur. Récupéré le 20 mars 2012 du site : Le cerveau à tous les niveaux : http://lecerveau.mcgill.ca/flash/index_a.html
- Lupien, S. (2010). Par amour du stress. Montréal, Canada : Éditions au carré.
- Miller, D. J., Duka, T., Stimpson, C. D., Steven J., Schapiro, S., Baze, W. B., McArthur, M. J., Fobbs, A. J., /Sousa, A. M., Šestan, N., Wildman, D. E., Lipovich, L., Kuzawa, C. W., Patrick R., Hof, P., Chet C. et Sherwood, C. C. (2012). Prolonged myelination in human neocortical evolution. PNAS, 109(41), 16480-16485.
- Panksepp, J. (1998). Affective neuroscience. New York, N.Y. : Oxford University Press.
- Panksepp, J. (2011) Cross-Species Affective Neuroscience Decoding of the Primal Affective Experiences of Humans and Related Animals. PLoS ONE, 6(8), e21236.
- Parazzini, C, Baldoli, C, Scotti, G et Triulzi F. (2002). Terminal zones of myelination : MR evaluation of children aged 20-40 months. American Journal of Neuroradiology. 23(10), 1669-1673.
- Roberge, A. G., Parent, A. et Boulay, M. (1976). Démonstration d’une relation inversement proportionnelle entre la dopamine et la sérotonine dans certaines structures cérébrales : aspects neurochimique et morphologique. Journal of Neurochemistry, 26, 591-595.
- Roberge, A. G. (1998). Le système neuro-endocrino-immunitaire : un trio indissociable. Le clinicien, septembre, pp. 185-194.
- Schore, A. N. (2008). La régulation affective et la réparation du soi. Montréal. Les éditions du CIG.
- Selye, H. (1955). Selye explique les mécanismes du stress. www.youtube.com/watch?v=ZH37hdGiwVw, 2012.
- Staudt, M., Schropp, M., Staudt, C., Obletter, N., Bise, K. et Breit, A. (1993). Myelination of the brain in MRI : A staging system. Pediatric Radiology, 23(3), 169-176.
- Tassin, J.-P. (1998). Drogues, plaisir et douleur. La recherche, 306.
- Trezza, V., Damsteegt, R., Achterberg E. J. et Vanderschuren, L. J. (2011). Nucleus accumbens μ-opioid receptors mediate social reward. The Journal of Neuroscience, 31(17), 6362-6370.
- Welker, K. M. et Patton, A. (2012). Assessment of normal myelination with magnetic resonance imaging. Seminar in Neurology, 32, 15-28.
- Wright, N. D., Bahrami, B., Johnson, E., Di Malta, G., Rees, G., Frith, C. D., Dolan, R. J. (2012). Testosterone disrupts human collaboration by increasing egocentric choices. Proceedings Biological Sciences, 279(1736) :2275-2280.
- Zuckerman, M. (2003). La IIIe révolution du cerveau : Psychobiologie de la personnalité. Paris, France : Payot.