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Abstract

In this paper we study the behavior of Convex Quadratic Optimization problems when variation occurs simultaneously
in the right-hand side vector of the constraints and in the coefficient vector of the linear term in the objective function. It
is proven that the optimal value function is piecewise-quadratic. The concepts of transition point and invariancy interval
are generalized to the case of simultaneous perturbation. Criteria for convexity, concavity or linearity of the optimal
value function on invariancy intervals are derived. Furthermore, differentiability of the optimal value function is studied,
and linear optimization problems are given to calculate theleft and right derivatives. An algorithm, that is capable to
compute the transition points and optimal partitions on allinvariancy intervals, is outlined. We specialize the method
to Linear Optimization problems and provide a practical example of simultaneous perturbation parametric quadratic
optimization problem from electrical engineering.

Key words: Programming, quadratic: simultaneous perturbation sensitivity analysis using IPMs. Programming, linear,
parametric: simultaneous perturbation.

1. Introduction

In this paper we are concerned with the sensitivity
analysis of perturbed Convex Quadratic Optimization
(CQO) problems where the coefficient vector of the lin-
ear term of the objective function and the right-hand side
(RHS) vector of the constraints are varied simultane-
ously. This type of sensitivity analysis is often referred
to as parametric programming. Research on the topic
was triggered when a variant of parametric CQO prob-
lems was considered by Markowitz (1956). He devel-
oped the critical line method to determine the optimal
value function of his parametric problem and applied
it to mean-variance portfolio analysis. The basic re-
sult for parametric quadratic programming obtained by
Markowitz is that the optimal value function (efficient
frontier in financial terminology) is piecewise quadratic
and can be obtained by computing successive corner
portfolios, while, in between these corner portfolios, the
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optimal solutions vary linearly. Non-degeneracy was as-
sumed and a variant of the simplex method was used
for computations.

Difficulties that may occur in parametric analysis
when the problem is degenerate are studied extensively
in the Linear Optimization (LO) literature. In case of
degeneracy the optimal basis need not be unique and
multiple optimal solutions may exist. While simplex
methods were used to perform the computations in ear-
lier studies (see e.g., Murty (1983) for a comprehensive
survey), recently research on parametric analysis was
revisited from the point of view of interior-point meth-
ods (IPMs). For degenerate LO problems, the avail-
ability of strictly complementary solutions produced by
IPMs allows to overcome many difficulties associated
with the use of bases. Adler and Monteiro (1992) pio-
neered the use of IPMs in parametric analysis for LO
(see also Jansen et al. (1997)). Berkelaar, Roos and Ter-
laky (1997) emphasized shortcomings of using optimal
bases in parametric LO showing by an example that
different optimal bases computed by different LO pack-
ages give different optimality intervals.

c© 2007 Preeminent Academic Facets Inc., Canada. Online version: http://journals.hil.unb.ca/index.php/AOR. All rights reserved.
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Naturally, results obtained for parametric LO were
extended to CQO. Berkelaar et al. (1997) showed that
the optimal partition approach can be generalized to the
quadratic case by introducing tripartition of variables
instead of bipartition. They performed sensitivity anal-
ysis for the cases when perturbation occurs either in
the coefficient vector of the linear term of the objective
function or in the RHS of the constraints. In this paper
we show that the results obtained in Berkelaar, Roos
and Terlaky (1997) and Berkelaar et al. (1997) can be
generalized further to accommodate simultaneous per-
turbation of the data even in the presence of degeneracy.

Considering simultaneous perturbation provides a
unified approach to parametric LO and CQO problems
that includes perturbation of the linear term coeffi-
cients in the objective function or the RHS vector of
the constraints as its subcases. This approach makes
the implementation easier and simplifies the explana-
tion of the methodology. Theoretical results allow us
to present a universal computational algorithm for the
parametric analysis of LO/CQO problems. In many
parametric models, simultaneous perturbation can be
viewed as an underlying process where changes in the
process influence the whole model. We describe such
practical example of the adaptive power allocation
between users of Digital Subscriber Lines (DSL).

Recall that CQO is a special case of Convex Conic
Optimization (CCO). Recently, Yildirim (2004) has in-
troduced an optimal partition concept for conic opti-
mization. He took a pure geometric approach in defin-
ing the optimal partition while we use the algebraic one.
Although, the geometric approach has the advantage of
being independent from the representation of the under-
lying optimization problem, it has some deficiencies.
The major difficulty is extracting the optimal partition
from a high-dimensional geometric object and, conse-
quently, it is inconvenient for numerical calculations. In
contrast, the algebraic approach, used in this paper, is
directly applicable for numerical implementation.

The principal novelty of our results is an algorithm
that allows to identify all invariancy intervals iteratively
and thus differs significantly from all the work done in
simultaneous perturbation analysis so far.

The paper is organized as follows. In Section 2, the
CQO problem is introduced and some elementary con-
cepts are reviewed. Simple properties of the optimal
value function are summarized in Section 3. Section 4
is devoted to deriving more properties of the optimal
value function. It is shown that the optimal value func-
tion is continuous and piecewise quadratic, and an ex-

plicit formula is presented to identify it on the subin-
tervals. Criteria for convexity, concavity or linearity of
the optimal value function on these subintervals are de-
rived. We investigate the first and second order deriva-
tives of the optimal value function as well. Auxiliary
LO problems can be used to compute the left and right
derivatives. It is shown that the optimal partition on the
neighboring intervals can be identified by solving an
auxiliary self-dual CQO problem. The results are sum-
marized in a computational algorithm for which imple-
mentation issues are discussed as well. Specialization
of our method to LO problems is described in Section 5.
For illustration, the results are tested on a simple prob-
lem in Section 6. A recent application of parametric
CQO described in Section 7 arises from electrical engi-
neering and it is based on recent developments in opti-
mal multi-user spectrum management for Digital Sub-
scriber Lines (DSL). We conclude the paper with some
remarks and we sketch further research directions.

2. Preliminaries

A primal CQO problem is defined as:

(QP ) min { cT x +
1

2
xT Qx : Ax = b, x ≥ 0 } ,

whereQ ∈ R
n×n is a symmetric positive semidefinite

matrix,A ∈ R
m×n, c ∈ R

n, b ∈ R
m are fixed data and

x ∈ R
n is an unknown vector.

The Wolfe-Dual of(QP ) is given by

(QD) max { bT y −
1

2
uT Qu :

AT y + s − Qu = c, s ≥ 0 } ,

wheres, u ∈ R
n and y ∈ R

m are unknown vectors.
The feasible regions of(QP ) and(QD) are denoted by

QP = {x : Ax = b, x ≥ 0} ,

QD =
{

(u, y, s) : AT y + s − Qu = c, s, u ≥ 0
}

,

and their associated optimal solutions sets areQP∗ and
QD∗, respectively. It is well known that for any opti-
mal solution of(QP ) and (QD) we haveQx = Qu
andsT x = 0, see e.g., Dorn (1960). Having zero du-
ality gap, i.e.,sT x = 0 is equivalent tosixi = 0 for
all i ∈ {1, 2, . . . , n}. This property of the nonnegative
variablesx ands is called thecomplementarity prop-
erty. It is obvious that there are optimal solutions with
x = u. Since we are only interested in the solutions
wherex = u, u will henceforth be replaced byx in the
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dual problem. It is easy to show, see e.g., Berkelaar et
al. (1997) and Dorn (1960), that for any two optimal
solutions(x∗, y∗, s∗) and(x̃, ỹ, s̃) of (QP ) and(QD)
it holds thatQx∗ = Qx̃ , cT x∗ = cT x̃ andbT y∗ = bT ỹ
and consequently,

x̃T s∗ = s̃T x∗ = 0. (1)

The optimal partitionof the index set{1, 2, . . . , n} is
defined as

B = { i : xi > 0 for an optimal solution x ∈ QP∗},

N = { i : si > 0 for an optimal solution

(x, y, s) ∈ QD∗},

T = {1, 2, . . . , n} \(B ∪N ),

and denoted byπ = (B,N , T ). Berkelaar et al. (1997)
and Berkelaar, Roos and Terlaky (1997) showed that
this partition is unique. Thesupport setof a vectorv is
defined asσ(v) = {i : vi > 0} and is used extensively
in this paper. An optimal solution(x, y, s) is called
maximally complementaryif it possesses the following
properties:

xi > 0 if and only if i ∈ B,

si > 0 if and only if i ∈ N .

For any maximally complementary solution(x, y, s) the
relationsσ(x) = B andσ(s) = N hold. The existence
of a maximally complementary solution is a direct con-
sequence of the convexity of the optimal setsQP∗ and
QD∗. It is known that IPMs find a maximally comple-
mentary solution in the limit, see e.g., McLinden (1980)
and Güler and Ye (1993).

The general perturbed CQO problem is

(QPλb,λc
) min { (c + λc△c)T x +

1

2
xT Qx :

Ax = b + λb△b, x ≥ 0 } ,

where△b ∈ R
m and△c ∈ R

n are nonzero perturba-
tion vectors, andλb and λc are real parameters. The
optimal value functionφ(λb, λc) denotes the optimal
value of(QPλb,λc

) as the function of the parametersλb

andλc. As we already mentioned, Berkelaar, Roos and
Terlaky (1997) and Berkelaar et al. (1997) were the first
to analyze parametric CQO by using the optimal parti-
tion approach when variation occurs either in the RHS
or the linear term of the objective function data, i.e., ei-
ther when△c or △b is zero. In these cases the domain
of the optimal value functionφ(λb, 0) (or φ(0, λc)) is a

closed interval of the real line and the function is piece-
wise convex (concave) quadratic on its domain. The au-
thors presented an explicit formula for the optimal value
function on these subintervals and introduced the con-
cept of transition points that separate them. They proved
that the optimal partition is invariant on the subinter-
vals which are characterized by consecutive transition
points. The authors also studied the behavior of first
and second order derivatives of the optimal value func-
tion and proved that the transition points coincide with
the points where first or second order derivatives do not
exist. It was proven that by solving auxiliary self-dual
CQO problems, one can identify the optimal partitions
on the neighboring subintervals.

The results obtained by Yildirim (2004) for the si-
multaneous perturbation case in conic optimization and
by using the geometric definition of the optimal parti-
tion may be linked to our findings. In his paper, Yildirim
introduced the concept of the invariancy interval and
presented auxiliary problems to identify the lower and
upper bounds of the invariancy interval that contains the
given parameter value. He also proved that the optimal
value function is quadratic on the current invariancy in-
terval. Although Yildirim’s results are very interesting
in the light of extending parametric optimization tech-
niques to conic optimization problems, there are some
obstacles that prevent direct mapping of them to our
methodology as we will explain in Section 4. Gener-
ally speaking, the optimal partition is well-defined if
the primal and dual conic optimization problems have
nonempty optimal solution sets and the duality gap is
zero. Due to the more general setting Yildirim (2004)
presents optimization problems defined on relative in-
teriors of primal and dual sets. Those open set formula-
tions (relative interiors of feasible sets, see e.g. problem
(9) in Yildirim’s paper) are less appropriate to direct
calculations than the standard form problems defined in
this paper.

3. The Optimal Value Function in Simultaneous
Perturbation Sensitivity Analysis

In this section, we introduce explicitly the perturbed
CQO problem when perturbation simultaneously oc-
curs in the RHS data and the linear term of the objec-
tive value function of(QP ). In the problem(QPλb,λc

)
that was introduced in the pervious section,λb andλc

are independent parameters. In this paper we are only
concerned with the case when they coincide, i.e., when
λb = λc = λ. Consequently, the perturbation takes
the formλh, whereh = (△bT ,△cT )T ∈ R

m+n is a
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nonzero perturbing direction andλ ∈ R is a parame-
ter. Thus, we define the following primal and dual per-
turbed problems corresponding to(QP ) and(QD), re-
spectively:

(QPλ) min { (c + λ△c)T x +
1

2
xT Qx :

Ax = b + λ△b, x ≥ 0 } ,

(QDλ) max { (b + λ△b)T y −
1

2
xT Qx :

AT y + s − Qx = c + λ△c, s ≥ 0 } .

The solution methodology for the problem(QPλ) is
our primary interest here. LetQPλ andQDλ denote
the feasible sets of the problems(QPλ) and (QDλ),
respectively. Their optimal solution sets are analogously
denoted byQP∗

λ andQD∗
λ. The optimal value function

of (QPλ) and(QDλ) is

φ(λ) = (c + λ△c)T x∗(λ) +
1

2
x∗(λ)

T
Qx∗(λ)

= (b + λ△b)T y∗(λ) −
1

2
x∗(λ)T Qx∗(λ),

where x∗(λ) ∈ QP∗
λ and (x∗(λ), y∗(λ), s∗(λ)) ∈

QD∗
λ. Further, we define

φ(λ) = +∞ if QPλ = ∅,

φ(λ) = −∞ if QPλ 6= ∅ and(QPλ) is unbounded.

Let us denote the domain ofφ(λ) by

Λ = {λ : QPλ 6= ∅ andQDλ 6= ∅}.

Since it is assumed that(QP ) and(QD) have optimal
solutions, it follows thatΛ 6= ∅. We can easily prove
the following property ofΛ.
Lemma 1 Λ ⊆ R is a closed interval.

Proof: First, we prove that the setΛ is connected and
so it is an interval of the real line. Letλ1, λ2 ∈ Λ be two
arbitrary numbers. Let(x(λ1), y(λ1), s(λ1)) ∈ QPλ1

×
QDλ1

and(x(λ2), y(λ2), s(λ2)) ∈ QPλ2
× QDλ2

be
known. For anyλ ∈ (λ1, λ2) andθ = λ2−λ

λ2−λ1
we have

λ = θλ1 + (1 − θ)λ2.

Let us define

x(λ) = θx(λ1) + (1 − θ)x(λ2),

y(λ) = θy(λ1) + (1 − θ)y(λ2),

s(λ) = θs(λ1) + (1 − θ)s(λ2).

By construction(x(λ), y(λ), s(λ)) ∈ QPλ×QDλ, thus
QPλ 6= ∅ andQDλ 6= ∅. This implies the setΛ is
connected.

Second, we prove the closedness ofΛ. Let λ 6∈ Λ.
There are two cases: the primal problem(QPλ) is fea-
sible but unbounded or it is infeasible. We only prove
the second case, the first one can be proved analogously.
If the primal problem(QPλ) is infeasible then by the
Farkas Lemma (see e.g., Murty (1983) or Roos, Terlaky
and Vial (2006)) there is a vectory such thatAT y ≤ 0
and(b + λ△b)T y > 0. Fixing y and consideringλ as
a variable, the setS(y) =

{

λ : (b + λ△b)T y > 0
}

is
an open half-line inλ, thus the given vectory is a cer-
tificate of infeasibility of(QPλ) for an open interval.
Thus, the union

⋃

y S(y), wherey is a Farkas certificate
for the infeasibility of(QPλ) for someλ ∈ R, is open.
Consequently, the domain of the optimal value function
is closed. The proof is complete.

4. Properties of the Optimal Value Function

In this section we investigate the properties of the
optimal value function. These are generalizations of
the corresponding properties that have been proven in
Berkelaar et al. (1997) for the case when△c = 0 or
△b = 0. We also explain the relation of our results in
Section 4.1 to the ones obtained by Yildirim (2004). In
contrast, Sections 4.2 and 4.3 contain the new results
with respect to simultaneous perturbations in the CQO
case.

4.1. Basic Properties

For λ∗ ∈ Λ, let π = π(λ∗) denote the optimal par-
tition and let(x∗, y∗, s∗) be a maximally complemen-
tary solution atλ∗. We use the following notation that
generalizes the notation introduced in Berkelaar et al.
(1997):

O(π) = {λ ∈ Λ : π(λ) = π} ;

Sλ(π) = {(x, y, s) : x ∈ QPλ, (x, y, s) ∈ QDλ,

xB > 0, xN∪T = 0, sN > 0, sB∪T = 0};

Sλ(π) = {(x, y, s) : x ∈ QPλ, (x, y, s) ∈ QDλ,

xB ≥ 0, xN∪T = 0, sN ≥ 0, sB∪T = 0};

Λ(π) = {λ ∈ Λ : Sλ(π) 6= ∅} ;

Λ(π) =
{

λ ∈ Λ : Sλ(π) 6= ∅
}

;

Dπ = {(△x,△y,△s) : A△x = △b,

AT△y + △s − Q△x = △c,△xN∪T = 0,

△sB∪T = 0}.
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HereO(π) denotes a set of parameter values for which
the optimal partitionπ is constant. Further,Sλ(π) is the
primal-dual optimal solution set of maximally comple-
mentary optimal solutions of the perturbed primal and
dual CQO problems for the parameter valueλ ∈ O(π).
Λ(π) denotes the set of parameter values for which the
perturbed primal and dual problems have an optimal
solution (x, y, s) such thatσ(x) = B andσ(s) = N .
Besides,Dπ refers to the variation vector of the primal-
dual optimal solution of the perturbed CQO problem for
anyλ ∈ O(π), when the vectors△b and△c are given.
Finally, Sλ(π) is the closure ofSλ(π) for all λ ∈ Λ(π)
andΛ(π) is the closure ofΛ(π).

The following theorem resembles Theorem 3.1 from
Berkelaar et al. (1997) and presents the basic relations
between the open interval where the optimal partition
is invariant and its closure. The proof can be found in
the Appendix.
Theorem 2 Let π = π(λ∗) = (B,N , T ) denote the
optimal partition for someλ∗ and (x∗, y∗, s∗) denote
an associated maximally complementary solution atλ∗.
Then,

(i) Λ(π) = {λ∗} if and only ifDπ = ∅;
(ii) Λ(π) is an open interval if and only ifDπ 6= ∅;
(iii) O(π) = Λ(π) andclO(π) = cl Λ(π) = Λ(π);
(iv)Sλ(π) = {(x, y, s) : x ∈ QP∗

λ, (x, y, s) ∈ QD∗
λ}

for all λ ∈ Λ(π).
The following two corollaries are direct conse-

quences of Theorem 2.
Corollary 3 Let λ2 > λ1 be such thatπ(λ1) = π(λ2).
Then,π(λ) is constant for allλ ∈ [λ1, λ2].
Corollary 4 Let (x(1), y(1), s(1)) and (x(2), y(2), s(2))
be maximally complementary solutions of(QPλ1

),
(QDλ1

) and (QPλ2
), (QDλ2

), respectively. Further-
more, let(x(λ), y(λ), s(λ)) be defined as

x(λ) =
λ2 − λ

λ2 − λ1
x(1) +

λ − λ1

λ2 − λ1
x(2),

y(λ) =
λ2 − λ

λ2 − λ1
y(1) +

λ − λ1

λ2 − λ1
y(2),

s(λ) =
λ2 − λ

λ2 − λ1
s(1) +

λ − λ1

λ2 − λ1
s(2),

for any λ ∈ [λ1, λ2]. If there is an optimal partition
π such thatλ1, λ2 ∈ Λ(π), then (x(λ), y(λ), s(λ))
is a maximally complementary solution of(QPλ) and
(QDλ). Moreover, if(x(λ), y(λ), s(λ)) is a maximally
complementary optimal solution, thenλ1, λ2 ∈ Λ(π).

Proof: The first part of the statement is a direct conse-
quence of the convexity of the optimal solution set.

Let us assume that(x(λ), y(λ), s(λ)) is a maxi-
mally complementary optimal solution with the op-
timal partition π(λ) = (B(λ),N (λ), T (λ)). In this
case,σ(x(1)) ⊆ B(λ) andσ(x(2)) ⊆ B(λ). Moreover,
σ(s(1)) ⊆ N (λ) andσ(s(2)) ⊆ N (λ). Let us restrict
our analysis to the characteristics of the optimal so-
lution (x(1), y(1), s(1)). Analogous reasoning applies
for (x(2), y(2), s(2)). We might have three cases for the
support sets ofx(1) ands(1).

• Case 1:σ(x(1)) = B(λ) andσ(s(1)) = N (λ).
• Case 2:σ(x(1)) = B(λ) andσ(s(1)) ⊂ N (λ).
• Case 3:σ(x(1)) ⊂ B(λ) andσ(s(1)) = N (λ).

For Case 1, it is obvious thatλ1 ∈ Λ(π(λ)) and the
statement is valid. We prove that in Cases 2 and 3,λ1 is
one of the end points ofΛ(π(λ)). To the contrary, letλ1

be not one of the end points ofΛ(π(λ)). It is clear that
λ1 6∈ Λ(π(λ)). Without loss of generality, let us assume
that it belongs to the immediate (open) interval to the
right of Λ(π(λ)). Thus, some convex combination of
(x∗, s∗, y∗) and(x(1), s(1), y(1)) lie outside ofΛ(π(λ))
but with the same optimal partitionπ(λ) that contradicts
the definition ofΛ(π(λ)). Thus,λ1 is one of the end
points ofΛ(π(λ)) and the proof is complete.

Though Yildirim (2004) has stated a theorem to iden-
tify the invariancy interval for general conic optimiza-
tion problems, the direct specialization of his results to
the CQO case is not straightforward. It is easily seen
that having open sets in his Theorem 4.1, reduces to a
closed formulation that we present in the following the-
orem. However, the major obstacle of efficient use of
his method came back to the fact that correctly iden-
tifying the optimal partition from an approximate op-
timal solution is almost impossible. Here, we provide
the following theorem that is based on standard equa-
tions and inequalities imposed on variablesx and s.
Consequently, it allows us to compute the endpoints of
the intervalΛ(π) efficiently. The proof of Theorem 5
is similar to the one of Theorem 48 of Berkelaar, Roos
and Terlaky (1997).

Theorem 5 Let λ∗ ∈ Λ and let(x∗, y∗, s∗) be a maxi-
mally complementary solution of(QPλ∗) and(QDλ∗)
with optimal partition π = (B,N , T ). Then the left
and right extreme points of the closed intervalΛ(π) =
[λℓ, λu] that containsλ∗ can be obtained by minimiz-
ing and maximizingλ overSλ(π), respectively, i.e., by
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solving

λℓ = min
λ,x,y,s

{λ : Ax − λ△b = b,

xB ≥ 0, xN∪T = 0,

AT y + s − Qx − λ△c = c,

sN ≥ 0, sB∪T = 0 }, (2)

and

λu = max
λ,x,y,s

{λ : Ax − λ△b = b,

xB ≥ 0, xN∪T = 0,

AT y + s − Qx − λ△c = c,

sN ≥ 0, sB∪T = 0 }. (3)

The open intervalΛ(π) is referred to asinvariancy
interval because the optimal partition is invariant on it.
The pointsλℓ andλu, that separate neighboring invari-
ancy intervals, are calledtransition points.
Remark 6 Note thatπ represents either an optimal
partition at a transition point, whenλℓ = λu, or on
the interval between two consequent transition points
λℓ and λu. ThusΛ =

⋃

π Λ(π) =
⋃

π Λ(π), whereπ
runs throughout all possible partitions.

It is worth mentioning that Yildirim (2004) proved
that the optimal value function is quadratic on any in-
variancy interval, and presented an example showing
that this function might be neither convex nor concave.
His proof is based on a strictly complementary solu-
tion computed for the current parameter valueλ = 0.
Here, we present an explicit representation of the opti-
mal value function on an invariancy interval by utiliz-
ing primal-dual optimal solutions (not necessarily max-
imally complementary) for two arbitrarily chosen pa-
rameter values inside this interval. We also provide sim-
ple criteria to determine the convexity, concavity or lin-
earity of the optimal value function on an invariancy
interval. We start with the following theorem.
Theorem 7 Let λℓ < λu be obtained by solving (2)
and (3), respectively. The optimal value functionφ(λ)
is quadratic onO(π) = (λℓ, λu).

Proof: Let λℓ < λ1 < λ < λ2 < λu be given and let
(x(1), y(1), s(1)) and(x(2), y(2), s(2)) be pairs of primal-
dual optimal solutions corresponding toλ1 andλ2, re-
spectively. So, usingθ = λ−λ1

λ2−λ1
∈ (0, 1) allows us

to give an explicit expression for the optimal solution
(x(λ), y(λ), s(λ)) as

x(λ) = x(1) + θ△x,

y(λ) = y(1) + θ△y,

s(λ) = s(1) + θ△s,

where△x = x(2) − x(1), △y = y(2) − y(1), △s =
s(2)−s(1) and(x(λ), y(λ), s(λ)) is a pair of primal-dual
optimal solution corresponding toλ. Denoting△λ =
λ2 − λ1, we also have

A△x =△λ△b, (4)

AT△y + △s − Q△x =△λ△c. (5)

The optimal value function atλ is given by

φ(λ) = (b + λ△b)T y(λ) − 1
2x(λ)T Qx(λ)

= (b + (λ1 + θ△λ)△b)T (y(1) + θ△y)

− 1
2 (x(1) + θ△x)T Q(x(1) + θ△x)

= (b + λ1△b)T y(1) + θ(△λ△bT y(1)

+(b + λ1△b)T△y) + θ2△λ△bT△y

− 1
2x(1)T

Qx(1) − θx(1)T

Q△x

− 1
2θ2△xT Q△x.

(6)

From equations (4) and (5), one gets

△xT Q△x =△λ(△bT△y −△cT△x), (7)

x(1)T

Q△x = (b + λ1△b)T△y −△λ△cT x(1). (8)

Substituting (7) and (8) into (6) we obtain

φ(λ) = φ(λ1 + θ△λ)

= φ(λ1) + θ△λ(△bT y(1) + △cT x(1))

+
1

2
θ2△λ(△cT△x + △bT△y). (9)

Using the notation

γ1 =△bT y(1) + △cT x(1), (10)

γ2 =△bT y(2) + △cT x(2), (11)

γ =
γ2 − γ1

λ2 − λ1
=

△cT△x + △bT△y

λ2 − λ1
, (12)

one can rewrite (9) as

φ(λ) = (φ(λ1) − λ1γ1 +
1

2
λ2

1γ)

+ (γ1 − λ1γ)λ +
1

2
γλ2. (13)

Becauseλ1 and λ2 are two arbitrary elements from
the interval(λℓ, λu), the claim of the theorem follows
directly from (13). The proof is complete.
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It should be mentioned that the sign of△cT△x +
△bT△y in (9) is independent ofλ1 andλ2, because both
λ1 andλ2 are two arbitrary numbers in(λℓ, λu). The
following corollary is a straightforward consequence of
(13).
Corollary 8 For two arbitrary λ1 < λ2 ∈ (λℓ, λu),
let (x(1), y(1), s(1)) and (x(2), y(2), s(2)) be pairs of
primal-dual optimal solutions corresponding toλ1 and
λ2, respectively. Moreover, let△x = x(2) − x(1) and
△y = y(2) − y(1). Then, the optimal value function
φ(λ) is quadratic onO(π) = (λℓ, λu) and it is

(i) strictly convex if△cT△x + △bT△y > 0;
(ii) linear if △cT△x + △bT△y = 0;
(iii) strictly concave if△cT△x + △bT△y < 0.

Corollary 9 The optimal value functionφ(λ) is con-
tinuous and piecewise quadratic onΛ.

Proof: The fact that the optimal value function is piece-
wise quadratic follows directly from Theorem 7. Re-
call that the feasible solution sets of problems (2) and
(3) are closed convex sets and for anyλ ∈ (λℓ, λu)
there is a corresponding vector(x(λ), y(λ), s(λ)) that
is an optimal solution of the perturbed problems(QPλ)
and (QDλ). Consider problem (2) and pick any se-
quence converging to an optimal solution of (2). Rely-
ing on the fact that any feasible solution correspond-
ing to aλ ∈ (λℓ, λu) is an optimal solution of(QPλ)
and (QDλ), it follows that the optimal value function
is continuous.

Two auxiliary LO problems were presented in Theo-
rem 5 to identify transition points and consequently to
determine invariancy intervals. A logical question that
appears here is how to proceed from the initial invari-
ancy interval to a neighboring one iteratively to cover
the whole domain ofλ. It turns out that we need to
compute the derivatives of the optimal value function
for that. It is done as described in the following theorem
that is the specialization of Corollary 5.1 in Yildirim
(2004) to quadratic problems.
Theorem 10 For a given λ ∈ Λ, the left and right
derivatives of the optimal value functionφ(λ) at λ sat-
isfy

φ′
−(λ) = min

x,y,s
{△bT y : (x, y, s) ∈ QD∗

λ}

+ max
x

{△cT x : x ∈ QP∗
λ}, (14)

φ′
+(λ) = max

x,y,s
{△bT y : (x, y, s) ∈ QD∗

λ}

+ min
x

{△cT x : x ∈ QP∗
λ}. (15)

Remark 11 If λ is not a transition point, then the op-
timal value function atλ is a differentiable quadratic
function and its first order derivative is

φ′(λ) = △bT y(λ) + △cT x(λ).

Here,(x(λ), y(λ), s(λ)) is any pair of primal-dual op-
timal solution corresponding toλ.

4.2. Relation between Derivatives, Invariancy Inter-
vals, and Transition Points

In this subsection, we use basic properties of the opti-
mal value function and its derivatives to investigate the
relationship between the invariancy intervals and neigh-
boring transition points where these derivatives may not
exist. We also show how we can proceed from one in-
variancy interval to another to cover the whole interval
Λ. These results allow us to develop our algorithm for
solving parametric CQO problems.

It is worthwhile to make some remarks about Theo-
rem 10 first. It seems that we need to solve two optimiza-
tion problems to find the right or left first-order deriva-
tives of the optimal value function at a transition point.
Actually we can combine these two problems into one.
We consider problem (15) only. Similar results hold for
problem (14). Let(x∗, y∗, s∗) be a pair of primal-dual
optimal solutions of(QPλ) and(QDλ) and

QPD∗
λ ={(x, y, s) : Ax = b + λ△b,

x ≥ 0, xT s∗ = 0, Qx = Qx∗,

AT y + s − Qx = c + λ△c,

s ≥ 0, sT x∗ = 0}.

First, in the definition of the setQPD∗
λ the constraints

x ≥ 0, xT s∗ = 0, Qx = Qx∗ ands ≥ 0, sT x∗ = 0
are equivalent toxB ≥ 0, xN∪T = 0 and sN ≥
0, sB∪T = 0, where(B,N , T ) is the optimal partition
at the transition pointλ. The fact thatxB ≥ 0 directly
follows fromx ≥ 0. On the other hand, since(x, y, s) is
a primal-dual optimal solution and(x∗, y∗, s∗) is a max-
imally complementary optimal solution, thenσ(x) ⊆
σ(x∗), thusxN∪T = 0 is its immediate result. Analo-
gous reasoning is valid forsB∪T = 0. Second, let us
consider the first and the second subproblems of (15).
Observe that the optimal solutions produced by each
subproblem are both optimal for(QPλ) and(QDλ) and
so the vectorQx, appearing in the constraints, is always
identical for both subproblems (see, e.g., Dorn 1960).
This means that we can maximize the first subproblem
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overQPD∗
λ and minimize the second subproblem over

QPD∗
λ simultaneously. In other words, instead of solv-

ing two subproblems in (15) separately, we can solve
the problem

min
x,y,s

{△cT x −△bT y : (x, y, s) ∈ QPD∗
λ} (16)

that produces the same optimal solution(x̂, ŷ, ŝ) as
a solution of problem (15). Then the right derivative
φ′

+(λ) can be computed by using the values(x̂, ŷ, ŝ)
asφ′

+(λ) = △bT ŷ + △cT x̂. Consequently, we refer to
the optimal solutions of problems (15) and (16) inter-
changeably.

The next lemma shows an important property of
strictly complementary solutions of (14) and (15) and
will be used later on in the paper.
Lemma 12 Let λ∗ be a transition point of the optimal
value function. Further, assume that the (open) invari-
ancy interval to the right ofλ∗ containsλ with the op-
timal partition π = (B,N , T ). Let (x, y, s) be an opti-
mal solution of (15) withλ = λ∗. Then,σ(x) ⊆ B and
σ(s) ⊆ N .

Proof: Let (x, y, s) be a maximally complementary so-
lution at λ and let(λ∗, x, y, s) be an optimal solution
of (2) obtained for the optimal partitionπ = π.

First, we want to prove that

△cT x = △cT x and △bT y = △bT y, (17)

cT x = cT x and bT y = bT y. (18)

For this purpose we use equation (9). In (9) and (10-
12) let λ2 = λ, x(2) = x, y(2) = y. Continuity of the
optimal value function, that is proved in Corollary 9,
allows us to establish that equation (9) holds not only on
invariancy intervals, but also at their endpoints, i.e., at
the transition points. Thus, we are allowed to consider
the case whenλ1 = λ∗ and (x(1), y(1), s(1)) is any
optimal solution at the transition pointλ∗.

Computingφ(λ) at the pointλ (whereθ = λ−λ1

λ2−λ1
=

λ−λ∗

λ−λ∗
= 1) by (9) gives us

φ(λ) = φ(λ∗) + (λ − λ∗)(△bT y(1) + △cT x(1))

+
1

2
(λ − λ∗)[△cT (x − x(1))

+△bT (y − y(1))]

= φ(λ∗) +
1

2
(λ − λ∗)[△cT (x + x(1))

+△bT (y + y(1))]. (19)

One can rearrange (19) as

φ(λ) − φ(λ∗)

λ − λ∗
= △cT

(

x + x(1)

2

)

+ △bT

(

y + y(1)

2

)

.

Let λ ↓ λ∗, then we have

φ′
+(λ∗) = lim

λ↓λ∗

φ(λ) − φ(λ∗)

λ − λ∗

= △cT

(

x + x(1)

2

)

+ △bT

(

y + y(1)

2

)

. (20)

Since (x(1), y(1), s(1)) is an arbitrary optimal solu-
tion atλ∗ andφ′

+(λ∗) is independent of the optimal so-
lution choice atλ∗, one may choose(x(1), y(1), s(1)) =
(x, y, s) and(x(1), y(1), s(1)) = (x, y, s). From (20) we
get

φ′
+(λ∗) = △cT

(

x + x

2

)

+ △bT

(

y + y

2

)

= △cT

(

x + x

2

)

+ △bT

(

y + y

2

)

. (21)

Equation (21) reduces to△cT (
x+x

2 ) = △cT x
from which it follows that△cT x = △cT x. Further-
more, let us consider(x(1), y(1), s(1)) = (x, y, s) and
(x(1), y(1), s(1)) = (x, y, s). From (20) we obtain
△bT y = △bT y.

Now, since both(x, y, s) and(x, y, s) are optimal so-
lutions inQP∗

λ∗ ×QD∗
λ∗ , it holds that(c+λ∗△c)T x =

(c+λ∗△c)T x and(b+λ∗△b)T y = (b+λ∗△b)T y (see
e.g., Dorn (1960)). Consequently, it follows from (17)
that cT x = cT x andbT y = bT y.

As a result we can establish that

xT s = xT (c + λ△c + Qx − AT y)

= cT x + λ△cT x + xT Qx − (b + λ∗△b)T y

= cT x + λ△cT x + xT Qx − (Ax)T y

= xT (c + λ△c + Qx − AT y) = xT s = 0,

(22)
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and

xT s = xT (c + λ∗△c + Qx − AT y)

= xT (c + λ∗△c + Qx) − bT y − λ△bT y

= xT (c + λ∗△c + Qx) − bT y − λ△bT y

= xT (c + λ∗△c + Qx − AT y)

= xT s = 0.

(23)

For θ ∈ (0, 1) andλ̃ = (1 − θ)λ∗ + θλ, let us consider

x̃ = (1 − θ)x + θx,

ỹ = (1 − θ)y + θy, (24)

s̃ = (1 − θ)s + θs.

Utilizing equations (24) and the complementarity prop-
erties (22) and (23), we obtain that̃x and (x̃, ỹ, s̃)
are feasible and complementary, and thus optimal so-
lutions of (QPλ̃) and(QDλ̃), respectively. Noting that
(B,N , T ) is the optimal partition at(x̃, ỹ, s̃), it fol-
lows from (24) thatxB ≥ 0, xN = 0, xT = 0 and
sB = 0, sN ≥ 0, sT = 0. Then we can conclude that
σ(x) ⊆ B andσ(s) ⊆ N .

The next theorem presents two auxiliary linear opti-
mization problems to calculate the left and right second
order derivatives ofφ(λ) and also gives a general result
concerning the transition points of the optimal value
function. Problem (16) can be used for finding optimal
solutions of problems (14) and (15).
Theorem 13 Letλ ∈ Λ, andx∗ be an optimal solution
of (QPλ). Further, let(x∗, y∗, s∗) be an optimal solu-
tion of (QDλ). Then, the left and right second order
derivativesφ′′

−(λ) andφ′′
+(λ) are

φ′′
−(λ) = min

ξ,̺,µ,η,ρ,δ
{△cT ξ : Aξ = △b,

ξ + ̺ + µx∗ = 0, ̺σ(s−) ≥ 0, ̺σ(x−) = 0,

AT η + ρ − Qξ + δs∗ = △c,

ρσ(s−) ≥ 0, ρσ(x−) = 0}

+ max
ξ,̺,µ,η,ρ,δ

{△bT η : Aξ = △b,

ξ + ̺ + µx∗ = 0, ̺σ(s−) ≥ 0, ̺σ(x−) = 0,

AT η + ρ − Qξ + δs∗ = △c,

ρσ(s−) ≥ 0, ρσ(x−) = 0},

where(x−, y−, s−) is a strictly complementary optimal
solution of(14), and

φ′′
+(λ) = max

ξ,̺,µ,η,ρ,δ
{△cT ξ : Aξ = △b,

ξ + ̺ + µx∗ = 0, ̺σ(s+) ≥ 0, ̺σ(x+) = 0,

AT η + ρ − Qξ + δs∗ = △c,

ρσ(s+) ≥ 0, ρσ(x+) = 0}

+ min
ξ,̺,µ,η,ρ,δ

{△bT η : Aξ = △b,

ξ + ̺ + µx∗ = 0, ̺σ(s+) ≥ 0, ̺σ(x+) = 0,

AT η + ρ − Qξ + δs∗ = △c,

ρσ(s+) ≥ 0, ρσ(x+) = 0},

where(x+, y+, s+) is a strictly complementary optimal
solution of(15).

Proof: The proof follows by using a similar pattern of
reasoning as Lemma IV.61 in Roos, Terlaky and Vial
(2006) for the linear problems (14) and (15).

The following theorem summarizes the results we
got so far. It is a direct consequence of Theorem 4.1 in
Yildirim (2004) (equivalence of (i) and (ii)), the defini-
tion of a transition point (equivalence of (ii) and (iii)),
and Corollary 4 and Lemma 12 (equivalence of (iii) and
(iv)). The proof is identical to the proof of Theorem 3.10
in Berkelaar et al. (1997) and it also shows that in adja-
cent subintervalsφ(λ) is defined by different quadratic
functions.
Theorem 14 The following statements are equivalent:

(i) Dπ = ∅;
(ii) Λ(π) = {λ∗};
(iii) λ∗ is a transition point;
(iv) φ′ or φ′′ is discontinuous atλ∗.
By solving an auxiliary self-dual quadratic optimiza-

tion problem one can obtain the optimal partition in the
neighboring invariancy interval. The result is given by
the next theorem.
Theorem 15 Letλ∗ be a transition point of the optimal
value function. Let(x∗, y∗, s∗) be an optimal solution
of (15) forλ∗. Let us assume that the (open) invariancy
interval to the right ofλ∗ containsλ with optimal par-
tition π = (B,N , T ).
DefineT = σ(x∗, s∗) = {1, 2, . . . , n}\(σ(x∗)∪σ(s∗)).
Consider the following self-dual quadratic problem

min
ξ,ρ,η

{−△bT η + △cT ξ + ξT Qξ : Aξ = △b,

AT η + ρ − Qξ = △c,

ξσ(s∗) = 0, ρσ(x∗) = 0, ξσ(x∗,s∗) ≥ 0,

ρσ(x∗,s∗) ≥ 0},

(25)
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and let(ξ∗, η∗, ρ∗) be a maximally complementary so-
lution of (25). Then,B = σ(x∗)∪ σ(ξ∗), N = σ(s∗)∪
σ(ρ∗) andT = {1, . . . , n} \ (B ∪ N ).

Proof: For any feasible solution of (25) we have

−△bT η + △cT ξ + ξT Qξ

= ξT (Qξ − AT η + △c) = ξT ρ = ξT
T ρT ≥ 0.

The dual of (25) is

max
δ,ξ,γ,ζ

{ △bT δ −△cT ζ − ξT Qξ :

Aζ = △b, AT δ + γ + Qζ − 2Qξ = △c,

γσ(x∗) = 0, ζσ(s∗) = 0, γT ≥ 0, ζT ≥ 0}.

For a feasible solution it holds

△bT δ −△cT ζ − ξT Qξ

= δT Aζ −△cT ζ − ξT Qξ

= −ζT γ − (ζ − ξ)T Q(ζ − ξ) ≤ 0.

So, the optimal value of (25) is zero. Let us observe
that(x, y, s) is a maximally complementary solution at
λ and assign

ξ = ζ =
x − x∗

λ − λ∗
,

η = δ =
y − y∗

λ − λ∗
,

ρ = γ =
s − s∗

λ − λ∗
, (26)

that satisfy the first two linear constraints of (25).
Using the fact that by Lemma 12σ(x∗) ⊆ B and

σ(s∗) ⊆ N , it follows that

ξσ(s∗) =
xσ(s∗) − x∗

σ(s∗)

λ − λ∗
= 0,

ξT =
xT − x∗

T

λ − λ∗
=

xT

λ − λ∗
≥ 0

and

ρσ(x∗) =
sσ(x∗) − s∗σ(x∗)

λ − λ∗
= 0,

ρT =
sT − s∗T
λ − λ∗

=
sT

λ − λ∗
≥ 0.

Then, problem (25) is feasible and self-dual.
From the proof of Lemma 12 we havexT s∗ =

sT x∗ = 0, implying that (26) is an optimal solution.

So, (26) is definitely an optimal solution for (25) as
it satisfies all the constraints and gives zero optimal
value. On the other hand, since(x, y, s) is maximally
complementary atλ, we getξσ(s∗) = 0, ξσ(x∗) > 0,
ξT = xT , ρσ(x∗) = 0, ρσ(s∗) > 0 andρT = sT which
means that (26) is a maximally complementary solution
in (25) as well.

Using (26) and the fact thatλ > λ∗, we see that
B = σ(x) = σ(x∗) ∪ σ(ξ) andN = σ(s) = σ(s∗) ∪
σ(ρ). Further, we note that(ξ, η, ρ) defined in (26) is a
maximally complimentary solution of (25), and hence
σ(ξ) = σ(ξ∗) andσ(ρ) = σ(ρ∗). Thus,B = σ(x∗) ∪
σ(ξ∗) follows. Analogous arguments hold forN , which
completes the proof.

4.3. Computational Algorithm

In this subsection we summarize the results in a com-
putational algorithm. This algorithm is capable of find-
ing the transition points; the right first order derivatives
of the optimal value function at transition points; and
optimal partitions at all transition points and invariancy
intervals. Note that the algorithm computes all these
quantities to the right from the given initial valueλ∗.
One can easily outline an analogous algorithm for the
transition points to the left fromλ∗. It is worthwhile to
mention that all the subproblems used in this algorithm
can be solved in polynomial time by IPMs.

The implementation of the computational algorithm
contains some complications that are worth to mention.
The interested reader can find more details about it in
Romanko (2004). First, due to numerical errors the de-
termination of the optimal partition and a maximally
complementary optimal solution, or the determination
of the support set for a given optimal solution is a trou-
blesome task. In contrast with the theoretical results,
the numerical solution produced by a CQO solver may
not allow to determine the optimal partition or support
set with 100% reliability. Introducing a zero tolerance
parameter and using some heuristics may improve the
situation. For problems with hundreds or thousands of
variables, the probability of getting one or more “prob-
lematic” coordinates is very high.
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Algorithm: Transition Points, First-Order
Derivatives of the Optimal Value Function and
Optimal Partitions at All Subintervals for CQO

Input:
A nonzero direction of perturbation:r = (△b,△c);
a maximally complementary solution(x∗, y∗, s∗) of
(QPλ) and(QDλ) for λ = λ∗;
π0 = (B0,N 0, T 0), where
B0 = σ(x∗), N 0 = σ(s∗);
k := 0; x0 := x∗; y0 := y∗; s0 := s∗;
ready:= false;

while not readydo
begin

solve

λk = max
λ,x,y,s

{λ : Ax − λ△b = b,

xBk ≥ 0, xNk∪T k = 0,

AT y + s − Qx − λ△c = c,

sNk ≥ 0, sBk∪T k = 0};

if this problem is unbounded: ready:= true;else
let (λk, xk, yk, sk) be an optimal solution;
begin

Let x∗ := xk ands∗ := sk;
solve
minx,y,s{△cT x −△bT y : (x, y, s) ∈ QPD∗

λ}
if this problem is unbounded: ready:= true;else
let (xk, yk, sk) be an optimal solution;
begin

Let x∗ := xk ands∗ := sk;
solve

min
ξ,ρ,η

{−△bT η + △cT ξ + ξT Qξ : Aξ = △b,

AT η + ρ − Qξ = △c, ξσ(s∗) = 0,

ρσ(x∗) = 0, ξσ(x∗,s∗) ≥ 0, ρσ(x∗,s∗) ≥ 0};

Bk+1 = σ(x∗)∪σ(ξ∗),N k+1 = σ(s∗)∪σ(ρ∗),
T k+1 = {1, . . . , n} \ (Bk+1 ∪ N k+1);
k := k + 1;

end
end

end

Wrongly determined tri-partition may lead to an incor-
rect invariancy interval, if any. The situation can be im-
proved by resolving the problem for anotherλ parame-

ter value close to the current one. Another possibility to
overcome this difficulty in implementation is to resolve
the problem with fixed “non-problematic” coordinates
in order to obtain a more precise solution for the prob-
lematic ones.

Second, incorrectly determined optimal partition or
support sets, as well as numerical difficulties, may pre-
vent one of the auxiliary subproblems to be solved. In
this case, we can restart the algorithm from a parameter
valueλ sufficiently close to the current one in order to
get the solutions for the whole intervalΛ.

Finally, the derivative subproblem (16) is more chal-
lenging than it seems. The difficulties here are caused
by the fact that we want to solve the derivative subprob-
lem without knowing the optimal partition at the current
transition pointλk, but only by utilizing an optimal so-
lution (xk, yk, sk) that is produced by solving (3). This
is actually the reason why we need to have the non-
negativity constraintsxσ(xk,sk) ≥ 0 andsσ(xk,sk) ≥ 0,
whereσ(xk, sk) = {1, 2, . . . , n} \ (σ(xk) ∪ σ(sk)), in
the problem (16) that converts it to:

min
x,y,s

{△cT x −△bT y : Ax = b + λk△b,

xσ(xk)∪σ(xk,sk) ≥ 0,

xσ(sk) = 0, Qx = Qxk,

AT y + s − Qx = c + λk△c,

sσ(sk)∪σ(xk,sk) ≥ 0, sσ(xk) = 0}. (27)

Presence of these constraints speaks of the fact that
we do not actually know to which tri-partitionBk, N k

or T k the indicesσ(xk, sk) will belong. It is the con-
sequence of not having a maximally complementary
solution at the current transition pointλk. This im-
plies that we need to enforce the hidden constraint
(xσ(xk ,sk))j (sσ(xk,sk))j = 0 ∀ j ∈ σ(xk, sk) for the
problem (16). Utilizing the hidden constraints becomes
unnecessary, if we know a maximally complementary
solution of the parametric problem forλk that pro-
vides the optimal partition(Bk,N k, T k) at this param-
eter value. Our computational experience shows that if
(xσ(x,s))j > 0 and(sσ(x,s))j > 0 for somej in the op-
timal solution of (27), thenB = σ(xk) andN = σ(sk)
in that transition point and we exploit this partition while
solving (16).
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5. Simultaneous Perturbation in Linear Optimiza-
tion

The case, when perturbation occurs in the objective
function vectorc or the RHS vectorb of an LO problem
was extensively studied. A comprehensive survey can
be found in the book of Roos, Terlaky and Vial (2006).

Greenberg (2000) has studied simultaneous pertur-
bation of the objective and RHS vectors when the pri-
mal and dual LO problems are in canonical form. He
only investigated the invariancy interval which includes
the current parameter valueλ. He proved the convex-
ity of the invariancy interval and established that the
optimal value function is quadratic on this interval for
the simultaneous perturbation case and it is linear for
non-simultaneous perturbation cases. However, for LO
problems in canonical form it is necessary to define the
optimal partition to separate not only active and inac-
tive variables, but also active and inactive constraints
for all optimal solutions. In his approach to identify the
optimal value function one needs to know the gener-
alized inverse of the submatrix ofA, corresponding to
active variables and constraints, in addition to having
the optimal solutions at two parameter values.

We start this section by emphasizing the differences
in the optimal partitions of the optimal value function in
LO and CQO problems and then proceed to specialize
our results to the LO case. Let us define the simultane-
ous perturbation of an LO problem as

(LPλ) min{(c + λ△c)T x : Ax = b + λ△b, x ≥ 0}.

Its dual is

(LDλ) max{(b+λ△b)T y : AT y+s = c+λ△c, s ≥ 0}.

The LO problem can be derived from the CQO prob-
lem by substituting the zero matrix forQ. As a result,
vectorx does not appear in the constraints of the dual
problem, and the setT in the optimal partition is always
empty.

The following theorem shows that to identify an in-
variancy interval, we don’t need to solve problems (2)
and (3) as they are formulated for the CQO case. Its
proof is based on the fact that the constraints in these
problems separate whenQ = 0, and the proof is left to
the reader.
Theorem 16 Let λ∗ ∈ Λ be given and let(x∗, y∗, s∗)
be a strictly complementary optimal solution of
(LPλ∗) and (LDλ∗) with the optimal partition
π = (B,N ). Then, the left and right extreme points

of the intervalΛ(π) = [λℓ, λu] that containsλ∗ are
λℓ = max {λPℓ

, λDℓ
} and λu = min {λPu

, λDu
},

where

λPℓ
= min

λ,x
{λ : Ax − λ△b = b, xB ≥ 0, xN = 0},

λPu
= max

λ,x
{λ : Ax − λ△b = b, xB ≥ 0, xN = 0},

λDℓ
= min

λ,y,s
{λ : AT y + s − λ△c = c,

sN ≥ 0, sB = 0},

λDu
= max

λ,y,s
{λ : AT y + s − λ△c = c,

sN ≥ 0, sB = 0}.

We also state the following lemma that does not hold
for CQO problems.
Lemma 17 Letλℓ andλu be obtained from Theorem 16
and λℓ < λ1 < λ2 < λu with (x(1), y(1), s(1)) and
(x(2), y(2), s(2)) being any strictly complementary so-
lutions of(LPλ) and (LDλ) corresponding toλ1 and
λ2, respectively. Then it holds that

△bT△y = △cT△x,

where△y = y(2) − y(1) and△x = x(2) − x(1).

Proof: Subtracting the constraints of(LPλ1
) from

(LPλ2
) and the constraints of(LDλ1

) from (LDλ2
)

results in

A△x =△λ△b, (28)

AT△y + △s =△λ△c, (29)

where△λ = λ2 − λ1 and△s = s(2) − s(1). Premul-
tiplying (28) by△yT and (29) by△xT , the result fol-
lows from the fact that△xT△s = 0, which completes
the proof.

Utilizing Lemma 17 and using the same notation as
in (10)–(12), we can state the following theorem that
gives explicit expressions for computing the objective
value function. The theorem also gives the criteria to
determine convexity, concavity and linearity of the ob-
jective value function on its subintervals.
Theorem 18 Letλ1 < λ2 andπ(λ1) = π(λ2) = π, let
(x(1), y(1), s(1)) and (x(2), y(2), s(2)) be strictly com-
plementary optimal solutions of problems(LPλ) and
(LDλ) at λ1 andλ2, respectively. The following state-
ments hold:

(i) The optimal partition is invariant on(λ1, λ2).
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(ii) The optimal value function is quadratic on this
interval and is given by

φ(λ) = (φ(λ1) − λ1γ1 + 1
2λ2

1γ)

+(γ1 − λ1γ)λ + 1
2γλ2

= φ(λ1) + θ△λ(△bT y(1) + △cT x(1))

+θ2△λ△cT△x

= φ(λ1) + θ△λ(△bT y(1) + △cT x(1))

+θ2△λ△bT△y

(iii) On any subinterval, the objective value function
is
• strictly convex if△cT△x = △bT△y > 0,
• linear if △cT△x = △bT△y = 0,
• strictly concave if△cT△x = △bT△y < 0.

Computation of derivatives can be done by solving
smaller LO problems than the problems introduced in
Theorem 10. The following theorem summarizes these
results.
Theorem 19 For a given λ ∈ Λ, let (x∗, y∗, s∗) be
a pair of primal-dual optimal solutions of(LPλ) and
(LDλ). Then, the left and right first order derivatives
of the optimal value functionφ(λ) at λ are

φ′
−(λ) = min

y,s
{△bT y : AT y + s = c + λ△c,

s ≥ 0, sT x∗ = 0}

+ max
x

{△cT x : Ax = b + λ△b,

x ≥ 0, xT s∗ = 0},

φ′
+(λ) = max

y,s
{△bT y : AT y + s = c + λ△c,

s ≥ 0, sT x∗ = 0}

+ min
x

{△cT x : Ax = b + λ△b,

x ≥ 0, xT s∗ = 0}.

Yildirim (2003) showed that results similar to Theo-
rems 10 and 19 hold for parametric Convex Conic Op-
timization (CCO) problems.

6. Illustrative Example

Here we present some illustrative numerical results
by using the algorithm outlined in Section 4.3. Compu-
tations can be performed by using any IPM solver for

LO and CQO problems. Let us consider the following
CQO problem withx, c ∈ R

5, b ∈ R
3, Q ∈ R

5×5 being
a positive semidefinite symmetric matrix,A ∈ R

3×5

with rank(A) = 3. The problem’s data are

Q =























4 2 0 0 0

2 5 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0























, c =























−16

−20

0

0

0























, △c =























7

6

0

0

0























,

A =











2 2 1 0 0

2 1 0 1 0

2 5 0 0 1











, b =











11

8

20











, △b =











1

1

1











.

With this data the perturbed CQO instance is

min (−16 + 7λ)x1 + (−20 + 6λ)x2

+2x2
1 + 2x1x2 + 5

2x2
2

s.t. 2x1 + 2x2 + x3 = 11 + λ

2x1 + x2 + x4 = 8 + λ

2x1 + 5x2 + x5 = 20 + λ

x1, x2, x3, x4, x5 ≥ 0.

(30)

The results of our computations are presented in Ta-
ble 1. The setΛ for the optimal value functionφ(λ) is
[−8, +∞). Figure 1 depicts the graph ofφ(λ). Transi-
tion points and the optimal partitions at each transition
point and on the invariancy intervals are identified by
solving the problems in Theorems 5 and 15. The optimal
value function on the invariancy intervals is computed
by using formula (13). Convexity, concavity or linearity
of the optimal value function can be determined by the
sign of the quadratic term of the optimal value function
(see Table 1). As shown in Figure 1, the optimal value
function is convex on the first two invariancy intervals,
concave on the third and fourth and linear on the last
one. The first order derivative does not exists at transi-
tion pointλ = −5.

7. A Parametric CQO Model: The DSL Example

One of the recent examples of the use of CQO prob-
lems in practice is a model of optimal multi-user spec-
trum management for Digital Subscriber Lines (DSL)
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Table 1

B N T φ(λ)

λ = −8.0 {3,5} {1,2,4} ∅

−8.0 < λ < −5.0 {2,3,5} {1,4} ∅ 68.0λ + 8.5λ2

λ = −5.0 {2} {1,3,4,5} ∅

−5.0 < λ < 0.0 {1,2} {3,4,5} ∅ −50.0 + 35.5λ + 4λ2

λ = 0.0 {1,2} ∅ {3,4,5}

0.0 < λ < 1.739 {1,2,3,4,5} ∅ ∅ −50.0 + 35.5λ − 6.9λ2

λ = 1.739 {2,3,4,5} ∅ {1}

1.739 < λ < 3.333 {2,3,4,5} {1} ∅ −40.0 + 24.0λ − 3.6λ2

λ = 3.333 {3,4,5} {1} {2}

3.333 < λ < +∞ {3,4,5} {1,2} ∅ 0

Transition Points, Invariancy Intervals and Optimal Partitions

−8 −6 −4 −2 0 2 4 6
−140

−120

−100

−80

−60

−40

−20

0

20

λ

φ(
λ)

Fig. 1. The Optimal Value Function

that appeared in Yamashita and Luo (2004) as well
as in Luo and Pang (2006). Considering the behavior
of this model under perturbations, we get a paramet-
ric quadratic problem (Romanko 2004). Moreover, the
DSL model can have simultaneous perturbation of the
coefficients in the objective function and in the right-
hand side of the constraints.

Let us consider a situation whenM users are con-
nected to one service provider via telephone line (DSL),
whereM cables are bundled together into the single
one. The total bandwidth of the channel is divided into
N subcarriers (frequency tones) that are shared by all

users. Each useri tries to allocate his total transmission
powerP i

max to subcarriers to maximize his data transfer
rate

N
∑

k=1

pi
k = P i

max.

The bundling causes interference between the user lines
at each subcarrierk = 1, . . . , N , that is represented
by the matrixAk of cross-talk coefficients. In addition,
there is a background noiseσk at frequency tonek. All
elements of matricesAk are nonnegative with their di-
agonal elementsaii

k = 1. For many practical situations,
matricesAk are positive semidefinite (see Luo and Pang
(2006) and subsequent references for more discussion
about such cases). For instance with weak cross talk in-
terference scenario, when0 ≤ aij

k ≤ 1/n for all i 6= j
and allk, each matrixAk is strictly diagonally domi-
nant and hence positive definite.

Current DSL systems use fixed power levels. In con-
trast, allocating each users’ total transmission power
among the subcarriers “intelligently” may result in
higher overall achievable data rates. In noncoopera-
tive environment useri allocates his total powerP i

max

selfishly across the frequency tones to maximize his
own rate. The DSL power allocation problem can be
modelled as a multiuser noncooperative game. Nash
equilibrium points of the noncooperative rate maxi-
mization game correspond to optimal solutions of the
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following quadratic minimization problem:

min

N
∑

k=1

σkeT pk +
1

2

N
∑

k=1

pT
k Akpk

s.t.

N
∑

k=1

pi
k = P i

max, i = 1, . . . , M (31)

pk ≥ 0, k = 1, . . . , N,

wherepk = (p1
k, . . . , pM

k )T .
The formulation in (31) provides a convex optimiza-

tion program that yields, for each user, optimum power
allocations across the different subcarriers. However,
this formulation assumes that the noise power on each
subcarrier is perfectly knownapriori. Perturbations in
the propagation environment due to excessive heat on
the line or neighboring bundles may violate this assump-
tion. In order to account for these perturbations one can
formulate the problem in (31) as (32):

min

N
∑

k=1

(σk + λ△σk)eT pk +
1

2

N
∑

k=1

pT
k Akpk

s.t.
N
∑

k=1

pi
k = P i

max, i = 1, . . . , M

pk ≥ 0, k = 1, . . . , N,

(32)

whereσk now represents the nominal background noise
power on thek-th subcarrier and∆σk – the uncertainty
in the actual noise power. By varyingλ, one can inves-
tigate the robustness of the power allocation under the
effect of uncertainty in the noise power. In order to mit-
igate the adverse effect of excessive noise, thei-th user
may decide to increase the transmitted power in steps of
size∆P i

max. Alternatively, if the actual noise is lower
than the nominal, the user may decide to decrease the
transmitted power. To that end, we can formulate the
optimization problem as

min

N
∑

k=1

(σk + λ△σk)eT pk +
1

2

N
∑

k=1

pT
k Akpk

s.t.
N
∑

k=1

pi
k = P i

max + λ△P i
max,

i = 1, . . . , Mpk ≥ 0, k = 1, . . . , N,

(33)

where the parameterλ is now used to express the un-
certainty in noise power as well as power increment to
reduce the effect of noise.

8. Conclusions

In this paper we investigated the characteristics of the
optimal value function of parametric convex quadratic
optimization problems when variation occurs in both
the RHS vector of the constraints and the coefficient
vector of the objective function’s linear term. The rate
of variation, represented by the parameterλ, is identical
for both perturbation vectors△b and△c. We proved
that the optimal value function is a continuous piece-
wise quadratic function on the closed setΛ. Criteria for
convexity, concavity or linearity of the optimal value
function were derived. Auxiliary linear problems are
constructed to find its first and second order left and
right derivatives. One of the main results is that the op-
timal partitions on the left or right neighboring inter-
vals of a given transition point can be determined by
solving an auxiliary self-dual quadratic problem. This
means that we do not need to guess the length of the
invariancy interval to the left or right from the current
transition point and should not worry about “missing”
short-length invariancy intervals. We already mentioned
that all auxiliary problems can be solved in polynomial
time. Finally, we outlined an algorithm to identify all in-
variancy intervals and draw the optimal value function.
The algorithm is illustrated with a simple problem. In
the special cases, when△c or △b is zero, our findings
specialize to the results of Berkelaar et al. (1997) and
Roos, Terlaky and Vial (2006). Simplification of some
results to LO problems is given, which coincide with
the findings of Greenberg (2000).

The most famous application of the CQO sensitiv-
ity analysis is the mean-variance portfolio optimization
problem introduced by Markowitz (1956). The method
presented in our paper allows to analyze not only the
original Markowitz model, but also some of its ex-
tensions. The link we make to the portfolio problem
is based on the tradeoff formulation (see e.g., Stein-
bach 2001) with the risk aversion parameterλ in the
objective function. One possible extension of the trade-
off formulation that results in the simultaneous pertur-
bation model of type(QPλ) is when the investors’s
risk aversion parameterλ influences not only risk-return
preferences, but also budget constraints. However, we
have to stress that simultaneous perturbation in CQO is
not solely restricted to portfolio models. There are nu-
merous applications in various engineering areas as we
illustrated by the practical example of the adaptive mul-
tiuser power allocation for Digital Subscriber Lines.

As some encouraging results already exist for para-
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metric Convex Conic Optimization (CCO), we would
like to look at the possibility of extending our algo-
rithm to CCO case. As the content of the previous sen-
tence suggest, our further research directions also in-
clude generalizing the analysis of this paper to Second-
Order Cone Optimization problems and exploring its
applications to financial models.
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Appendix

Theorem 4.1 Letπ = π(λ∗) = (B,N , T ) denote the
optimal partition for someλ∗ and (x∗, y∗, s∗) denote
an associated maximally complementary solution atλ∗.
Then,

(i) Λ(π) = {λ∗} if and only if Dπ = ∅;
(ii) Λ(π) is an open interval if and only ifDπ 6= ∅;
(iii) O(π) = Λ(π) andclO(π) = cl Λ(π) = Λ(π);
(iv) Sλ(π) = {(x, y, s) : x ∈ QP∗

λ, (x, y, s) ∈ QD∗
λ}

for all λ ∈ Λ(π).

Proof: First let us recall the characteristics of a max-
imally complementary solution. Any maximally com-
plementary solution(x∗, y∗, s∗) associated with a given
λ∗ satisfiesAx∗ = b + λ∗△b, AT y∗ + s∗ − Qx∗ =
c+λ∗△c, x∗

B > 0, x∗
N∪T = 0, s∗N > 0 ands∗B∪T = 0.

Let (△x,△y,△s) ∈ Dπ, and define

x = x∗ + (λ − λ∗)△x, (34)

y = y∗ + (λ − λ∗)△y, (35)

s = s∗ + (λ − λ∗)△s. (36)
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If λ is in anǫ-neighborhood ofλ∗ for small enoughǫ,
then

Ax = b + λ△b,

AT y + s − Qx = c + λ△c,

xN∪T = 0,

sB∪T = 0,

xB > 0, sN > 0.

(37)

(i) [⇒] : Let Λ(π) = {λ∗}, and assume to the
contrary that Dπ is not empty. Then, there ex-
ists (△x,△y,△s) such that A△x = △b and
AT△y + △s − Q△x = △c with △xN∪T = 0
and △sB∪T = 0. Let (x∗, y∗, s∗) be a maxi-
mally complementary solution associated withλ∗,
i.e., Ax∗ = b + λ∗△b, AT y∗ + s∗ − Qx∗ =
c + λ∗△c, x∗

N∪T = 0, s∗B∪T = 0, x∗
B > 0 and

s∗N > 0. Let (x, y, s) be defined by (34)–(36). From
(37) one can conclude thatλ ∈ Λ(π), what contradicts
to the assumptionΛ(π) = {λ∗}.

(i) [⇐] : Let Dπ = ∅, and suppose to the contrary
thatλ, λ∗ ∈ Λ(π), with λ 6= λ∗ and(x, y, s) is a max-
imally complementary solution atλ. Thus, from (34)–
(36) we can compute(△x,△y,△s) and conclude that
(△x,△y,△s) ∈ Dπ. This contradicts to the fact that
Dπ = ∅ and thusΛ(π) = {λ∗}.

(ii) [⇒] : Let λ∗ ∈ Λ(π). Then, there is a maximally
complementary solution(x∗, y∗, s∗) at λ∗. Moreover,
sinceΛ(π) is an open interval, there exists aλ in an
ǫ-neighborhood ofλ∗ with λ 6= λ∗ andλ ∈ Λ(π). Let
(x, y, s) denote a maximally complementary solution at
λ. From (34)–(36), we can compute(△x,△y,△s) and
conclude that(△x,△y,△s) ∈ Dπ 6= ∅.

(ii) [⇐] : Suppose thatDπ is non-empty. Then, there
exists(△x,△y,△s) such thatA△x = △b, AT△y +
△s − Q△x = △c, △xN∪T = 0 and△sB∪T = 0.
On the other hand, a maximally complementary so-
lution (x∗, y∗, s∗) at λ∗ exists such thatAx∗ = b +
λ∗△b, AT y∗ + s∗ − Qx∗ = c + λ∗△c, x∗

N∪T =
0, s∗B∪T = 0, x∗

B > 0 ands∗N > 0. Consider(x, y, s) as
defined in (34)–(36). For anyλ ∈ R, (x, y, s) satisfies

Ax = b + λ△b, AT y + s − Qx = c + λ△c,

and
xT s = (λ − λ∗)(△xT s∗ + △sT x∗).

From the definitions ofπ andDπ, one can conclude that
xT s = 0. Thus(x, y, s) is a pair of primal-dual optimal
solutions of(QP

λ
) and(QD

λ
) as long asx ≥ 0 ands ≥

0, that gives a closed interval aroundλ∗. Furthermore,
for an open intervalΛ, xB > 0 andsN > 0. Let λ′ <
λ∗ < λ, whereλ′, λ ∈ Λ. If (x′, y′, s′) and (x, y, s)
are defined by (34)–(36), thenx′

B, xB > 0, x′
B∪T =

xB∪T = 0, s′N , sN > 0, s′N∪T = sN∪T = 0. To
prove thatλ ∈ Λ(π), we need to show that(x, y, s)
is not only optimal for(QP

λ
) and (QD

λ
), but also

maximally complementary.

Let us assume that the optimal partitionπ =
(B,N , T ) at λ is not identical toπ, i.e., there is a
solution(x(λ), y(λ), s(λ)) such that

xB(λ) > 0, sN (λ) > 0,

and xT (λ) + sT (λ) 6= 0. (38)

Let us define

x̃ =
λ − λ∗

λ − λ′
x(λ) +

λ∗ − λ′

λ − λ′
x′,

ỹ =
λ − λ∗

λ − λ′
y(λ) +

λ∗ − λ′

λ − λ′
y′,

s̃ =
λ − λ∗

λ − λ′
s(λ) +

λ∗ − λ′

λ − λ′
s′.

By definition (x̃, ỹ, s̃) is optimal forλ∗, while by (38)
it has a positivẽxi + s̃i coordinate inT , contradicting
to the definition of the optimal partitionπ at λ*.

We still need to show thatΛ(π) is a connected inter-
val. The proof follows the same reasoning as the proof
of Lemma 1 and is omitted.

(iii) Let λ ∈ O(π), then by definitionπ(λ) = π, and
hence forλ ∈ Λ there is a maximally complementary
solution(x, y, s) which satisfiesAx = b+λ△b, AT y+
s−Qx = c+λ△c, xN∪T = 0, sB∪T = 0, xB > 0
andsN > 0, from which we conclude thatλ ∈ Λ(π).
Analogously, one can prove that ifλ ∈ Λ(π) then
λ ∈ O(π). Consequently,O(π) = Λ(π) andclO(π) =
clΛ(π). Let us prove thatclΛ(π) = Λ(π). To the con-
trary, letλ1 6∈ Λ(π) but λ1 ∈ clΛ(π). As λ1 ∈ clΛ(π),
λ1 is a transition point and from the proof of Theorem
4.4, there is an optimal solution(x(1), y(1), s(1)) at λ1

with the property,x(1)
B ≥ 0, x

(1)
N∪T = 0, s

(1)
N ≥ 0 and

s
(1)
N∪T = 0. Thus,λ1 ∈ Λ(π) which is a contradiction.

The opposite direction can be proved analogously.

(iv) Let x∗ ∈ QP∗
λ and(x∗, y∗, s∗) ∈ QD∗

λ are arbi-
trary optimal solutions of(QPλ) and(QDλ) for some
λ. Denote by(B,N , T ) the optimal partition for(QPλ)
and(QDλ). Now, the optimal sets of the problems are
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given by:

QP∗
λ = {x : x ∈ QPλ, xT s∗ = 0, Qx = Qx∗}

= {x : x ∈ QPλ, xN∪T = 0},

QD∗
λ = {(x, y, s) : (x, y, s) ∈ QDλ,

sT x∗ = 0, Qx = Qx∗}

= {(x, y, s) : (x, y, s) ∈ QDλ, sB∪T = 0}.

The feasible sets used above areQPλ = {x : Ax =
b + λ△b, x ≥ 0} andQDλ = {(x, y, s) : AT y +
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s − Qx = c + λ△c, s ≥ 0}. Having the property
Qx = Qx∗ shows that(x, y, s) is an optimal solution
for λ as well.

The fact xB ≥ 0 directly follows from x ≥ 0.
On the other hand, since(x, y, s) is a primal-dual
optimal solution and(x∗, y∗, s∗) can be chosen as a
maximally complementary optimal solution implying
σ(x) ⊆ σ(x∗), thusxN∪T = 0 follows immediately.
Analogous reasoning is valid forsB∪T = 0. AsSλ(π) is
defined bySλ(π) = {(x, y, s) : x ∈ QPλ, (x, y, s) ∈
QDλ, xB ≥ 0, xN∪T = 0, sN ≥ 0, sB∪T = 0}, we
get the statement of the theorem.


