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Abstract

Discount auction is a procurement mechanism for buyingM indivisible heterogeneous items. The bidders are suppliers
and a bid consists of two entities: individual cost for each of the items and a non-decreasing discount function defined
over the number of items. The winner determination problem faced by the buyer is to determine the winning suppliers
and their corresponding winning items that minimizes the total procurement cost, subject to the supply, demand, and
discount constraints. We show that this problem isNP-hard upon reduction from the set covering problem. An integer
programming formulation is presented and valid inequalities are derived, which serve as cuts to the linear relaxation.A
collection of branch-and-cut algorithms are developed with different cut addition techniques and branching strategies. The
performance of the proposed algorithms for different problem types are studied with extensive computational experiments.

Key words: Discount auctions, integer programming, linear relaxation, valid inequalities, branch-and-cut, transportation
problem.

1. Introduction

Procurement is the process by which a company ob-
tains materials and services necessary for its manufac-
turing and/or operations. The advent of Internet and
Internet-based technologies have led to new and inno-
vative auction mechanisms for procurement. With the
Internet technologies enabling an interactive front end
for human interaction and back end computers that
can support complex computations, the research in e-
procurement is focused on auction mechanisms, bid-
ding languages, and winner determination techniques
to make the process computationally and economically
efficient. This has led to new generation of procure-
ment techniques:volume-discount[9,13], combinato-
rial [12,15], andmulti-attribute [2,4,21]. For a more
general review of auction techniques in e-commerce and
e-procurement, see [5,11].

Email: S. Kameshwaran [KameshwaranS@isb.edu],
Lyès Benyoucef [lyes.benyoucef@loria.fr], Xiaolan Xie
[xie@emse.fr].

The auction mechanism used for e-procurement pri-
marily depends on the type and number of items pro-
cured. For an industrial procurement of large quantity
of a single good (like raw material), volume discount
auctions [13,22,23] are appropriate candidates. The bid
submitted by a supplier is a costfunctiondefined over
the quantity. The function, in essence, can capture the
discount offered by the supplier based on the quantity
procured. Combinatorial auctions (CA) [8], are useful
for procuring a set of heterogeneous, but related items.
CA allows package bidding, that is, quoting a single
cost for a bundle (subset) of items. In this way, the bid-
ders can capture thecomplementarityor substitutability
existing among the items in a bundle. ForM items, a
bidder could thus possibly submit2M−1 combinatorial
bids, one for each of the possible bundles. The volume
discount and combinatorial auctions have led to several
profitable industrial procurements [3,12,15].

An alternate auction mechanism called asdiscount
auctions(DA) for procuring heterogeneous items was
proposed in [19]. DA is applicable in scenarios where

c© 2007 Preeminent Academic Facets Inc., Canada. Online version: http://www.facets.ca/AOR/AOR.htm. All rights reserved.
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the items do not exhibit complementarity or substi-
tutability. Consider the procurement of office supplies:
stationary, computers, andfurniture. A supplier has pos-
itive cost for each of the items and his profits may not
change substantially by selling them separately or to-
gether. If he cannot sell the furniture in this auction, he
can sell it elsewhere. This is not the case with items that
exhibit complementarity. Bundles of items that cannot
be split and items that cannot be bundled together are
not uncommon in scenarios with complementarity and
substitutability, respectively. Given that such conditions
do not exist, the supplier is not concerned aboutwhich
bundle of items, but rather abouthow muchworth of
items he can sell. The supplier has positive cost for each
of the items, and in order to promote sales he gives in-
centive to the buyer by providing discounts on the num-
ber of items procured. The discount bid consists of two
parts: (1) individual cost for each of the items and (2)
discounts for different number of items (for example, if
three items are bought then the discount is 5%, for four
items 6%, etc.). The difference between DA and CA is
obvious: the costs in the CA are defined over the sub-
sets of the items whereas the discounts in the DA are
defined over the cardinality of the subsets of the items.

In this paper, we develop exact branch-and-cut algo-
rithms for the winner determination problem of DA. The
winner determination problem faced by the buyer is to
choose a set of winning bids and a set of winning items
for each of the winning bids, such that all demanded
items are procured at minimal (total) cost subject to the
supply, demand, and discount constraints. DA can also
be seen as an instance of CA with only substitutability
and no complementarity. The cost of a combinatorial
bid for a subset is the sum of the cost of the constituent
items that is discounted based on the cardinality of the
subset. Thus one can apply the well studied winner de-
termination algorithms of CA [24,27] for DA. However,
this is not favorable for the following reasons. Firstly,
the total number of combinatorial bids is rarely its upper
limit 2M − 1. Many of the CA algorithms exploit this
property. But for an instance of CA obtained from DA,
it is in the order ofO(2M ). Thus, the algorithms have
to be applied to problems with the worst case size that
is rarely encountered in practice. Secondly, DA is only
a special case of CA and has many exploitable proper-
ties that CA lack. For example, in DA the buyer knows
the range in which the optimal price is in for each item,
which is not the case in CA. Hence, we develop algo-
rithms for DA that exploit the computationally favorable
structures in the problem. The preliminary versions of

this work have been presented in [18–20]. This paper ex-
tends and complements the above with new branch-and-
cut algorithms, branching techniques, primal heuristic,
and extensive numerical experiments with various com-
binations of cut algorithms and branching rules.

The reminder of the paper is organized as follows.
The winner determination problem of discount auctions
is described and its complexity is studied in Section 2.
An integer programming formulation is proposed and
its linear relaxation is analyzed in Section 3. Further,
the valid inequalities that can serve as violated cuts are
identified. Section 4 presents the branch-and-cut algo-
rithms with several cut addition techniques. A novel
branching technique called as branch-on-price is pro-
posed in Section 5. A primal heuristic exploiting the
network structure of the problem is proposed in Section
6 to obtain incumbent solutions. Extensive computa-
tional experiments with varying problem sets were con-
ducted for the proposed algorithms and their results are
discussed in Section 7. Section 8 concludes the paper.

2. Discount auctions

The buyer is interested in procuringM different
items. Each of the items is indivisible,i.e. it can be
supplied by only one supplier. Anitem need not refer
to a single unit. It can bea computeror a computer
and printer or hundred computers, but it cannot be
split and supplied by multiple suppliers. Let there be
N suppliers. An item is denoted by indexm and a
supplier by indexj. Each supplier can submit only one
discount bid and hence the indexj is used to denote
both the supplier and his bid. Thediscount bidj (i.e.
from supplier j) consists of two parts: (1) costQm

j

for each itemm and (2) non-decreasing discountθi
j

for i (= 1, . . . , M ) number of items. The bid can be
compactly expressed as an ordered pair ofM -tuples:
((Q1

j , . . . , Q
m
j , . . . , QM

j ), (θ1
j , . . . , θi

j , . . . , θ
M
j )). Note

thatm denotes a particular item andi denotes number of
items. If the buyer procures items 2, 4, and 7 from bidj,
then the cost of procurement is(1−θ3

j )(Q2
j +Q4

j +Q7
j).

As three items 2, 4, and 7 were procured, the total cost
was discounted byθ3

j . All the Qm
j are positive (possi-

bly infinite for an unavailable item) and theθi
j are non

decreasing overi (the discount cannot decrease with
the number of items bought). The winner determina-
tion problem (WDP) faced by the buyer is to choose
a set of winning bids and a set of winning items for
each of the winning bids, such that all demanded items
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are procured at total minimal cost, subject to the sup-
ply, demand, and discount constraints. This problem is
NP-hard.

Theorem 1 The WDP of the discount auctions isNP-
hard.

PROOF. We prove the hardness of the WDP by
showing that the decision version of the WDP isNP-
complete upon reduction from the minimum set cover.

Definition 1. [DAuc]
INSTANCE: Set of goodsG = {1, . . . , M}, set of dis-
count bidsJ = {1, . . . , N}, where a discount bidj ≡
((Q1

j , . . . , Q
M
j ), (θ1

j , . . . , θM
j )) with Qm

j ≥ 0 ∀m ∈ G

and0 ≤ θi
j ≤ θi+1

j ≤ 1, 1 ≤ i < M , and a goalK ≥ 0.
QUESTION: Does there exist a winning setJ ′ ⊆ J ,
which defines a partitionP = {Bj : Bj ⊆ G, j ∈ J ′}
of G, such that the total cost of procurement

∑

j∈J′ (1−

θ
|Bj |
j )

∑

m∈Bj
Qm

j ≤ K?

Definition 2. [SCov]
INSTANCE: CollectionC of subsets of finite setF ,
positive weightwR ∀R ∈ C, and a goalH ≥ 0.
QUESTION: Does there exist a coverC′ ⊆ C for F
such that

∑

R∈C′ wR ≤ H?

The minimum set cover [SCov] isNP-complete
[14]. First we note that [DAuc] is inNP : given a
winning setJ ′ ⊆ J , one can verify whether it defines
a partition and the procurement cost is less thanK in
polynomial time. Let an instance of [SCov] be given.
We construct an instance of [DAuc] in the following
way:
• G = F , |J | = |C|
• Create a bidj for each of the subsetR ∈ C as follows:

Qm
j =

{

wR if m ∈ R
∞ otherwise

}

, ∀m

θi
j =

i− 1

i
, 1 ≤ i ≤M

• K = H
The above reduction can be clearly done in polyno-

mial time. We now show that the reduction is valid by
showing that an instance of [SCov] is ayes iff its re-
duction [DAuc] is ayesinstance.
(⇐) Let there exist a yes instance of [DAuc] that was
generated from an instance of [SCov] using the above
reduction. ThenJ ′ ⊆ J defines a partition ofG with

procurement cost≤ K. A coverC′ for [SCov] can be
constructed as follows. For everyj ∈ J ′, include the
corresponding subsetR in C′. Note thatBj ⊆ R as
m 6∈ R implies Qm

j = ∞. The cost of procurement
from winning bidj is given by

(1− θ
|Bj |
j )

∑

m∈Bj

Qm
j =

(

1

|Bj |

)

|Bj |wR

= wR

Thus the cost of procurement from each bid is equal
to the weight of the corresponding subset inC′. Since
the winning bids partitionG, the collectionC′ covers
F with cost≤ K = H .
(⇒) Let there exist a yes instance for [SCov] with cover
C′. The solution to [DAuc] can be constructed as fol-
lows. For every subsetR ∈ C′, include its correspond-
ing bid j in J ′. SinceC′ coversF , J ′ also coversG.
If an item is supplied by more than one supplier then it
can be removed from its respective suppliers except one.
Note that removing an item from bid will not change the
cost because of the assumed discount and cost structure.
Hence, we have a partition ofG that satisfies the goal.

3. Integer programming formulation and linear re-
laxation

Without the discount function, the WDP can be
solved inO(NM) time (choose the minimum bidder
for each of the items). Due to the discount function, the
cost of an item bought from a bid depends on the total
number of items bought from that bid. Hence, the for-
mulation should also take into account the total number
of items bought from a bid. Ifi items are bought from
a bidj, then the cost of an itemm is (1− θi

j)Q
m
j . With

two different decision variables to choosean item m
and thenumberof items i from bid j, the cost of an
item would be a nonlinear function. To linearize the
objective function, we define theeffective costof an
item m if i items are bought from bidj as

pim
j = (1 − θi

j)Q
m
j (1)

The WDP can be restated as choosing the items with
minimal sum of effective costs subject to the demand
and discount constraints.
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3.1. Integer programming formulation

Following is an integer programming (IP) formula-
tion for the WDP.

min
∑

j

∑

i

∑

m

pim
j wim

j subject to (2)

∑

i

vi
j ≤ 1 ∀j (3)

∑

m

wim
j = ivi

j ∀i, j (4)

∑

j

∑

i

wim
j = 1 ∀m (5)

wim
j , vi

j ∈ {0, 1} ∀j, i, m (6)

In the remainder of this paper, the notation∀j de-
notesj = 1, . . . , N . Similarly, ∀i and∀m denotei =
1, . . . , M and m = 1, . . . , M , respectively. If the bi-
nary decision variablewim

j = 1, then itemm is bought
from bid j with effective costpim

j and wim
j = 0 de-

notes otherwise. If binary variablevi
j = 1, theni items

are bought fromj. The constraint corresponding toj
in (3) is a multiple choice constraint for variablesvi

j

in i that determines the number of itemsi bought from
j (supply constraint). If

∑

i vi
j = 0, then no items are

chosen fromj and ifvi
j = 1, i items are bought fromj.

Constraints (4) ensure that the items chosen fromj are
consistent with their effective cost: ifi items are cho-
sen, then they have the cost with discount fori items
(discount constraints). Constraints (5) ensure that every
item is procured from only one supplier (demand con-
straints).

3.2. Linear relaxation

The linear programming (LP) relaxation provides a
lower bound on the optimal cost, which is useful in prun-
ing the search space in branch-and-bound algorithms.
We study the LP relaxation by investigating its dual.

Let {γj}, {λi
j}, and{βm} be the dual variables cor-

responding to the constraints (3), (4), and (5), respec-
tively. Dual variables for the primal bounds{vi

j ≤ 1}

and{wim
j ≤ 1} are not required as they are implied by

(3) and (5), respectively. The dual of the linear relax-
ation is given by:

max
∑

m

βm −
∑

j

γj subject to (7)

βm + λi
j ≤ pim

j ∀j, i, m (8)

− γj − iλi
j ≤ 0 ∀i, j (9)

γj ≥ 0 ∀j (10)

A feasible solution to the above problem can be eas-
ily obtained. The nonnegative variablesγj have nega-
tive coefficients in the objective function and hence can
be equated to zero. The variablesλi

j can be eliminated
by equating to zero. Thusβm = minj,i{p

im
j }. Theθi

j

are non-decreasing overi by assumption. Hence thepim
j

are non-increasing and thereforeβm = minj{pMm
j }.

From this dual solution one can easily construct a fea-
sible solution to the linear relaxation such that both are
optimal solutions to their respective problems.

Proposition 1 {γj = 0, λi
j = 0, βm = minj{pMm

j }}

is the optimal dual solution andvi
j = 0 for i < M ,

vM
j =

∑

m
wMm

j

M
, where

wMm
j′ =

{

1 if j′ = min{argminj{pMm
j }}

0 otherwise

}

(11)

is the optimal solution to the linear relaxation.

It can be easily seen that the solutions are feasible to
their respective problems. Moreover, they both have the
same objective value. Hence by strong duality theorem,
they are optimal solutions. The LP relaxation considers
only the maximum discounted cost (with discount for
M items) and allocates the items based on this mini-
mum cost. As a consequence, it violates the discount
constraint by procuring less number of items from a
supplier but with a maximum discount forM items. It
is worth noting that only variables{vi

j} may take non
integer values.

The linear relaxation problem can be solved in
O(MN) by taking the minimum ofpMm

j over j, for
eachm. If the {vM

j } are fractional, then it is not an
optimal solution to the WDP. One can easily construct
a feasible integer solution({vm

j }, {w
im
j }) to the WDP

from the fractional({vM
j }, {w

Mm
j }).

(1) δj =
∑

m wMm
j , ∀j; vm

j = vm
j , ∀j, m; wim

j =

wim
j , ∀j, i, m;

(2) ∀j do:
(a) if (vM

j > 0) v
δj

j ← 1, vM
j ← 0;

(b) ∀m if (wMm
j = 1) w

δj ,m

j ← 1, wMm
j ← 0;
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3.3. Valid inequalities as cuts

A valid inequalityfor an IP problem is an inequal-
ity that is satisfied by all the feasible solutions. Valid
inequalities that are not part of a formulation are essen-
tially redundant constraints. However, they may serve
ascutsif they are not satisfied by all feasible solutions
of the LP relaxation [29]. A cut that is not satisfied by
an optimal solution of the LP relaxation is called as a
violated cut. Addition of a violated cut to the LP re-
laxation tightens it and provides a better bound. The
formulation is changed in such a way that the LP feasi-
ble region becomes smaller but the IP feasible region is
unaffected. Identification of violated cuts, adding them
to the LP relaxation, and resolving them to find bet-
ter bounds, can be iterated till no violated cuts can be
found.

The optimal LP solution to the IP formulation had
binary values for{wim

j } and fractional values for{vi
j}.

Hence the following valid inequalities serve as cuts to
the LP relaxation:

wim
j ≤ vi

j ∀j, i, m (12)

They are obviously valid for the IP formulation and
they exclude the optimal solution of the original LP re-
laxation. Hence, the bounds obtained with the inclusion
of cuts can be expected to be tighter than the original
formulation. The above family of cuts were generated
by studying the LP relaxation solution. This does not
involve solving separation problems and hence no algo-
rithmic efforts involved. Further the size of the family
of cuts is polynomial:O(NM2). However, these cuts
are not facet defining and hence not strong enough to
obtain the integer hull of the feasible set.

The optimal solution of the LP relaxation with cuts
satisfies the following properties:
(1) If vi

j > 0, then number of non-zerowim
j s are

greater than or equal toi.
(2) The {wim

j } take binary values only if{vi
j} are

binary.
The first property is a direct consequence of the valid

inequalities (12) and the constraint set (4). The second
property follows from the first.

4. Branch-and-Cut

Branch-and-cut [25] is a generalization of branch-
and-bound (B&B), which includes the cut routine to
identify and add violated cuts. B&B is an exact intelli-
gent enumerative technique that attempts to avoid enu-

merating a large portion of the feasible integer solutions
[6]. It is a widely used approach for solving discrete op-
timization, combinatorial optimization, and integer pro-
gramming problems in general. The B&B approach first
partitions the overall set of feasible solutions into two
or more sets and as the algorithm proceeds the set is
partitioned into many simpler and smaller sets, which
are explored for the optimal solution. Each such set is
represented algebraically by acandidate problem(CP).
A typical iteration of B&B consists of:
• Selection/Removalof a CP from the list of CPs
• Determining thelower bound of the selected CP
• Fathoming or pruning , if possible, the selected CP
• Determining and updating theincumbent solution,

if possible
• Branching strategy: If the CP is not fathomed,

branching creates subproblems which are added to
the list of CPs
The algorithm first starts with the original problem as

the only CP in the list, considering the entire feasible set
of solutions. As the algorithm proceeds, numerous CPs
are added to the list, each containing a set of feasible
solutions. The CPs partition the search space and at
every iteration, a prospective CP is chosen to search
for the optimal solution. The CP though containing less
number of solutions than the original problem, could
still be hard to solve, and hence a easily solvable lower
bounding technique is applied to obtain a good lower
bound on the objective value. This lower bound is for
the solutions in that particular CP. If a feasible solution
had been obtained so far in the algorithm, it can be used
to prune a CP with lower bound greater than the cost of
the known solution. A CP can be fathomed (removed
from further search) if the best solution in that CP is
found. If not fathomed, it is then split into smaller CPs
and added to the list of CPs. As the algorithm proceeds,
the best known feasible solution is maintained and when
the list of CPs become empty, the best known feasible
solution is the optimal solution.

Although the B&B technique is easy to understand,
the implementation for a particular problem is a non-
trivial task [6] requiring:
• An efficient lower bounding technique that can be

solved with less computational efforts and also guar-
antee a tight lower bound
• Efficient data structures for handling the rather com-

plicated book-keeping of the list of CPs,
• Clever strategies for selecting promising CPs, and
• Branching strategies that could effectively prune the

enumeration tree.
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The generation of tighter bounds with addition of
violated cuts helps in pruning the B&B nodes, thereby
reducing the search space. In branch-and-cut (B&C),
the LP relaxation is repeatedly solved with addition of
new cuts at a B&B node. For a detailed exposure, see
[7,26]. Cuts can be added to the B&B tree in various
ways, leading to different algorithms.

Cut-and-branch(C&B) is a B&C variant where a
family of cuts are added to the formulation and B&B is
applied to the modified formulation. This technique is
useful if generation of cuts are easier and are known a
priori (as is the case in our problem). It is advantageous
as the cuts added are valid throughout the tree and no
further cuts are required to be added. Usually the num-
ber of cuts added are very large and many of them may
not be useful. With large number of constraints, the time
taken to solve the LP relaxation can increase consider-
ably. An alternate approach is to add the cuts that are
only violated by the current LP solution. In this way,
cuts are progressively added. There are two possible
approaches here: B&C-global, in which cuts added are
valid throughout the search tree and B&C-local, where
the cuts added are valid only to the subtree of the cur-
rent node.

Following cut addition techniques are considered in
this paper:
Cut-and-Branch (C&B) : All the NM2 cuts (wim

j ≤

vi
j , ∀j, i, m) are added to the IP formulation at the

root node.
Branch-and-Cut Global-w (B&C-Gbl- w) : After

each simplex iteration (that solves the LP relax-
ation), only those variables that violate the inequality
wim

j ≤ vi
j induce the corresponding cuts and are

added globally to all the nodes in the search tree.
Branch-and-Cut Global-V (B&C-Gbl- V ) : After

each simplex iteration, if anwim
j violates the in-

equalitywim
j ≤ vi

j then cuts for all items for thatj
andi are added as global cuts.

Branch-and-Cut Local-w (B&C-Loc- w) : Same as
B&C-Gbl- w, except that the cuts are local cuts.

Branch-and-Cut Local-V (B&C-Loc- V ) : Same as
B&C-Gbl- V , except that the cuts are local cuts.

5. Branching techniques

The conventional branching technique isvariable di-
chotomy. If the LP relaxation provides a solution with
non-integer values for integer variables, then one such
variable is chosen and CPs are created by imposing

bounds on the variable. According to the properties of
the optimal LP solution with cuts, either all variables
are binary (optimal to the IP) or many variables are frac-
tional. The variable dichotomy branching is to chose a
particular fractionalvi

j or wim
j to create two CPs by im-

posing the variable to equal to 0 and 1, respectively. The
branching on avi

j is more generic than that on awim
j .

The former splits the solution space based on the num-
ber of items supplied by a bid, whereas the latter is more
specific about an item, supplied by a particular bid that
supplies a certain number of other items. In this paper,
we propose a novel heuristic branching technique called
asbranch-on-price(BoP) to create candidate problems
by branching on the price of an item, which is fraction-
ally supplied by more than one supplier.

Let wim
j be fractional. Due to the constraint (5), there

exist at least one anotherwi′m
j′ with i 6= i′, which is

fractional. Letβm be the price of the itemm as dictated
by the LP solution:

βm =
∑

j

∑

i

pim
j wim

j (13)

We create two CPs, CP- and CP+, by branching on the
above price. The CP- is created by adding the following
constraints:

wim
j = 0 if pim

j ≥ βm, ∀j, i, m (14)

The CP+ is created by adding constraints

wim
j = 0 if pim

j < βm, ∀j, i, m (15)

The two CPs partition the IP feasible solution space.
The optimal LP solution (which is infeasible) does not
belong to the solution space of the relaxations of the
either of the CPs. To facilitate this branching, we rep-
resent a CP by using bounds on the prices of each of
the items.

The CP is compactly represented by using an al-
lowable price range[βm, β

m
) for each itemm. Alge-

braically, this is achieved by imposing the following
bounds in the IP formulation:wim

j = 0 if pim
j is out-

side the above range. The initial CP contains all the
solutions and henceβm = minj{p

Mm
j } and β

m
=

maxj{p1m
j }+ǫ, for someǫ < 0. If an itemm is chosen

for branching with priceβm, then CP- has[βm, βm)

and CP+ has[βm, β
m

), as the respective price range for
m. This is illustrated in Figure 1. Note that the price
range of other items will remain the same as that of the
parent CP.
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Fig. 1. Branching Strategy of BoP

The above branching scheme imposes many variables
to be zero, across several bids, rather than just fixing one
variable to 0 or 1, as in the variable dichotomy branch-
ing. Further, such a branching is more meaningful in
terms of the WDP. Theβm can be considered as the
price of the itemm and the BoP algorithm is searching
for the optimal price from the set of{pim

j }, subject to
the discount and demand constraints. Violation of the
discount and the demand constraints leadsβm to be a
convex combination of some of the prices from the set
{pim

j }. The proposed branching scheme partitions the
set such that the same convex combination cannot be en-
countered again, thereby removing the violation in the
constraints. In this way, one can expect that the algo-
rithm will converge quickly towards the optimal prices.
It is worth noting that even though theβm is a real
number and thus the branching could be infinitely di-
visible, the possible optimal values it can take isNM
and hence the number of branches is finite.

If there are more than one item which have fractional
allocations, the algorithm has to choose one item to
branch. Letβm be the price of itemm defined by the
convex combination (13) andBm be the set of bids that
partially supply itemm. The itemm′ to branch on is
chosen by one of the following rules:

BoP1 : m′ = argmin
m
{βm − βm :

βm > βm, |Bm| > 1} (16)

BoP2 : m′ = argmin
m
{β

m
− βm :

βm > βm, |Bm| > 1} (17)

BoP3 : m′ = argmax
m
{|Bm| :

βm > βm |Bm| > 1} (18)

BoP1 chooses the item with price closest to its lower
bound, BoP2 chooses the item with price closest to its
upper bound, and BoP3 chooses the item with maxi-
mum number of allocated bids. In all the three rules, the
branching item is chosen such that its price is strictly
greater than its lower bound. According to the rules of
the creation of CPs, branching on an item withβm =
βm will create an infeasible CP- with range[βm, βm)

and CP+ with range[βm, β
m

), which is same as its par-
ent CP. To avoid an infinite loop, only itemsβm > βm

are considered. However, a pathological case is encoun-
tered when all items having their prices equal to their
respective lower bounds. In this situation, we chose
an itemm randomly and create only CP+ with range
[βm + ǫ, β

m
). Theǫ > 0 is chosen such that it is small

enough to exclude just the priceβm. Note that there is
no CP- created and with this new CP+ creation, it is
possible that a feasible IP solution with prices{βm}
might be excluded in the search, thus not guaranteeing
optimality.

Not Strictly Convex

Let there exist a non-integer solution such thatβm =
βm if |Bm| > 1. The cost of this solution is

∑

m βm

and it is possible that there exists an integer solution
with the same cost. Consider the LP solution shown in
Figure 2 as a transportation network. A link between
a bid and an item denotes the allocation. The(Supply)
denotes the number of items that the bidshouldsupply.
The option is to either accept the bid with a supply of
three items or reject the bid entirely. Note that modifying
the supply will result in change of discount and hence in
the change of solution cost. The solution shown in the
figure is infeasible as each item is supplied by more than
one bid (w3,m

j = 1/3, ∀j, m). However, if allocation
from any two bids are removed then it is a feasible IP
solution with the same cost as that of the LP solution.
It can be easily seen that the LP solution in Figure
3 (w2,m

j = 1/2, ∀j, m) has no feasible IP solution.
Thus when a LP solution is encountered with no item
to branch on, it is required to find a feasible IP solution
with the same cost or prove that no such solution exists.

LetM be the set of items with|Bm| > 1 andβm =
βm. Note that the rest of the items will have|Bm| =
1 and hence satisfy the integrality constraints. LetIj

be the set of items that are being supplied by bidj
with allowed supply in the range[Sj , Sj ]. The allowed
supply range is determined by the discounts at which
the current partial allocation is made. IfSj < Sj then
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θ
S

j

j = θ
Sj

j . Let J be the set of bids that supply items
partially. Given such a solution, one has to find a feasible
IP solution with the following properties:

• |Bm| = 1, m ∈ M
• |Ij | ∈ {0} ∪ [Sj , Sj ], j ∈ J

The second property ensures that either the bid sup-
plies in the allowable range such that the cost of the
solution is not altered or it is rejected. This is acapaci-
tated facility location problem[10], where the bids are
the facilities that can be opened or closed and if opened
their capacity is in the allowable supply range. Though
the generic facility location problem isNP-hard, we
present here a recursive search algorithm exploiting the
price structure in the LP solution.

Consider an itemm′ ∈ M and let j′ ∈ Bm′

be
chosen to supply this item. This allocation results in the
following sequence of allocations:
(1) Other bids inBm′

have to be removed:Bm′

←
Bm′

\ {j}, j 6= j′ ∈ Bm′

(2) Itemm′ is removed from correspondingIj : Ij ←
Ij \ {m′}

(3) If removal ofm′ from Ij violates the supply con-
straints, then it is removed:

|Ij | < Sj⇒Bm ← Bm \ {m}, m ∈ Ij

⇒ Ij ← ∅

The above sequence will result in one of the following
cases:
(1) A feasible IP solution.
(2) A infeasible IP solution with any of|Bm| = 0.
(3) At least there exists onem such that|Bm| > 1.

If a feasible solution is encountered then the search can
be stopped. If an infeasible solution is encountered, then
m′ cannot be supplied byj′ and hencej′ can be re-
moved. In this case, the next bid fromBm′

is consid-
ered for allocation. For case 3, a bid fromBm is chosen
and allocated tom and the search proceeds iteratively.
If all bids of Bm′

were allocated and no feasible solu-
tion was found, then there exists no IP solution. This
is a depth first search that can be implemented using a
recursive algorithm.

The BoP branching technique is similar to special or-
dered set (SOS) branching [1], which fixes a set of vari-
ables as against only one variable in the case of vari-
able dichotomy. The constraint corresponding to item
m in (5) is a SOS type 1 constraint, where only one of
the binary variables in{wim

j }j,i can be non-zero. SOS
branching is implemented in commercial optimization
packages by assigning unique weights to each of the
concerned variables and the weighted average LP so-
lution value of these variables is used as a reference
in branching to create mutually exclusive sets of vari-
ables [17]. In BoP, the effective pricepim

j is used as
the weight for the variablewim

j and the non-uniqueness
of weights leads to the above pathological case of not
strictly convex price.

6. Primal heuristic

In the generic B&B, an incumbent solution is found
when the LP relaxation yields a feasible IP solution.
Primal heuristic is used to find an incumbent solution
from the LP relaxation. This helps in pruning the search
tree, as incumbent solutions provide upper bounds. We
develop a primal heuristic by exploiting the embedded
network structure in the WDP. This ensures an incum-
bent solution at every node and thus makes the B&C
algorithmsany time algorithmsthat can be stopped be-
fore convergence with an available feasible solution.
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6.1. Exploitable network structure

The WDP of DA can be considered as a transporta-
tion network withN supply nodes (bids) andM de-
mand nodes (one for each item). Each supply node has
a supply ofM units and each demand node has a unit
demand. The embedded transport structure is shown in
Figure 4. A flow in the network connecting nodej to
nodem indicate that bidj is supplying itemm. Due
to the unit demand at each demand node, the flow in
any given arc will be at most one. The complicating
feature of the model is the costc(j, m) of the flow in
the arc(j, m), which is the function of number of units
supplied from nodej. Note that this is different from
the conventional nonlinear cost network models, where
the cost will vary based on the flow through the arc,
whereas in this case the cost varies on the total flow
from the supply node. Letδj be the total supply from
nodej in a solution. Then the cost of the flow in an
arc(j, m) is given byc(j, m) = (1− θ

δj

j )Qm
j . The so-

lution is feasible only if the total supply
∑

j δj = M .
It is worth noting that for a given feasible supply, de-
termining the optimal flow is a transportation problem.
Thus the problem can be solved without the integer re-
strictions on the flow. In terms of the IP formulation, if
the binary variables{vi

j} are fixed in a feasible way, the
{wim

j } can be easily obtained by solving a transporta-
tion problem. Once the{vi

j} are fixed, the discounts are
known and hence the problem is easy. The binary vari-
ables{wim

j } can indeed be relaxed to take continuous
values, as there will always exist an optimal solution
with integer values.

6.2. Incumbent solution from the LP solution

Let wim
j be the optimal LP solution. If all are binary,

then it is a feasible solution to the IP. The following
heuristic constructs a feasible solution from the frac-
tional LP solution.
(1) (Initialize) Sj = 0, ∀j
(2) do ∀m: k = argj maxj,i{wim

j }; Sk ← Sk + 1;
(3) Construct a transportation network with winning

bids as sources and items as sinks. The source
corresponding to winning bidj has a supply of
Sj > 0 and each sink has a unit demand. The

cost of flow fromj to m is p
Sj ,m

j . Let xm
j be the

optimal flow. AssignV Sj

j = 1 andw
Sj ,m

j = xm
j .

The winning bid for an itemm is chosen as the one
with the largestwim

j value. This is used to determine
the number of winning itemsSj for each winning bid.

(Bids) (Items)1
m
M

1jN
(1)
(1)
(1)

(M)(M)(M)

Supply Nodes Demand Nodes
c(j,m)

Fig. 4. Embedded network structure

This is in turn used to determine the winning items with
the consistent discount pricesp

Sj ,m

j . This will provide
a better IP solution than directly rounding the largest
wim

j to 1. Using this heuristic, an incumbent solution
is obtained whenever a new CP is created and the best
known solution is updated and stored.

7. Computational experiments

In this section, we present the results of the extensive
computational experiments conducted using the various
proposed algorithms across various problem types.

7.1. Discount auction instance generator

An instance generator called asdiscount auction in-
stance generator(DAIG) was created to randomly gen-
erate different types of problem instances. The inten-
tion is to study the effects of the varying discount and
cost structures on the computational requirements of
the problem. A problem instance is defined byM , N ,
{Qm

j }, and {θi
j}. Given M and N , the cost and the

discounts can be generated in many ways. Firstly, there
are two kinds of cost differences: relative market costs
across the items and for each item, relative bid costs
quoted by the suppliers. We assume a normalized mar-
ket costrcm for each itemm, which is uniformly dis-
tributed in range[rc, 1] with 0 < rc < 1. Therc is an
input parameter andrcm are randomly chosen in the
above range. At least one item is chosen to have value1
and anotherrc. Therc is the minimum relative cost in
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the portfolio of items that are being procured. For ex-
ample, to model the scenario where the procured items
have a maximum of 15% relative difference in the cost,
rc = 0.85.

For any given item, the bid price quoted by the sup-
pliers vary. The minimum cost quoted for an itemm
is captured using a parametermcm. Themc is the in-
put parameter andmcm are randomly chosen in range
[mc, 1). The individual cost ofm for bid j in chosen in
the following way:

Qm
j = Random[mcm, 1] × rcm (19)

The above costs are chosen such that at least one bid
hasrcm and one has the minimum costmcm × rcm.
As rcm denotes the market value, it is maximum price
quoted that can be quoted by the suppliers.

For generating the discount functions, a discount
range is input to the DAIG. For example, if the input
discount range is[θ, θ], then all the maximum dis-
counts{θM

j } are chosen randomly in this range. There
is no discount for one item:θ1

j = 0. The intermediate
values are chosen according to type of the discount
function. The DAIG currently supports following types
of discount functions:

(1) Linear: θi
j = (i− 1)×

θM
j

M−1

(2) Marginally Decreasing: θi
j = −

θM
j

(M−1)2 × (M −

i)2 + θM
j

(3) Marginally Increasing: θi
j =

θM
j

(M−1)2 × (i− 1)2

(4) Step
(5) Arbitrary
(6) Random: The discount type for a bidj is chosen

randomly from one of the above.

All functions are strictly increasing, except for the
type Step. The Arbitrary is strictly increasing without
any notable structure like the preceding types. The ex-
periments were carried out on a Windows XP based PC
equipped with a 2.8GHz Intel P4 processor with 1GB
RAM. The algorithms were coded in Java, and for the
model building and solving of LP relaxations and trans-
portation problems in primal heuristics, ILOG Concert
Technology of CPLEX 10.0 [16] was used.

7.2. LP experiments

The first set of experiments were conducted to study
the tightness of the LP relaxation with cuts. The perfor-

mance criterion is the duality gap, calculated as follows:

Duality Gap (%)

=
Optimal Value − Relaxed Value

Optimal Value
× 100 (20)

Extensive experiments were conducted by varying
the problem parameters shown in Table 1. Therc and
mc were varied from low to high values. The discounts
[θ, θ] were chosen from three different sets of values
representing close range, medium range, and high range.
M andN were chosen to in two sets to study the effect
of varying N for the sameM and vice versa. All the
six discount types currently supported by DAIG were
tested.

Table 1

Parameters and values for LP experimentation
Parameter Values
rc {0.2, 0.4, 0.6, 0.8}
mc {0.05, 0.1, . . . , 0.95}
[θ, θ] {[0.1, 0.2], [0.2, 0.3], . . . , [0̇8, 0.9]}

{[0.1, 0.5], [0.5, 0̇9]}
{[0.1, 0.9]}

M , N {10}, {10, 25, 50, 75, 100}
{5, 10, 15, 20}, {30}

Discount types Linear, marginally decreasing,
marginally increasing, step, arbitrary,
random

Fifty problem instances were created for each of the
different combination of values of the parameters and
the average duality gap for the LP relaxation with and
without the cuts were calculated. Following are the main
inferences from the experimentation:
(1) The LP relaxation with cuts gives significantly

tighter bounds. Problem instances with duality gap
as high as 70% had a duality gap of less than 1%
with cuts. Indeed for all the problem instances con-
sidered, the average duality gap was less than 1%
with the addition of cuts.

(2) The parameterrc had no effect on the duality gap.
Thus items with varying costs or similar costs have
no influence on the duality gap.

(3) The discount types did not affect the duality
gap significantly for LP relaxation without cuts.
However, with the addition of cuts, the dis-
count types had the maximum average duality
gap in the following increasing order: arbitrary
(0.005%), marginally increasing (0.03%), lin-
ear (0.04%), random (0.3%), step (0.6%), and
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marginally decreasing (0.9%). For most of the
problem instances, linear, marginally increasing,
and arbitrary discount types had zero duality gap.

(4) The parametermc showed significant changes in
the duality gap for both the LP relaxations with
and without cuts (see figures 5 to 7). As mentioned
above, the duality gap also depended on the dis-
count types for relaxation with cuts.

(5) Significant changes in the duality gap were ob-
served for discounts chosen in close range. As
shown in figures 8 to 10, the duality gap increased
with the increase ofθ for LP relaxation with-
out cuts but showed a reverse behavior with cuts.
Again, the gap depended on the discount type for
relaxation with cuts.

(6) For M = 10, the average duality gap increased
steadily with the increase ofN till 50 and be-
came negligible forN = 75 and almost zero for
N = 100. Similar results were observed for vary-
ing M with fixedN . When the size ofN becomes
relatively larger than that ofM , the duality gap is
negligible as with moreN , the possibility ofbet-
ter bids is high.

7.3. Branch-and-Cut experiments

To study the performance of the branch-and-cut, a
collection of algorithms were created by combining dif-
ferent cut addition techniques and branching rules. The
different branching techniques include the traditional
variable dichotomy (Var-Dic) along with the three BoP
techniques. With the above combinations of cut addition
and branching techniques, twenty branch-and-cut algo-
rithms were used for experimentation. We used best first
search (BFS) as the search strategy, which explores the
best CP from the current list of CPs. This reduces the
search space, but it has to store all the unexplored CPs
in memory. BFS is implemented by creating abinary
heapthat holds the list of CPs. At every iteration, the
root of the heap, which is the CP with the least lower
bound, is deleted from the queue and explored. If it is
not fathomed or pruned, then two new CPs are gener-
ated and added to the queue. An incumbent solution is
generated at each node from the LP solution using the
proposed heuristic.

The performance parameters considered were: CPU
time (in milliseconds), number of nodes explored, and
number of simplex iterations. The entries in tables 2 to
6 are the triplet CPU time (ms), nodes explored, and
simplex iterations. Tables 7 to 9 show the number of

instances (out of 50) for which, each algorithm solved
the WDP with the least solution time. With more than
three hundred instances solved, following inferences
were made:
• Problem instances with linear, marginally increasing,

and arbitrary discount types required no branching
and were solved at the root node itself. Even for prob-
lem instances with non-zero duality gap, the proposed
primal heuristic found the optimal solution at the root
node.
• For the rest of the discount types, the nodes explored

and time taken were purely instance specific and was
not much influenced by the parameter values. Tables
2 and 3 show the widely varying performance of two
problem instances with the same set of parameter
values.
• The not strictly convex pricecase was encountered

only for the problems with step discount function.
• Every problem instance was solved using the com-

mercial solver CPLEX using the IP formulation
with cuts. CPLEX uses branch-and-cut with built
pre-processing, cut generation routines, advanced
branching techniques, and primal heuristics [17]. For
most of the problem instances, the minimum time
taken by the proposed branch-and-cut algorithms
(shown in bold face in the tables) was less than that
of CPLEX.
• Performance of algorithms with local cuts was poor

for all the instances.
• In almost all the cases, BoP branching techniques

(in particular BoP1 and BoP3) showed better perfor-
mance than variable dichotomy.
• Cut-and-branch is computationally better than the

other cut addition techniques, though in few cases
global cuts showed superior performance.

8. Conclusions

In this work, we proposed a collection of branch-and-
cut algorithms for the winner determination problem in
discount auctions. The algorithms use valid inequalities
that are added as cuts to the IP formulation. The valid
inequalities that are added as cuts are not facet-defining.
However, the size of the entire family of the cuts is poly-
nomial (NM2) and can be determined directly from the
LP solution. Computational experiments showed that
the duality gap is considerably less and hence the al-
gorithm is many-folds faster than that without cuts. A
novel branching technique called as BoP (branch-on-
price) was proposed. It branches on the price of an item
that is partially allocated to more than one supplier.
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Table 2

CPU Time (ms), Nodes Explored, and Simplex Iterations for Marginally Decreasing

Var-Dic BoP1 BoP2 BoP3
C&B 69437, 12, 25 14262, 1, 3 21923, 2, 5 41865, 4, 9

B&C-Gbl- w 76225, 19, 593 19910, 1, 316 22985, 2, 351 36735, 4, 444
B&C-Gbl- V 149721, 28, 210 14844, 1, 107 18292, 2, 119 39076, 4, 148
B&C-Loc- w 428295, 21, 10308 34547, 1, 692 56266, 2, 1190 118037, 4, 2312
B&C-Loc- V 182156, 12, 2622 22655, 1, 269 41894, 2, 431 84364, 4, 860

N = 75, M = 15, mc = 0.4, rc = 0.3, [θ, θ] = [0.2, 0.3], CPLEX Time = 38183

Table 3

CPU Time (ms), Nodes Explored, and Simplex Iterations for Marginally Decreasing

Var-Dic BoP1 BoP2 BoP3
C&B 273008, 63, 127 122619, 13, 27 193618, 17, 35 128974, 15, 31

B&C-Gbl- w 187098, 66, 673 77276, 13, 431 119650, 18, 513 82121, 15, 489
B&C-Gbl- V 249583, 66, 281 118355, 13, 158 182611, 18, 178 132086, 15, 166
B&C-Loc- w 1673004, 79, 40747 302033, 13, 6153 396731, 18, 8226 404872,15, 6641
B&C-Loc- V 1313137, 79, 16811 250748, 13, 2818 341685, 17, 3735 299482,15, 2918

N = 75, M = 15, mc = 0.4, rc = 0.3, [θ, θ] = [0.2, 0.3], CPLEX Time = 34174

Table 4

CPU Time (ms), Nodes Explored, and Simplex Iterations for Step

Var-Dic BoP1 BoP2 BoP3
C&B 14171, 8, 17 8249, 1, 3 8281, 1, 3 7484, 1, 3

B&C-Gbl- w 11499, 4, 238 10499, 1, 220 10484, 1, 220 10874, 1, 251
B&C-Gbl- V 9577, 4, 98 9093, 1, 91 9062, 1, 91 7733, 1, 94
B&C-Loc- w 69401, 4, 1696 23545, 1, 539 23404, 1, 539 23795, 1, 550
B&C-Loc- V 133146, 10, 1784 18490, 1, 252 18396, 1, 252 19351, 1, 267

N = 50, M = 15, mc = 0.4, rc = 0.3, [θ, θ] = [0.2, 0.3], CPLEX Time = 19904

Table 5

CPU Time (ms), Nodes Explored, and Simplex Iterations for Random

Var-Dic BoP1 BoP2 BoP3
C&B 2048, 2, 5 1767, 1, 3 1766, 1, 3 1720, 1, 3

B&C-Gbl- w 3111, 3, 190 2830, 1, 177 2876, 1, 177 2783, 1, 176
B&C-Gbl- V 3126, 3, 81 2877, 1, 75 2892, 1, 75 2861, 1, 75
B&C-Loc- w 19026, 3, 1176 8082, 1, 460 8286, 1, 460 7754, 1, 458
B&C-Loc- V 18072, 3, 501 7832, 1, 206 7879, 1, 206 7520, 1, 202

N = 50, M = 15, mc = 0.4, rc = 0.3, [θ, θ] = [0.2, 0.3], CPLEX Time = 2735
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Table 6

CPU Time (ms), Nodes Explored, and Simplex Iterations for Random

Var-Dic BoP1 BoP2 BoP3
C&B 4422, 5, 11 17281, 7, 15 22563, 7, 15 3516, 1, 3

B&C-Gbl- w 4875, 5, 160 20093, 7, 296 15562, 7, 257 4672, 1, 152
B&C-Gbl- V 4547, 5, 96 18953, 7, 145 15125, 7, 121 4219, 1, 88
B&C-Loc- w 43234, 5, 1570 66891, 7, 2056 57422, 7, 2046 12937, 1, 424
B&C-Loc- V 41109, 5, 847 59500, 7, 1249 58281, 7, 1316 11391, 1, 228

N = 75, M = 15, mc = 0.4, rc = 0.3, [θ, θ] = [0.2, 0.3], CPLEX Time = 8125

Table 7

Number of instances with least solution time for Marginally
Decreasing

Var-Dic BoP1 BoP2 BoP3
C&B 7 6 4 4

B&C-Gbl- w 0 1 3 0
B&C-Gbl- V 6 8 4 7
B&C-Loc- w 0 0 0 0
B&C-Loc- V 0 0 0 0

N = 50, M = 15, mc = 0.4, rc = 0.3, [θ, θ] = [0.2, 0.3]
No. of instances for which CPLEX took the least time = 8

Table 8

Number of instances with least solution time for Step

Var-Dic BoP1 BoP2 BoP3
C&B 7 8 3 12

B&C-Gbl- w 1 0 1 0
B&C-Gbl- V 5 5 3 5
B&C-Loc- w 0 0 0 0
B&C-Loc- V 0 0 0 0

N = 50, M = 15, mc = 0.4, rc = 0.3, [θ, θ] = [0.2, 0.3]
No. of instances for which CPLEX took the least time = 7

The formulation also has a 0-1 knapsack structure
(22) with GUB (generalized upper bound) constraints
(21). In particular, the following set of constraints con-
stitute a multiple choice knapsack structure.

∑

i

vi
j ≤ 1 ∀j (21)

∑

j

∑

i

ivi
j = M (22)

Generation of valid cover inequalities for 0-1 knap-

Table 9

Number of instances with least solution time for Random

Var-Dic BoP1 BoP2 BoP3
C&B 5 1 7 6

B&C-Gbl- w 0 0 0 0
B&C-Gbl- V 9 12 7 3
B&C-Loc- w 0 0 0 0
B&C-Loc- V 0 0 0 0

N = 50, M = 15, mc = 0.4, rc = 0.3, [θ, θ] = [0.2, 0.3]
No. of instances for which CPLEX took the least time = 8

sacks with GUB constraints were studied in [28]. The
generation of cuts would involve solving the hard sepa-
ration problem, either optimally or approximately. It is
worth investigating the hardness of the separation prob-
lem for the above constraints and studying the trade-
offs of investing resources in generation of the cover
inequalities against the savings in the convergence of
the algorithm.
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