L'Actualité économique

L'ACTUALITÉ ÉCONOMIQUE

REVUE D'ANALYSE ÉCONOMIQUE

Fonctions de production dans l'économie du Québec Production functions in the Quebec economy

Vittorio Corbo et Jean-Marie Dufour

Volume 54, numéro 2, avril-juin 1978

URI: https://id.erudit.org/iderudit/800771ar DOI: https://doi.org/10.7202/800771ar

Aller au sommaire du numéro

Éditeur(s)

HEC Montréal

ISSN

0001-771X (imprimé) 1710-3991 (numérique)

Découvrir la revue

Citer cet article

Corbo, V. & Dufour, J.-M. (1978). Fonctions de production dans l'économie du Québec. L'Actualité économique, 54(2), 176–206. https://doi.org/10.7202/800771ar

Résumé de l'article

The purpose of this paper is to study the characteristics of the production process in the Quebec economy. We devote particular attention to two features of the technology: the returns to scale and the substitution possibilities.

Two forms of production functions, the Cobb-Douglas and an homothetic translog production function, are estimated for six branches of economic activity. These are: Agriculture; Fishing and Forestry; Mining; Quarying and Oil Wells; Manufacturing; Utilities; Services.

Two main conclusions are derived from this work. First, there is strong evidence of constant returns to scale in all branches of the Quebec economy but services. Second, when comparing the Cobb-Douglas model with an homothetic translog model, the hypothesis that the true model is the Cobb-Douglas one cannot be rejected for five of our six sectors. Therefore, there is evidence that the elasticity of substitution is around one.

Finally a byproduct of our work has been the construction of capital stock series for the Quebec economy (1960-73) disaggregated into 14 sectors, and two types of capital: construction and machinery and equipment.

Tous droits réservés © HEC Montréal, 1978

Ce document est protégé par la loi sur le droit d'auteur. L'utilisation des services d'Érudit (y compris la reproduction) est assujettie à sa politique d'utilisation que vous pouvez consulter en ligne.

https://apropos.erudit.org/fr/usagers/politique-dutilisation/

Érudit est un consortium interuniversitaire sans but lucratif composé de l'Université de Montréal, l'Université Laval et l'Université du Québec à Montréal. Il a pour mission la promotion et la valorisation de la recherche.

FONCTIONS DE PRODUCTION DANS L'ÉCONOMIE DU QUÉBEC *

I. Introduction

Le but de cet article est d'étudier les caractéristiques du processus de production dans l'économie du Québec. Nous nous sommes intéressés en particulier à deux aspects de ce processus : les rendements d'échelle et les possibilités de substitution entre les facteurs de production.

Nous avons estimé deux types de fonctions de production, la fonction de Cobb-Douglas et une fonction « translog » homothétique, pour six secteurs de l'économie québécoise. Ces secteurs sont les suivants : agriculture ; pêche et forêts ; mines, carrières et puits de pétrole ; fabrication ; construction ; services d'utilité publique ; services (habitation, commerce, finance et administration publique).

Deux conclusions principales émergent de ce travail. Premièrement, nos résultats confirment l'existence de rendements d'échelle constants pour tous les secteurs de l'économie du Québec, sauf celui des services. Deuxièmement, lorsqu'on compare la performance du modèle de Cobb-Douglas avec celle d'un modèle translog homothétique, l'hypothèse nulle que le modèle correct correspond à la fonction de Cobb-Doublas ne peut être rejetée pour cinq secteurs sur six ; ceci tend en outre à montrer que l'élasticité de substitution est aux environs de 1 (comme c'est le cas pour une fonction de production de Cobb-Douglas).

Dans nos estimations, nous n'avons pas tenu compte de l'existence de différences dans la qualité de la main-d'œuvre, ceci à cause du manque de données. En particulier, la séparation de l'emploi et des taux de salaires entre cols bleus et cols blancs n'était pas possible. Il nous apparaît qu'il y a encore beaucoup de travail à faire en vue de construire des variables sectorielles tenant compte des différences dans la qualité de la main-d'œuvre à l'intérieur de chaque secteur.

^{*} Nous remercions le professeur André Martens et M. Monji Azabou pour leurs commentaires et suggestions, et le Bureau de la Statistique du Québec pour son aide. Cette recherche a été financée par une subvention du ministère de l'Education du Québec dans le cadre de son programme de formation de chercheur et d'action concertée.

II. Les données utilisées

Les variables que nous avons utilisées dans nos estimations sont de quatre types : valeur ajoutée au coût des facteurs, emploi, stock de capital et taux d'utilisation des capacités de production. En principe nous avions besoin de données statistiques relatives à chacune de ces variables pour chacun des six secteurs étudiés.

Les données concernant les valeurs ajoutées sectorielles au Québec (1961-73), selon une ventilation en 15 secteurs, nous ont été fournies par le Bureau de la Statistique du Québec. Nous avons d'abord utilisé les séries contenues dans les comptes nationaux québécois de 1973 puis des séries révisées qui ont été mises à notre disposition au printemps 1975. Bien sûr, nous présentons ici les résultats obtenus avec les séries les plus récentes. Il est important de noter que ces données constituent des estimations effectuées à partir des comptes nationaux canadiens. En effet, le Bureau de la Statistique du Québec a évalué la valeur ajoutée de chaque secteur en additionnant trois composantes : salaires, profits et amortissement. De celles-ci, seule la composante « salaires » est disponible par secteurs au niveau provincial. La répartition provinciale des autres composantes (profits, amortissement) est estimée en multipliant le total canadien par un facteur de pondération, tel le rapport entre le revenu imposable dans une province et le revenu imposable au Canada pour un même secteur (le critère de pondération a pu varier suivant les secteurs). D'autre part, nous avons constaté l'existence dans certaines séries d'une discontinuité entre la période 1961-70 et la période 1971-73 (constatation qui nous a amené à introduire une variable auxiliaire dans nos équations). Nous n'avons cependant pas trouvé d'explication bien définie pour ce phénomène. Toutefois, après examen détaillé des séries, il nous est apparu que la principale source de perturbation pourrait être la composante « profits » de la valeur ajoutée. A cet effet, on peut remarquer que la méthode utilisée afin de répartir les profits des entreprises canadiennes entre les provinces reste entachée d'arbitraire. Comme causes particulières possibles des perturbations observées, on peut citer : la réforme fiscale entrée en vigueur en 1972, la récession des années 1971-72.

Concernant les données sur l'emploi par secteurs au Québec, au moins trois recueils de séries sont publiés par Statistique Canada. D'abord on peut trouver les résultats de l'enquête mensuelle effectuée auprès des grands établissements (20 salariés ou plus) dans Emploi, gain et durée de travail (72-002). Toutefois, ne portant que sur les grands établissements, ces données ne sont que partielles. Des estimations plus complètes, qui combinent les données précédentes avec celles d'un sondage mensuel sur les petits établissements, paraissent dans Estimations du nombre d'employés par provinces et par industrie (72-008; séries chronologiques pour

1961-72 dans 72-513). Enfin, les données les plus complètes (incluant notamment les travailleurs familiaux non rémunérés) se trouvent dans La main-d'œuvre (71-001). En principe, ces dernières séries constitueraient le meilleur choix ; malheureusement elles ne sont disponibles qu'à partir de 1966 : de plus, le secteur des mines ne s'y trouve pas isolé. C'est pourquoi, finalement, nous avons retenu le second groupe de données (72-008) pour tous les secteurs, sauf l'agriculture (qui n'est pas couverte par 72-008) et l'administration publique. La main-d'œuvre agricole pour toute la période 1961-73 est disponible dans 71-001. D'autre part, les données sous la rubrique « Administration publique et défense » dans 72-008 ne comprenant pas le personnel militaire (dont nous voulons tenir compte); pour ce secteur nous avons utilisé les données de 71-001 pour la période 1966-73, que nous avons complètées pour 1961-65 en utilisant les chiffres fournis dans une publication du ministère de l'Industrie et du Commerce du Ouébec : Les tendances de l'emploi par secteurs d'activité au Québec, 1961-70 (p. 17). Enfin, les valeurs de l'emploi dans les secteurs de la forêt et de la construction n'étant pas disponibles au-delà de l'année 1971 (suivant la définition de 72-008), nous avons prolongé ces deux séries jusqu'en 1973 en appliquant à celles-ci les taux de croissance de l'emploi dans les grands établissements (72-002).

Pour ce qui touche la construction des séries de capital, le lecteur trouvera une description détaillée de la méthode et des données utilisées dans l'appendice.

Enfin, nous avons constaté qu'il n'existe pas d'estimations directes des taux d'utilisation de la capacité de production par secteurs pour le Québec. Toutefois, de telles estimations sont publiées par le ministère de l'Industrie et du Commerce du Canada pour les secteurs des mines, de la fabrication et des services d'utilité publique (Taux d'utilisation de la capacité, Canada). Une première possibilité consiste à utiliser, pour les secteurs où c'est possible, les taux canadiens comme indicateurs de la capacité utilisée au Québec (version retenue : 4e trimestre 1974). Une seconde option consiste à prendre comme indicateur du taux d'utilisation de la capacité une expression du type : $1 - nCQ_t(t)$, où $CQ_t(t)$ est le taux de chômage au Québec dans le secteur i et n est un entier non négatif. On trouve des taux de chômage par secteurs d'activité pour le Canada dans la publication 71-001 de Statistique Canada. Nous avons ramené ces taux à l'échelle québécoise en les multipliant par le rapport taux de chômage au Québec/taux de chômage au Canada. Pour chaque secteur, nous avons choisi la valeur de n qui minimise la somme des carrés des résidus résultant de l'estimation des fonctions de production considérées.

III. L'estimation des fonctions de production

Tel qu'indiqué précédemment, nous avons estimé deux types de fonctions de production : la fonction de Cobb-Douglas et la fonction translog homothétique.

La fonction de production de Cobb-Douglas estimée a la forme suivante :

$$\ln P_{i}(t) = \alpha_{i} + \beta_{i} \ln E_{i}(t) + \gamma_{i} \ln \left[x_{i}(t) K_{i}(t)\right] + u_{i}(t) \quad (3.1)$$

où:

 $P_i(t)$ = valeur ajoutée au coût des facteurs,

 $E_i(t) = \text{emploi (nombre d'employés)},$

 $x_i(t) = \text{taux d'utilisation du capital},$

 $K_i(t) = \text{stock de capital},$

 $u_i(t)$ = terme d'erreur,

i = indice dénotant le secteur,

t = indice dénotant la période (année).

L'équation (3.1) est linéaire par rapport à ses paramètres et peut donc être estimée par la méthode des moindres carrés ordinaires.

La fonction translog pour le cas de deux inputs est donnée par :

$$ln P_{i}(t) = \alpha_{0}^{i} + \alpha_{1}^{i} ln E_{i}(t) + \alpha_{2}^{i} ln [x_{i}(t) K_{i}(t)]$$

$$+ \frac{1}{2} \gamma_{11}^{i} [ln E_{i}(t)]^{2} + \gamma_{12}^{i} ln E_{i}(t) ln [x_{i}(t) K_{i}(t)]$$

$$+ \frac{1}{2} \gamma_{22}^{i} (ln [x_{i}(t) K_{i}(t)])^{2} + u_{i}(t)$$
(3.2)

où chacune des variables d'origine est divisée par sa moyenne.

La petite taille de l'échantillon dont nous disposions (treize observations) interdisait une estimation fiable des paramètres de la fonction translog générale décrite en (3.2). Pour cette raison, nous avons imposé la condition homothétique sur la fonction translog, laquelle prend alors la forme :

$$\ln P_{i}(t) = \alpha_{0}^{i} + \alpha_{1}^{i} \ln E_{i}(t) + \alpha_{2}^{i} \ln \left[(x_{i}(t) K_{i}(t)) + \gamma^{i} (\ln \left[x_{i}(t) K_{i}(t) / E_{i}(t) \right])^{2} + u_{i}(t).$$
(3.3)

La condition d'homothéticité peut s'écrire :

$$\frac{1}{2} \gamma_{11}^{i} = \frac{1}{2} \gamma_{22}^{i} = -\frac{1}{2} \gamma_{12}^{i}$$

valeur commune que nous avons redéfinie comme étant γⁱ.

L'estimation de l'équation (3.3) permet de tester si nous avons bien une fonction de production de type Cobb-Douglas ; si l'hypothèse nulle $\gamma^i = 0$ est acceptée sur la base des données utilisées, nous concluons que la fonction correcte est celle de Cobb-Douglas.

La fonction de production de l'équation (3.3) n'est globalement ni monotone croissante ni quasi concave ; par la suite, nous devrons tester localement si ces deux conditions sont vérifiées pour chaque observation.

Dans l'estimation des équations (3.1) et (3.3), nous ignorons le problème de biais posé par la présence possible d'équations simultanées, ce qui équivaut à supposer que les variables explicatives sont non corrélées avec les termes d'erreur. La possibilité d'utiliser des variables instrumentales n'est pas explorée ici, la plupart des instruments possibles étant trop fortement corrélés avec les régresseurs pour permettre une amélioration sensible (voir Griliches, p. 277).

Afin de tester la monotonicité, nous devons calculer les produits marginaux pour chacune des observations. Les produits marginaux de la fonction translog homothétique sont donnés par :

$$FE_{it} \equiv \frac{\partial P_{i}\left(t\right)}{\partial E_{i}\left(t\right)} = \frac{P_{i}\left(t\right)}{E_{i}\left(t\right)} \left(\alpha_{1}^{i} + 2\gamma^{i} \ln\left[E_{i}\left(t\right)/x_{i}\left(t\right)K_{i}\left(t\right)\right]\right)$$

$$FK_{it} \equiv \frac{\partial P_{i}\left(t\right)}{\partial\left[x_{i}\left(t\right)K_{i}\left(t\right)\right]} = \frac{P_{i}\left(t\right)}{x_{i}\left(t\right)K_{i}\left(t\right)} \left(\alpha_{2}^{i} - 2\gamma^{i} \ln\left[E_{i}\left(t\right)/x_{i}\left(t\right)K_{i}\left(t\right)\right]\right)$$

La quasi-concavité de la fonction (3.3) requiert que le déterminant du Hessien borné de la fonction de production soit positif pour chaque observation. Le Hessien borné pour le secteur i et l'année t est donné par :

$$H_{it} = \begin{bmatrix} O & FE_{it} & FK_{it} \\ FE_{it} & FEE_{it} & FEK_{it} \\ FK_{it} & FKE_{it} & FKK_{it} \end{bmatrix}$$

· 110

$$\begin{split} FEE_{it} &\equiv \frac{\partial^{2} P_{i}\left(t\right)}{\partial E_{i}^{2}\left(t\right)} = \frac{P_{i}\left(t\right)}{E_{i}^{2}\left(t\right)} \left[2\gamma^{i} + \left(\frac{E_{i}\left(t\right)}{P_{i}\left(t\right)} \frac{\partial P_{i}\left(t\right)}{\partial E_{i}\left(t\right)} - 1 \right) \left(\frac{E_{i}\left(t\right)}{P_{i}\left(t\right)} \frac{\partial P_{i}\left(t\right)}{E_{i}\left(t\right)} \right) \right] \\ FKK_{it} &\equiv \frac{\partial^{2} P_{i}\left(t\right)}{\partial \left[x_{i}\left(t\right) K_{i}\left(t\right)\right]^{2}} = \frac{P_{i}\left(t\right)}{\left[x_{i}\left(t\right) K_{i}\left(t\right)\right]^{2}} \\ & \left[2\gamma^{i} + \left(\frac{x_{i}\left(t\right) K_{i}\left(t\right)}{P_{i}\left(t\right)} \frac{\partial P_{i}\left(t\right)}{\partial \left[x_{i}\left(t\right) K_{i}\left(t\right)\right]} - 1 \right) \\ & \left(\frac{x_{i}\left(t\right) K_{i}\left(t\right)}{P_{i}\left(t\right)} \frac{\partial P_{i}\left(t\right)}{\partial \left[x_{i}\left(t\right) K_{i}\left(t\right)\right]} \right) \right] \\ FKE_{it} &\equiv \frac{\partial^{2} P_{i}\left(t\right)}{\partial \left[x_{i}\left(t\right) K_{i}\left(t\right)\right] \partial E_{i}\left(t\right)} = \frac{P^{i}\left(t\right)}{E_{i}\left(t\right) x_{i}\left(t\right) K_{i}\left(t\right)} \\ & \left[-2\gamma^{i} + \left(\frac{x_{i}\left(t\right) K_{i}\left(t\right)}{P_{i}\left(t\right)} \frac{\partial P_{i}\left(t\right)}{\partial \left[x_{i}\left(t\right) K^{i}\left(t\right)\right]} \right) \left(\frac{E_{i}\left(t\right)}{P_{i}\left(t\right)} \frac{\partial P_{i}\left(t\right)}{\partial E_{i}\left(t\right)} \right) \right] \end{split}$$

et $FEK_{it} = FKE_{it}$.

IV. Les résultats

Les résultats de nos régressions sont présentés aux tableaux 1 à 4. Nous discuterons, d'abord, de ceux qui sont pertinents à l'estimation de la fonction de production de Cobb-Douglas, puis ceux qui se rapportent à la fonction translog homothétique.

Le tableau 1 contient les résultats de l'ajustement d'une fonction de Cobb-Douglas (sans contraintes) par les moindres carrés ordinaires, l'entier n dans la mesure du taux d'utilisation du capital étant choisi de façon à minimiser la somme des carrés des résidus ¹. Tel que mentionné dans la section II, il paraît y avoir une discontinuité dans la série des données à partir de 1971. Afin de tenir compte de ce problème, nous présentons trois estimations différentes pour chaque secteur : la première pour la période 1961-70, la seconde pour 1961-73 et la troisième pour 1961-73 avec une variable auxiliaire pour 1971, 1972 et 1973.

Nous discuterons ici de la troisième série de résultats (troisième ligne) pour chacun des secteurs. Dans l'ensemble, les résultats sont raisonnables. Pour tous les secteurs sauf celui des services, les élasticités partielles de production (β_i et γ_i) ont le signe prévu. De plus, pour les mêmes cinq secteurs, l'hypothèse nulle de rendements d'échelle constants ($\beta_i + \gamma_i - 1 = 0$) est acceptée à un niveau de signification de 5%. Mais la collinéarité ne permet pas d'obtenir des estimations fiables des élasticités de production à partir de la fonction de Cobb-Douglas non contrainte.

Nous avons repris les régressions décrites ci-dessus avec une modification : pour les secteurs où l'hypothèse de rendements d'échelle constants a été acceptée, nous avons contraint la fonction de production de Cobb-Douglas à satisfaire la propriété de rendements d'échelle constants. Tel qu'on peut le constater au tableau 2, les estimations obtenues des paramètres sont alors beaucoup plus précises, ceci étant dû à l'élimination de la multicollinéarité dans le modèle contraint. Il est aussi important de noter que, au tableau 2, la variable auxiliaire est significativement différente de zéro pour tous les secteurs sauf l'agriculture, ce qui tend à démontrer l'existence d'un changement de niveau des variables dépendantes pour les années 1971 à 1973.

Jusqu'ici, nous avons contraint la fonction de production à appartenir à une classe spéciale, pour laquelle l'élasticité de substitution est constante et égale à un. Nous allons maintenant considérer une classe de fonctions de production pour laquelle les élasticités de substitution ne sont pas constantes. Ces résultats pour la fonction translog apparaissent aux tableaux 3 et 4.

^{1.} Tel que mentionné dans la section sur les données utilisées, $x_i(t) = 1 - n CQ_i(t)$, où $CQ_i(t)$ est le taux de chômage au Québec dans le secteur i et n est un entier à estimer. Afin de mesurer l'utilisation du capital, nous avons aussi utilisé les taux d'utilisation au niveau canadien (voir section II) mais les résultats obtenus sont soit moins bons soit simplement marginalement différents.

TABLEAU 1 fonction de cobb-douglas sans contraintes $l\ n\ P_i = \alpha_i + \beta_i\ l\ n\ (E_i) + \gamma_i\ l\ n\ (x_i\!K_i) + \delta_i\ D$

Secteurs	x_i	Période	Constante	$ln(E_i)$	$ln(x_iK_i)$	D	R²	D.W. (2)	$t_{\beta_i+\gamma_i-1}$
Agriculture	1-5CQ ₁	1961-70	1.413 (.387)	.350 (.650)	.422 (2.565)		.687	1.596	332
-	1-5CQ ₁	1961-73	3.027	.0625	.394		.633	1.313	-1.186
	1-5CQ ₁	1961-73	(1.212) 2.080 (.461)	(.192) .210 (.315)	(2.587) .427 (2.090)	.0304 (.258)	.636	1.426	429
Mines 2	1-5CQ ₂	1961-70	2.703 (1.947)	700 (-1.218)	.872 (9.119)		.974	1.685	1.675
-	1-5CQ ₂	1961-73	-2.643	1.723	.460		.907	1.488	3.396
	1-5CQ ₂	1961-73	(-2.312) 0838 (0575)	(4.929) .607 (1.078)	(8.011) .634 (7.114)	150 (-2.318)	.942	1.640	.483
Construction 3	1-2CQ ₃	1961-70	1.608 (2.050)	.529 (2.762)	.495 (7.209)		.932	1.730	.137
3	1-2CQ ₃	1961-73	—.530 [°]	.965	.532		.698	.621	1.105
	1-2CQ ₃	1961-73	(260) 1.361 (1.484)	(1.878) .589 (2.596)	(2.881) .489 (6.164)	.221 (6.748)	.950	2.216	.389

TABLEAU 1 (suite)

FONCTION DE COBB-DOUGLAS SANS CONTRAINTES

$$ln P_i = \alpha_i + \beta_i ln (E_i) + \gamma_i ln (x_i K_i) + \delta_i D$$

Secteurs	x_i	Période	Constante	$ln(E_i)$	$ln(x_iK_i)$	D (1)	R²	D.W. (2)	$t_{\beta_i+\gamma_i-1}$
Fabrication 4	1-2CQ ₄	1961-70	.542 (.362)	.168 (.278)	.783 (2.857)		.987	2.239	144
·	1-2CQ4	1961-73	2.716 (2.116)	823 (-1.908)	1.256 (7.186)		.982	2.243	-2.146
	1-2CQ4	1961-73	.0162	.397 (.592)	.677 (2.220)	.0633 (2.175)	.988	2.791	.449
Services d'utilité	1	1961-70	-1.188 (999)	.304 (.525)	.792 (3.753)		.987	1.327	.257
publique 5	1	1961-73	-1.446 (672)	107 (104)	1.062 (2.885)		.974	.487	0667
	1	1961-73	-1.329 (-1.063)	.349 (.573)	.782 (3.513)	.0919 (4.549)	.992	2.214	.333
Services 6	1	1961-70	-3.748 (-3.589)	358 (727)	1.519 (3.419)		.998	2.669	2.986
O	1	1961-73	(-3.369) -5.420 (-9.351)	(-3.353)	2.197 (7.796)		.998	2.728	2.144
	1	1961-73	(-3.754) (-3.780)	368 (783)	1.526 (3.605)	.0323 (1.958)	.9888	2.838	3.106

Notes: 1) D=1 pour 1971, 1972, 1973 et D=0 autrement. 2) Statistique de Durbin-Watson. 3) Statistique t afin de tester l'hypothèse nulle $\beta_1 + \gamma_i = 1$.

TABLEAU 2 fonction de cobb-douglas avec rendements d'échelle constants $l~n~(P_i/E_i) = \alpha_i + \gamma_i~l~n~(x_iK_i/E_i) + \delta_i~D$

Secteurs	x_i	Période	Constante	$ln(x_iK_i/E_i)$	D	R²	D.W.
Agriculture 1	1-5CQ ₁	1961-70	.202 (1.853)	.472 (7.431)		.873	1.722
	1-5CQ ₁	1961-73	.0679 (.574)	.558 (8.639)		.872	1.168
	1-5CQ ₁	1961-73	.143 (1.062)	.507 (6.464)	.0721 (1.123)	.886	1.580
Mines 2	1-5CQ ₂	1961-70	.393 (2.253)	.742 (12.002)		.947	1.648
	1-5CQ ₂	1961-73	1.198 (5.1 24)	.448 (5.588)		.740	0.760
	1-5CQ ₂	1961-73	.615 (3.414)	.663 (10.391)	-0.175 (-4.850)	.992	1.694
Construction 3	1-2CQ ₃	1961-70	1.715 (37.541)	.476 (7.739)		.882	1.695
	1-2CQ ₃	1961-73	1.718 (12.940)	.566 (3.071)		.462	.500
	1-2CQ ₃	1961-73	1.717 (31.881)	.493 (6.552)	.225 (7.541)	.920	2.147

TABLEAU 2 (suite) $l\ n\ (P_i/E_i) = \alpha_i + \gamma_i\ l\ n\ (x_iK_i/E_i) + \delta_i\ D$

Secteurs	x _i	Période	Constante	$ln(x_iK_i/E_i)$	D	R²	D.W.
Fabrication 4	1-2CQ4	1961-70	0.327 (2.374)	.745 (11.828)		.946	2.183
	1-2CQ4	1961-73	0218 (.131)	.908 (12.123)		.930	1.306
	1-2CQ4	1961-73	.345 (2.194)	.736 (10.219)	.0586 (3.491)	.969	2.825
Utilités publiques	1	1961-70	888 (-4.315)	.844 (15.059)		.966	1.338
5	1	1961-73	-1.589 (-5.478)	1.038 (13.419)		.942	0.476
	1	1961-73	919 (4.189)	.853 (14.260)	.0912 (4.755)	.982	2.138

Secteurs	x _i	Période	Constante	lnE_{i}	$ln (x_i K_i / E_i)$	$ \begin{array}{ c c } l n^2 \\ (x_i K_i / E_i) \end{array} $	D	R²	D.W.	t _{b;1}	$\hat{\delta}_i$	$\hat{\mathbf{v}_i}$	$\hat{ ho}_i$
Agri- culture	1-5CQ ₁	1961-70	383 (-2.089)	1.001 (2.293)	.788 (5.282)	.598		.893	2.645	.00229	.788	1.001 (2.293)	-7.143
1	1-5CQ ₁	1961-73	0480 (-2.974)	1.385 (4.480)	.847 (6.935)	.572 (5.022)		.904	2.815	1.245	.612	1.385 (4.480)	· —3.478
	1-5CQ ₁	1961-73	0391 (-2.286)	.997 (2.334)	.801 (6.475)	.621 (5.318)	0790 (-1.270)	.920	2.603	00702	.803	.997 (2.334)	-7.871
Mines 2	1-5CQ ₂	1961-70	0727 (3.342)	.469 (.858)	.591 (2.284)	587 (-1.163)		.979	2.129	971	1,261	.469 (.858)	-7.624
	1-5CQ ₂	1961-73	.0217 (1.397)	1.878 (5.251)	.465 (8.950)	292 (-1.802)		.932	1.734	2.455	.248	1.878 (5.251)	1.669
	1-5CQ ₂	1961-73	.0584 (3.219)	.981 (2. 27 1)	.633 (8.531)	278 (-2.688)	145 (-2.688)	.964	2.287	0440	.645	.981 (2.271)	2.476
Construc-	1-2CQ ₃	1961-70	0841 (-5,198)	1.292 (6.871)	.584 (8.395)	.977 (2.146)		.961	2.453	1.553	.452	1.292 (6.871)	-6.103
3	1-2CQ ₃	1961-73	0134 (276)	1.588 (2.690)	.559 (2.535)	.354 (.255)		.700	.594	.996	.352	1.588 (2.690)	-1.952
	1-2CQ ₃	1961-73		1.292 (5.843)	.555 (6.825)	.894 (1.728)	.228 (7.622)	.964	3.100	1.321	.430	1.292 (5.843)	-5.644

TABLEAU 3 (suite)
FONCTIONS DE PRODUCTION TRANSLOG HOMOTHÉTIQUES

Secteurs	x_i	Période	Constante	l n E;	$ \begin{array}{ c c } ln\\ (x_iK_i/E_i) \end{array} $	$\begin{vmatrix} l n^2 \\ (x_i K_i / E_i) \end{vmatrix}$	D	R²	D.W.	t _{bi} -1	$\hat{\delta}_i$	$\hat{\mathbf{v}}_i$	$\hat{ ho}_i$
Fabri- cation	1-2CQ4	1961-70	597 (335)	.737 (1.346)	.864 (2.620)	851 (515)		.988	2.635	480	1.173	.737 (1.346)	-11.372
4	1-2CQ ₄	1961-73		.421 (.973)	1.262 (5.207)	0444 (037)		.982	2.243	-1.338	2.996	.421 (.973)	0353
	1-2CQ ₄	1961-73	118 (834)	.959 (2.166)	.715 (2.195)	562 (534)	.0671 (2.154)	.989	2.889	0926	.746		-6.185
Services d'utilité	1	1961-70	384 (-5.626)	1.267 (4.905)	.867 (5.997)	1.161 (3.061)		.995	2.234	1.0336	.684	1.267 (4.905)	-8.479
publique 5	1	1961-73	0383 (-4.156)	1.340 (3.815)	1.007 (5.355)	1.998 (5.427)		.994	1.0878	.968	.752	1.340 (3.815)	-15.983
	1	1961-73	0398 (-5.789)	1.304 (4.994)	.872 (5.919)	1.313 (3.621)	.0503 (2.882)	.997	2.663	1.164	.669	1.304 (4.994)	-9.085
Services 6	1 :	1961-70	0213 (-3.418)	1.214 (23.878)	1.681 (4.488)	19.177 (2.072)		.9987	2.988	4.209	1.385	1.214 (23.878)	59.264
	. 1	1961-73	0164 (-2.452)	1.176 (21.357)	1.752 (5.337)	10.834 (2.043)		.9988	2.474	3.196	1.490	1.176 (21.357)	25.246
	1	1961-73	0176 (-2.509)	1.179 (20.865)	1.546 (3.612)	6.825 (.910)	.0178 (.774)	.9989	2.569	3.168	1.311	1.179 (20.865)	28.375

TABLEAU 4 fonctions de production « translog » avec rendements d'échelle constants $l\ n\ (P_i/E_i) = a_i + b_i\ l\ n\ (x_iK_i/E_i) + c_i\ [l\ n\ (x_iK_i/E_i)]^2 + d_i\ D$

Secteurs	x_{i}	Période	Constante	$ ln(x_iK_i/E_i) $		D	R²	D.W.	$\hat{\delta}_i$	$\hat{ ho_i}$
Agriculture 1	1-5CQ ₁	1961-70	0383 (-2.507)	.788 (8.439)	.598 (3.728)		.958	2.644	.788	-7.156
	1-5CQ ₁	1961-73	0434 (-2.690)	.705 (15.612)	.487 (5.197)		.965	2.342	.705	-4.685
	1-5CQ ₁	1961-73	0392 (-2.702)	.801 (12.471)	.621 (5.714)	0787 (-1.917)	.975	2.605	.801	7.800
Mines 2	1-5CQ ₂	1961-70	.0547 (4.818)	.416 (2.245)	817 (-1.839)		.964	2.427	.416	6.728
	1-5CQ ₂	1961-73	.0319 (1.733)	.462 (7.250)	481 (-2.749)		.852	1.583	.462	3.867
	1-5CQ ₂	1961-73	.0579 (4.683)	.631 (11.749)	277 (-2.444)	143 (-4.426)	.953	2.271	.631	2.376
Construction 3	1-2CQ ₃	1961-70	734 (-4.572)	.547 (7.640)	.507 (1.360)		.907	1.636	.547	-4.091
	1-2CQ ₃	1961-73	.00782 (.179)	.522 (2.402)	472 (424)		.471	.571	.522	3.786
	1-2CQ ₃	1961-73	0739 (-3.712)	.537 (6.437)	.512 (1.147)	.235 (7.655)	.930	2.403	.537	-4.119

TABLEAU 4 (suite)

FONCTIONS DE PRODUCTION « TRANSLOG » AVEC RENDEMENTS D'ÉCHELLE CONSTANTS

Secteurs	x_{i}	Période	Constante	$ ln(x_i K_i / E_i) $		D	R²	D,W.	$\hat{\delta}_{i}$	$\hat{ ho_i}$
Fabrication 4	1-2CQ4	1961-70	0137 (-1.856)	.719 (5.740)	245 (243)		.946	2.205	.719	2.427
	1-2CQ4	1961-73	0109 (-1.054)	.954 (12.286)	1.199 (1.481)		.943	1.897	.954	-54.653
	1-2CQ4	1961-73	0128 (-1.613)	.687 (6.168)	514 (593)	.0687 (2.832)	.970	2.863	.687	4.784
Services d'utilité	1	1961-70	0355 (-5.686)	.999 (14.878)	1.076 (2.892)		.985	1.974	.9991	-2456.40
publique 5	1	1961-73	0347 (-4.132)	1.183 (23.800)	1.926 (5.359)		.985	1.070	1.183	17.809
	1	1961-73	0365 (-5.699)	1.027 (15,558)	1.235 (3.400)	.0513 (2.884)	.992	2.220	1.027	90.546
Services 6	1	1961-70	00359 (424)	2.704 (5.187)	455 (031)		.923	2.645	2.709	197
	1	1961-73	00274 (385)	2.749 (19.795)	162 (029)		.976	2.648	2.749	0673
	1	1961-73	00335 (438)	2.630 7.183	-2.914 (300)	.0116 (.355)	.976	2.687	2.630	-1.360

Au tableau 3, nous présentons les estimations pour une fonction translog homothétique sans autre contrainte. Dans les trois dernières colonnes de ce tableau, on trouve les valeurs estimées des paramètres d'une fonction de production CES obtenues en considérant la fonction translog homothétique comme une approximation de second ordre de la fonction CES 2, où la fonction CES est donnée par :

(3.4)

$$\ln P_{i}\left(t\right)=\alpha_{i}-\frac{v_{i}}{\rho_{i}}\ln \left[\delta_{i}E_{i}\left(t\right)^{--\rho_{i}}+\left(1-\delta_{i}\right)\left(x_{i}\left(t\right)k_{i}\left(t\right)^{--\rho_{i}}\right]+u_{i}\left(t\right)^{--\rho_{i}}\right]$$

D'après les résultats pour $\hat{\rho}$ dans la dernière colonne, nous voyons que la valeur de ce paramètre est inférieure à un dans quatre cas sur six (utilisant la troisième régression pour chaque secteur). C'est-à-dire, si la fonction translog homothétique est considérée comme une approximation de second ordre à la fonction CES (voir Kmenta, 1967) la fonction

CES associée a une élasticité de substitution $\frac{1}{1+\rho}$ négative et donc la

fonction de production n'est pas quasi concave. Nous avons aussi estimé le modèle CES donné par l'équation (3.4) directement en utilisant une procédure d'estimation non linéaire avec des résultats similaires aux précédents 3. Retournons aux résultats concernant la fonction translog homothétique. D'abord nous devons vérifier si les fonctions estimées sont monotones croissantes et quasi concaves. D'après le tableau 3, seules les équations pour les secteurs 2 et 4 satisfont les conditions de monotonicité et de quasi-concavité. Par suite, pour ces deux secteurs seulement la fonction translog homothétique peut être considérée comme une description adéquate du processus de production. Lorsqu'on utilise la fonction translog homothétique comme contre-hypothèse dans un test d'écart par rapport à la fonction de Cobb-Douglas, l'hypothèse nulle que le modèle correct est la fonction de Cobb-Douglas doit être testée en examinant si le coefficient de ln^2 (x_iK_i/E_i) est statistiquement significatif. L'hypothèse que le coefficient de ln^2 (x_iK_i/E) est égal à zéro et acceptée pour les secteurs 2 à 4 à un niveau de signification de 5%. Dans le cas du secteur 2, l'hypothèse nulle peut être rejetée à un niveau de signification de 10%. Donc, dans les deux cas où la fonction translog est monotone croissante et quasi concave, l'hypothèse que la fonction de production est de type Cobb-Douglas ne peut être rejetée.

Pour tous les secteurs sauf celui des services, l'hypothèse de rendements d'échelle constants est acceptée. Par suite, nous avons réestimé

^{2.} Pour une étude des problèmes liés à l'utilisation de cette approximation, voir Corbo (1976a et 1976b).

^{3.} Afin de sauver de l'espace, nous ne présentons pas ces résultats ici mais ceux-ci sont disponibles sur demande.

la fonction translog homothétique avec rendements d'échelle constants. Ces résultats apparaissent au tableau 4. De nouveau la fonction estimée est monotone croissante seulement pour les secteurs 2 et 4. Examinant le coefficient de $\ln^2(x_iK_i/E_i)$ dans le tableau, l'hypothèse que la fonction de production est de type Cobb-Douglas ne peut être rejetée pour le secteur 4 mais est rejetée à un niveau de signification de 5% pour le secteur 2. Par suite il n'y a que le secteur 2 (mines, carrières et puits de pétrole) pour lequel nos résultats semblent montrer, bien que faiblement, que la fonction translog homothétique est préférable à la fonction de Cobb-Douglas.

V. Conclusions

Dans cet article, nous avons étudié la nature du processus de production dans l'économie du Québec. Des fonctions de production de Cobb-Douglas, CES et translog homothétique ont été estimées pour six secteurs couvrant l'ensemble de l'économie du Québec. Nous avons aussi testé s'il y a un écart par rapport au modèle de Cobb-Douglas utilisant la fonction translog homothétique comme contre-hypothèse. De nos résultats statistiques, nous concluons que dans quatre secteurs (agriculture, construction, fabrication et services d'utilité publique) une fonction Cobb-Douglas avec rendements d'échelle constants est un modèle approprié. Pour un secteur (services), on doit préférer une fonction de Cobb-Douglas avec rendements croissants. Pour le dernier secteur (mines) les résultats apparaissent légèrement meilleurs avec une fonction translog homothétique sujette à des rendements constants qu'avec une fonction de Cobb-Douglas aussi sujette à des rendements constants.

Nos résultats confirment ceux de Griliches (1967), Griliches et Ringstad (1971) ainsi que les études revues par Jorgenson (1972), à savoir que la spécification de Cobb-Doublas est en général une bonne description du processus de production.

Vittorio CORBO, NBER et Université Concordia et Jean-Marie DUFOUR, University of Chicago.

RÉFÉRENCES

- CORBO, V., «A Search Procedure for Least Squares CES Estimates: A Monte-Carlo Study», Southern Economic Journal, 43, 4 (avril 1977).
- 2. Corbo, V., « Second Order Approximations for Estimating Production Functions », Annals of Economic and Social Measurement, 5, 1 (1976), 65-73.
- 3. Griliches, Z., « Productions Functions in Manufacturing: Some Preliminary Results », in M. Brown (éd.). The Theory and Empirical Analysis of Production, National Bureau of Economic Research, Columbia University Press (1967).
- 4. Griliches, Z. et V. Ringstad, Economies of Scale and the Form of the Production Function, North-Holland (1971).
- 5. Jorgenson, D., « Investment Behavior and the Production Function », Bell Journal of Economics and Management Science, vol. 3, nº 1 (printemps 1972).
- KMENTA, J., « On Estimation of the CES Production Function », International Economic Review, 8 (1967), 180-189.

APPENDICE

CONSTRUCTION DES SÉRIES DE CAPITAL

1. Méthode

Si on considère un secteur de production donné et un type particulier de capital (construction ou machinerie), on a la relation

$$K_t = K_{t-1} + I_t - KD_t,$$

0

 K_t = stock net de capital à la fin de l'année t

 I_{\star} = investissement brut durant l'année t

 KD_{t} = capital consommé durant l'année t

Soit T la durée de vie de la catégorie de capital considérée. Nous supposons que le stock de capital est consommé de façon uniforme durant les années de vie utile : c'est-à-dire une fraction $\delta = 1/T$ du stock est consommée chaque année :

$$K_{t} = K_{t-1} + I_{t} - \delta K_{t-1}, \quad \delta = 1/T$$

Si on dispose de la série des investissements pour les années t=1, ..., n, il suffit alors de connaître la valeur de K_t pour l'une des années t pour pouvoir construire la série des stocks de capital. Le problème consiste à résoudre une suite d'équations aux différences finies :

$$\begin{split} K_t &= K_{t-1} + I_t - \delta K_{t-1}, & t = 1, ..., n \\ K_{t_0} &= \bar{K} & \text{où} & t_0 \in \{0, 1, ..., n\} \end{split}$$

Lorsqu'on ne dispose pas d'une valeur de base Kt_0 pour l'économie considérée, une façon de l'obtenir consiste à utiliser le rapport capital/output observé pour une économie ayant atteint un degré de développement comparable :

$$K_{t_0} = \left(\frac{K}{P_{t_0}}\right) P_{t_0}$$

où:

 $P_{t_0} =$ produit intérieur brut durant l'année t

$$\left(\frac{K}{P_{t_0}}\right)$$
 = rapport capital/output pour l'année t

Etant donné que le taux de dépréciation (δ) s'applique au stock réel de capital, l'investissement et le capital doivent être mesurés en dollars constants.

2. Division sectorielle

Nous avons calculé les stocks de capital pour secteurs industriels, regroupés en 6 secteurs plus importants :

- 1. Agriculture, forêt, pêche et piégeage
 - 1.1 Agriculture
 - 1.2 Pêche et piégeage
 - .3 Forêt
- 2. Mines, carrières et puits de pétrole
- 3. Construction
- 4. Fabrication
- 5. Services d'utilité publique
 - 5.1 Transport et entreposage
 - 5.2 Communications
 - 5.3 Electricité, gaz et eau
- 6. Services
 - 6.1 Habitation
 - 6.2 Commerce (gros et détail)
 - 6.3 Finance, assurance et immeuble
 - 6.4 et 6.5 Services commerciaux (6.4) et institutions publiques (6.5)
 - 6.6 Administration publique et défense

Le stock de capital de chaque secteur est ventilé en construction non résidentielle (sauf dans le cas de l'habitation) et en machinerie (et équipements.

3. Séries d'investissement

Les données concernant la formation brute de capital fixe (1961-72) nous ont été fournies par le Bureau de la statistique du Québec, sauf pour le secteur de l'habitation (Statistique Canada: 61-206) ¹.

Les séries ont été converties en dollars constants en utilisant les indices de prix de la formation brute de capital au Canada pour trois types de stock de capital : construction non résidentielle, machinerie et construction résidentielle (pour le secteur de l'habitation) (voir SC: 62-002).

4. Durées de vie

Nous avons considéré 2 sources de données concernant les durées de vie (ainsi que les rapports capital/output) ².

^{1.} D'une façon générale les données du BSQ sont les mêmes que celles de SC (61-206). Nous avons constaté toutefois certaines divergences au niveau de l'investissement gouvernemental (secteurs 6.5 et 6.6) dues probablement au traitement de l'investissement affecté aux fins de la défense nationale. Nous avons dans ce cas supposé que l'agrégat des secteurs 6.5 et 6.6 fourni par la publication de SC est le chiffre exact et nous avons corrigé la série pour le secteur 6.6 en conséquence.

^{2.} A) W.C. Hood et A. Scott, Output, Labour and Capital in the Canadian Economy, Ottawa, Queen's Printer, 1957.

B) STATISTIQUE CANADA, 1926-73, Fixed Capital Flows and Stocks, Non-manufacturing, Current and Constant 1961\$, mai 1973.

Les durées de vie utilisées par ces deux études sont assez semblables. Sauf pour les secteurs de la pêche, de la fabrication et de l'habitation, nous avons utilisé les durées de vie données par B. Comme celles-ci sont données sur une base plus désagrégée que les séries d'investissement dont nous disposions:

nous avons estimé les durées de vie de la construction et de la machinerie en calculant une moyenne pondérée des durées de vie des différentes sous-catégories de capital :

$$VC = \frac{KBC_{t} \times VBC + KEC_{t} \times VEC}{KBC_{t} + KEC_{t}}$$

$$VM = \frac{KME_{t} \times VME + KCI_{t} \times VCI}{KME_{t} + KCI_{t}}$$

où VC, VM, VBC, VEC, VME, VCI sont les durées de vie du capital de type C, M, BC, EC, ME, CI respectivement, et KBC_t , KEC_t , KME_t , KCI_t sont les stocks de capital de type BC, EC, ME, CI pour l'année en question (capital net en dollars courants). Pour calculer les coefficients de pondération, nous avons utilisé l'année 1967. De là, le taux de dépréciation est obtenu en prenant l'inverse de la durée de vie.

Les durées de vie pour les autres secteurs proviennent de A: l'habitation parce que disponible seulement là, la fabrication parce qu'exigeant des calculs beaucoup moins longs (avec B, il aurait fallu combiner une vingtaine d'industries manufacturières, pour un résultat qui n'aurait pu être que très similaire).

Quant à la pêche, il nous est apparu que les durées de vie imputées par SC sont beaucoup trop longues; Hood et Scott ont utilisé un chiffre sensiblement plus petit que nous avons adopté.

5. Rapports capital/output et stocks initiaux

Pour obtenir les rapports capital/output initiaux, nous avons utilisé les séries de capital déjà construites pour le Canada.

Pour chaque secteur et chaque type de capital (construction, machinerie), le stock net (fin-année) pour l'année de base est obtenu à partir des séries de B et divisé par la valeur ajoutée du secteur (année suivante). Partout, l'année de base utilisée est 1960, sauf pour les secteurs 4 et 6.1, pour lesquels l'année de base est 1946, et les secteurs 5.1, 5.2, 5.3, pour lesquels l'année de base est 1964. Ces quantités sont mesurées en dollars constants (100 = 1961). Les valeurs ajoutées de 1947 et 1965 (pour les cas où l'année de base est 1946 ou 1964) ont été ramenées en dollars constants à l'aide de l'indice des prix à la consommation à Montréal, publié par SC.

Une difficulté s'est présentée pour le secteur 6.3 (finance, assurance et immeuble) du fait que les données disponibles ne nous permettaient pas de calculer directement un rapport capital/output. Seul le rapport pour l'agrégation des secteurs 6.1 et 6.3 pouvait être obtenu. De celui-ci, nous avons déduit le stock de capital de la réunion de ces deux secteurs en 1960. Comme, d'autre part, le stock du secteur 6.1 en 1960 avait été obtenu indépendamment (à l'aide d'une série commençant en 1946), il a suffi de prendre la différence des deux stocks pour avoir une évaluation du stock du secteur 6.3 en 1960.

Le lecteur trouvera les valeurs numériques des durées de vie, des taux de détérioration et des rapports capital-output que nous avons utilisées ainsi que les séries de capital détaillées dans les tableaux qui suivent.

DURÉE DE VIE — STOCKS INITIAUX

Secteurs	Durées (ann	40	Taux de détérioration		Stocks initiaux (millions \$61)		
Societaes	Construction	Machinerie et équipement	Construction	Machinerie et équipement	Année	Construction	Machinerie et équipement
Agriculture	40.0	13.8	.025	.072	1960	336.1	416.6
Pêche	25.0	21.3	.040	.047	1960		6.3
Forêt	28.7	10.0	.035	.010	1960	77.4	32.3
Mines	29.1	20.0	.034	.050	1960	370.8	163.3
Construction	25.6	10.0	.039	.100	1960	43.2	222.6
Fabrication	40.0	18.0	.025	.056	1946	919.7	779.9
Transports et		į.					·
entreposage	50.9	25.7	.020	.039	1964	1561.3	756.9
Communications	54.0	24.4	.019	.041	1964	523.1	594.6
Electricité, gaz et eau	56.5	34.7	.018	.029	1964	2337.4	576.6
Habitation	50.0		.020		1946	1825.4	
Commerce (gros et détail)	50.4	19.6	.020	.051	1960	607.6	348.7
Finance, assurance,							
immeuble	50.0	15.0	.020	.067	1960	1323.1	50.7
Services commerciaux et							
institutions publiques	52.3	15.3	.019	.065	1960	1447.8	261.4
Administration publique							
et défense	53.8	19.1	.019	.052	1960	2473.1	160.4

TABLEAU 1

FONCTIONS DE PRODUCTION

TABLEAU 2
RAPPORTS CAPITAL/OUTPUT (CANADA)

Secteurs	Année	Construction	Machinerie et équipement
Agriculture	1960/61	1.46119	1.81147
Pêche	1960/61	_	1.56402
Forêt	1960/61	0.70360	0.29361
Mines	1960/61	1.58450	0.69772
Construction	1960/61	0.073635	0.37927
Fabrication	1946/47	0.53731	0.45565
Transports	1964/65	1.98097	0.98306
Entreposage	1964/65	2.35875	0.50607
Communications	1964/65	1.48603	1.68910
Electricité, gaz et eau	1964/65	6.30027	1.55429
Habitation	1946/47	16.76247	-
Commerce (gros et détail)	1960/61	0.54344	0.31193
Finance, assurance et			
immeuble			_
Services commerciaux et			1
institutions publiques	1960/61	1.15362	0.20829
Gouvernements	1960/61	5.39972	0.35028
Habitation et finance, assurance, immeuble	1960/61	6.56970	0.04760

TABLEAU 3 ¹ SÉRIES DE CAPITAL (QUÉBEC) (millions \$ 1961)

Agriculture

Année	Construction	Machinerie	Total
1960	336.099854	416.599854	752.699707
1961	367.197021	445.904297	813.101318
1962	399.351563	477.012939	876.364502
1963	430.259033	507.983643	938.242676
1964	455.034912	533.818115	988.853027
1965	481.047119	556.673340	1037.720459
1966	519.104980	584.778320	1103.883301
1967	553.861816	618.035400	1171.89721 <i>7</i>
1968	585.607910	649.982422	1235.590332
1969	614.128418	682.719482	1296.847900
1970	634.468750	700.810547	1335.279297
1971	649.239990	719.766357	1369.006348
1972	670.396973	753.290527	1423.687500

Pêche et piégeage

Année	Construction	Machinerie	Total
1960	0.0	6.299999	6.299999
1961	0.0	7.503899	7.503899
1962	0.0	10.055381	10.055381
1963	0.0	13.729809	13.729809
1964	0.0	15.801901	15.801901
1965	0.0	17.325989	17.325989
1966	0.0	20.140350	20.140350
1967	0.0	24.121521	24.121521
1968	0.0	26.134064	26.134064
1969	0.0	26.231354	26.231354
1970	0.0	27.055435	27.055435
1971	0.0	28.788452	28.788452
1972	0.0	28.870438	28.870438

Nous reproduisons ici six décimales étant donné que ce fut là le degré de précision de nos calculs.

TABLEAU 3 (suite) SÉRIES DE CAPITAL (QUÉBEC)

	Forêts				
Année	Construction	Machinerie	Total		
1960	77.399994	32,299988	109.699982		
1961	82.090988	37.376968	119.467957		
1962	86.488708	42.424286	128,912994		
1963	88.597260	47.278061	135.875320		
1964	93.413406	54.595123	148.008530		
1965	96.941788	61.023880	157.965668		
1966	99.619644	68.683670	168.303314		
1967	101.553665	78.702011	180.255676		
1968	101.685181	85.908173	187.593353		
1969	102.685471	92.919830	195.605301		
1970	102.126144	96.104553	198.230698		
1971	100.185486	99.920074	200.105560		
1972	98.343521	104.736572	203.080093		

Mines, carrières et puits de pétrole

Année	Construction	Machinerie	Total
1960	370.799805	163.299988	534.099609
1961	384.992432	175.134995	560.127197
1962	399.990234	186.707397	586.697510
1963	413.812744	200.651947	614.464600
1964	452.146240	213.264297	665.410400
1965	457.256104	224.658630	681.914551
1966	456.464600	233.847641	690.312012
1967	459.795898	241.611511	701.407227
1968	474.130615	251.384689	72 5.515137
1969	502.842773	259.693604	762.536377
1970	530.905029	278.987305	809.892334
1971	647.367432	308.104004	955.471436
1972	728.941895	413.166992	1142.108887

TABLEAU 3 (suite)
SÉRIES DE CAPITAL (QUÉBEC)

Fabrication

Année	Construction	Machinerie	Total
1946	919.699951	779.899902	1699.599854
1947	997.332764	934.382324	1931.715088
1948	1053.384277	1088.958984	2142.343262
1949	1093.892822	1199.621338	2293.514160
1950	1124.406006	1287.442139	2411.848145
1951	1130.617432	1318.379395	2448.996826
1952	1173.472656	1449.394775	2622.867432
1953	1192.105713	1539.204346	2731.310059
1954	1343.343018	1586.743652	2930.086670
1955	1411.448975	1696.700928	3108.149902
1956	1488.524658	1848.114014	3336.638672
195 7	1571.754395	2016.305664	3588.060059
1958	1616.787842	2130.114746	3746.902588
1959	1684.106689	2226.746582	3910.853271
1960	1728.059814	2321.786865	4049.846680
1961	1762.058350	2406.866699	4168.921875
1962	1811.532715	2504.221680	4315.753906
1963	1856.360596	2621.666504	4478.023438
1964	1918.905273	2796.954834	4715.859375
1965	2003.848633	2989.758545	4993.605469
1966	2103.162109	3251.867920	5355.027344
1967	2177.039307	3450.646973	5627.683594
1968	2252.340820	3630.284912	5882.625000
1969	2328.631104	3794.345947	6122.976563
1970	2393.753418	3940.169678	6333.921875
1971	2454.059326	4004.034668	6458.093750
1972	2522,285400	4148.312500	6670.597656

TABLEAU 3 (suite) SÉRIES DE CAPITAL (QUÉBEC)

Construction			
Année	Construction	Machinerie	Total
1960	222.599991	43.199997	265.799805
1961	227.739990	47.515198	275.255127
1962	224.036667	49.048538	273.085205
1963	226.043915	50.139511	276.183350
1964	240.214905	52.708099	292.922852
1965	259.523682	53.693619	313.217285
1966	276.271729	54.550659	330.822266
1967	274.218018	54.445831	328.663818
1968	274.772217	54.245499	329.017578
1969	275.629639	53.953629	329.583252
1970	275.519043	53.655792	329.174805
1971	295.732910	54.013855	349.746582
1972	314.044434	58.565445	372.609863

Transport et entreposage

Année	Construction	Machinerie	Total
1960	1359.696533	630.348877	1990.045410
1961	1417.602783	671.565430	2089.168213
1962	1443.235107	703.651611	2146.886719
1963	1479.196289	729.838135	2209.034424
1964	1561.299805	756.899902	2318.199707
1965	1643.401123	820.318848	2463.719971
1966	1707.497314	891.448730	2598.946045
1967	1737.829346	963.903809	2701.733154
1968	1735.444336	1020.869141	2756.313477
1969	1731.434326	1072.107178	2803.541504
1970	1736.617676	1103.316895	2839.934570
1971	1730.884521	1129.239746	2860.124268
1972	1741.785400	1169.942627	2911.728027

TABLEAU 3 (suite) SÉRIES DE CAPITAL (QUÉBEC)

Communications Construction Machinerie Année Total 1960 405.094482 388.643066 793.737549 1961 433.197998 434.608887 867.806885 1962 463.513184 482.037109 945.550293 1963 545.214355 492.206543 1037.420898 1964 523.099854 594.599854 1117.699707 1203.205078 1965 555.826172 647.378906 1966 721.764404 1314.753174 592.988770 1967 626.220215 793.786133 1420.006348 1968 664.882813 850.866455 1515.749268 1969 708.252930 916.726563 1624.979492 1970 751.082031 963,475830 1714.557861 1971 786.913330 1031.523193 1818.436523

Electricité, gaz et eau

1108.868164

1931.085938

822.217773

1972

Année	Construction	Machinerie	Total
1960	1500.532959	588.183838	2088.716797
1961	1680,923828	592.826904	2273.750732
1962	1869.093994	588.510254	2457.604248
1963	2049.694824	588.503174	2638.197998
1964	2337,399902	576.599854	2913.999756
1965	2608.206787	578.797119	3187.003906
1966	2790.348389	635.598389	3425.946777
1967	2938.503906	685.814941	3624.318848
1968	3049.793457	752.490723	3802.284180
1969	3088.058350	846.989746	3935.048096
1970	3193.311523	883.819336	4077.130859
1971	3338.282471	937.464111	4275.746094
1972	3505.402100	969.340820	4474.742188

TABLEAU 3 (suite)
SÉRIES DE CAPITAL (QUÉBEC)

Habitation

Année	Construction	Machinerie	Total		
1946	1825.399902	0.0	1825.399902		
1947	2014.137695	0.0	2014.137695		
1948	2222.666016	0.0	2222.666016		
1949	2428.950928	0.0	2428.950928		
1950	2689.834717	0.0	2689.834717		
1951	2908.210693	0.0	2908.210693		
1952	3114.534424	0.0	3114.534424		
1953	3406.887207	0.0	3406.887207		
1954	3658.574951	0.0	3658.574951		
1955	4012.005615	0.0	4012.005615		
1956	4429.027344	0.0	4429.027344		
1957	4737.578125	0.0	4737.578125		
1958	5103.910156	0.0	5103.910156		
1959	5439.652344	0.0	5439.652344		
1960	5680.152344	0.0	5680.152344		
1961	5951.546875	0.0	5951.546875		
1962	6285.671875	0.0	6285.671875		
1963	6644.171875	0.0	6644.171875		
1964	7028.625000	0.0	7028.625000		
1965	7391.703125	0.0	7391.703125		
1966	7700.304688	0.0	7700.304688		
1967	7996.335938	0.0	7996.335938		
1968	8303.777344	0.0	8303.777344		
1969	8643.074219	0.0	8643.074219		
1970	8965.242188	0.0	8965.242188		
1971	9378.027344	0.0	9378.027344		
1972	9807.468750	0.0	9807.468750		

TABLEAU 3 (suite) SÉRIES DE CAPITAL (QUÉBEC)

Commerce	(orns	et	détail)	
Commerce	(gros	Cι	uctanj	

Année	Construction	Machinerie	Total	
1960	607.599854	348.699951	956.299805	
1961	622.347656	374.216064	996.563721	
1962	636.195313	398.402832	1034.598145	
1963	651.281250	423.889893	1075.171143	
1964	669.829590	445.568604	1115.398193	
1965	694.894287	476.288086	1171.182373	
1966	713.205322	511.153320	1224.358643	
1967	730.089844	560.190674	1290.280518	
1968	749.863037	604.324707	1354.187744	
1969	767.084473	633.818848	1400.903320	
1970	781.005615	664.468506	1445.474121	
1971	785.807373	690.826904	1476.634277	
1972	794.546875	732.860596	1527.407471	

Finance, assurances et immeuble

Année	Construction	Machinerie	Total
1960	1323.099854	50.699997	1373.799805
1961	1418.737549	65.003098	1483.740479
1962	1498.729248	80.202591	1578.931641
1963	1549.665283	88.401108	1638.066162
1964	1600.292969	95.702881	1695.995850
1965	1674.190430	105.245438	1779.435791
1966	1766.928955	115.831131	1882.760010
1967	1833.0466 31	130.245468	1963.291992
1968	1879.558594	148.559830	2028.118408
1969	1881.404785	167.106735	2048.511475
1970	1875.062500	188.980194	2064.042480
1971	1879.222168	193.498795	2072.720947
1972	1934.339355	199.416550	2133.755859

TABLEAU 3 (suite) SÉRIES DE CAPITAL (QUÉBEC)

Services commerciaux et institutions publiques					
Année	Construction	Machinerie	Total		
1960	1447.799805	261.399902	1709.199707		
1961	1560.691406	303.608887	1864.300293		
1962	1717.990479	341.860596	2059.851074		
1963	1884.960938	385.897705	2270.858643		
1964	2054.613037	445.506104	2500.119141		
1965	2311.639648	504.255127	2815.894775		
1966	2567.465332	569.706299	3137.171631		
1967	2730.738525	628.512207	3359.250732		
1968	2917.636475	692.165527	3609.802002		
1969	3079.602539	774.349609	3853.952148		
1970	3229.977051	851.152832	4081.129883		
1971	3393.862549	977.645996	4371.507813		
1972	3521.632568	1139.174561	4660.804688		

Administration publique et défense

Année	Construction	Machinerie	Total
1960	2473.099854	160.399994	2633.499756
1961	2652.510986	175.059204	2827.570068
1962	2852.113037	188.318207	3040.431152
1963	3059.937988	198.129807	3258.067627
1964	3351.940430	222.609680	3574.550049
1965	3640.668701	256.718262	3897.386963
1966	3897.887207	282.862549	4180.746094
1967	4119.457031	321.934326	4441.390625
1968	4325.000000	346.009766	4671.007813
1969	4614.707031	371.016113	4985,722656
1970	4886.417969	388.115479	5274.531250
1971	5279.683594	412.771484	5692.453125
1972	5658.429688	440.098877	6098.527344