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abstract–Standard kernel density estimation methods are very often used in practice to 
estimate density functions. It works well in numerous cases. However, it is known not to 
work so well with skewed, multimodal and heavy-tailed distributions. Such features are 
usual with income distributions, defined over the positive support. In this paper, we show 
that a preliminary logarithmic transformation of the data, combined with standard kernel 
density estimation methods, can provide a much better fit of the density estimation.

IntroductIon

Heavy-tailed distributions defined over the positive support have a upper tail that 
decays more slowly than exponential distribution (as the Gaussian distribution)1. The 
probability to observe large values in sample datasets is then higher, which may 
cause serious problems in finite samples. For instance, standard kernel density 
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1. Heavy-tailed distributions are probability distributions whose tails are heavier than the 
exponential distribution. The distribution F of a random variable X is heavy-tail to the right if
lim
x→∞

eλx (1−F(x)) =∞,∀λ > 0 .
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estimation is known to perform poorly and statistical inference for inequality measures 
may be seriouly misleading with heavy-tailed income distributions2.

In this paper, we study kernel density estimation applied to a preliminary 
logarithmic transformation of the sample. The density of the original sample is 
obtained by back-transformation. The use of a logarithmic transformation of the 
sample is rather common when dealing with positive observations and heavy-tailed 
distributions3. A feature of the log-transformation is that it squashes the right tail 
of the distribution. When the distribution of X is lognormal or Pareto-type in the 
upper tail, the distribution of log X is no longer heavy-tailed4. Since most income 
distributions are Pareto-type in the upper tail, if not log-normal5, the logarithmic 
transformation is appealing in such cases: kernel density estimation is applied to 
a distribution that is no longer heavy-tailed. The quality of the fit is then expected 
to be improved in finite samples.

Nonparametric density estimation based on a transformation of the data is not a 
new idea. It has been suggested by Devroye and Gyorfi (1985), a rigorous study can 
be found in Marron and Ruppert (1994), and, it has increasingly been used in the 
recent years6. Even if the logarithmic transformation has been briefly discussed by 
Silverman, (1986) with bounded domains and directional data, no great attention has 
been given to this transformation. In this paper, we study the logarithmic transform-
ation combined with the use of kernel density estimation, leading us to provide new 
insights on nonparametric density estimation with heavy-tailed distributions.

In the first section, we present kernel density estimation methods. In the second 
section, we derive the bias and variance for the log-transform kernel method. In 
section 3, simulation experiments are investigated to study the quality of the fit in 
finite samples with heavy-tailed distributions. Section 4 is concerned by an appli-
cation and then we conclude.

1. kernel densIty estImatIon

Let us assume that we have a sample of n positive i.i.d. observations, X1,…,Xn.  
We want to estimate the underlying density function f

X 
, without any a priori hypothesis 

on its shape, namely assuming that the distribution belongs to some parametric family.

2. See Davidson and. Flachaire (2007); Cowell and Flachaire (2007); Davidson, (2012); 
Cowell and Flachaire (2015).

3. For instance, the Hill estimator of the tail index is expressed as a mean of logarithmic differences.

4. Indeed, if a random variable X has a Pareto type distribution (in the upper tail), (X > x) ~ x – α, 
then log X has an exponential-type distribution (in the upper tail) since (X > x) ~ e – αx. Moreover, if 
X is lognormal, log X is Gaussian.

5. See Kleiber and Kotz (2003).

6. See for instance Buch-Larsen, Nielsen, Guillén and Bolancé (2005); Markovich (2007); 
Charpentier and Oulidi (2010); Abadir and Cornea (2014).
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1.1 Standard Kernel Density Estimation

The kernel density estimator with kernel K is defined by

f̂X (x) =
1

nh
i=1

n

∑K
x − Xi

h

⎛
⎝
⎜

⎞
⎠
⎟ ,

 

(1)

where n is the number of observations and h is the bandwidth. It is a sum of 
‘bumps’–with shape defined by the kernel function–placed at the observations.

Kernel density estimation is known to be sensitive to the choice of the bandwidth  
h, while it is not really affected by the choice of the kernel function when we use 
symmetric density functions as kernels. For a detailed treatment of kernel density 
estimation, see the book of Silverman, (1986), as well as Härdle (1989), Scott 
(1992), Wand and Jones (1995), Simonoff, (1996), Bowman and Azzalini (1997), 
Pagan and Ullah (1999), Li and Racine (2006), Ahamada and Flachaire (2011).

A popular choice for the kernel is the standard normal distribution, with 
expectation zero and standard deviation one, K(t) = (2π)−1/2 exp(−0.5t2) . The 
standard Gaussian kernel density estimator is equal to: 

f̂X (x) =
1

n
i=1

n

∑ 1

h 2π
exp −

1

2

x − Xi

h

⎛
⎝
⎜

⎞
⎠
⎟

2⎡

⎣
⎢

⎤

⎦
⎥,

 

(2)

=
1

n
i=1

n

∑ϕ(x; Xi ,h).φ (x; X
i
,h).

 

(3)

It is a sum of ‘bumps’ defined by Normal distributions, φ, with expectations X
i
 and 

a fixed standard deviation h.

The question of which value of h is the most appropriate is particularly a thorny 
one, even if automatic bandwidth selection procedures are often used in practice. 
Silverman’s rule of thumb is mostly used, which is defined as follows7: 

ĥopt = 0.9min σ̂;
q̂3 − q̂1

1.349

⎛

⎝
⎜

⎞

⎠
⎟n

−
1
5 ,
  

ĥopt = 0.9min σ̂;
q̂3 − q̂1

1.349

⎛

⎝
⎜

⎞

⎠
⎟n

−
1
5 ,

 

(4)

where σ̂  is the standard deviation of the data, and q̂3  
and q̂1  are respectively the 

third and first quartiles calculated from the data. This rule boils down to using the 
minimum of two estimated measures of dispersion: the variance, which is sensitive 
to outliers, and the interquartile range. It is derived from the minimization of an 
approximation of the mean integrated squared error (MISE), a measure of discrep-
ancy between the estimated and the true densities, where the Gaussian distribution 
is used as a reference distribution. This rule works well in numerous cases. 
Nonetheless, it tends to over-smooth the distribution when the true density is far 
from the Gaussian distribution, as multimodal and highly skewed.

7. See equation (3.31), page 48, in Silverman (1986).
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Several other data-driven methods for selecting the bandwidth have been 
developed. Rather than using a Gaussian reference distribution in the approximation 
of the MISE, the plug-in approach consists of using a prior non-parametric estimate, 
and then choosing the h that minimizes this function. This choice of bandwidth 
does not then produce an empirical rule as simple as that proposed by Silverman, 
as it requires numerical calculation. For more details, see Sheather and Jones (1991).

Rather than minimizing the MISE, the underlying idea of cross-validation by 
least squares is to minimize the integrated squared error (ISE). Let f̂−i  

be the 
estimator of the density based on the sample containing all of the observations 
except for y

i 
. The minimization of the ISE criterion requires us to minimize the 

following expression: 

CV(h) = ∫ f̂ 2(y)dy−
2

n
i=1

n

∑ f̂−i (yi ).

This method is also called unbiased cross-validation, as CV(h)+ ∫ f 2dy  is an 
unbiased estimator of MISE. The value of h which minimizes this expression 
converges asymptotically to the value that minimizes the MISE (see Stone, 1974; 
Rudemo, 1982; Bowman, 1984).

1.2 Adaptive Kernel Density Estimation

If the concentration of the data is markedly heterogeneous in the sample then 
the standard approach, with fixed bandwidth, is known to often oversmooth in 
parts of the distribution where the data are dense and undersmooth where the data 
are sparse. There would advantages to use narrower bandwidth in dense parts of 
the distribution (the middle) and wider ones in the more sparse parts (the tails). 
The adaptive kernel estimator is defined as follows: 

f̂ (y) =
1

n
i=1

n

∑ 1

hλi

K
y− yi

hλi

⎛

⎝
⎜

⎞

⎠
⎟ ,

where λ
i
 is a parameter that varies with the local concentration of the data [1]. It 

is a sum of ‘bumps’ defined by Normal distributions, φ, with expectations X
i
 and 

varying standard deviations hλ
i
 .

A pilot estimate of the density at point  y
i 
, denoted by f (yi ), is used to measure 

the concentration of the data around this point: a higher value of f (yi ) 
denotes a 

greater concentration of data, while smaller values indicate lighter concentrations. 
The parameter λ

i
 can thus be defined as being inversely proportional to this esti-

mated value: λi = [g / f (yi )]
θ, where g is the geometric mean of f (yi ) 

and θ is a 
parameter that takes on values between 0 and 18. The parameter λ

i
 is smaller when 

the density is greater (notably towards the middle of the distribution), and larger 
when the density is lighter (in the tails of the distribution).

8. In practice, an initial fixed-bandwidth kernel estimator can be employed as f (yi ) , with
θ = 1 / 2  and λ obtained with Silverman’s rule of thumb.
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1.3 Log-transform Kernel Density Estimation

It is also possible to estimate the underlying density of a sample, by using a 
preliminary transformation of the data, and obtaining the density estimate of the 
original sample by back-transformation. Let us consider a random variable X and 
define Y such that Y = G(X), where G is a monotonically strictly increasing function. 
The underlying density functions are, respectively, ƒ

X
 and ƒ

Y
. By the change of 

variable formula, we have

fX (x) = fY [G(x)]. ʹ′G (x) (5)

where G'(x) is the first-derivative of G. An estimation of the density of the original 
sample is then obtained by back-transformation, replacing ƒ

Y 
(.) in (5) by a consistent 

estimator f̂Y (.).

In this section, since we have a density on [0,+∞) (and therefore positive 
observations), we consider the special case of the logarithmic transformation 
function, Y = G(X) = log X . If the density of the transformed data ƒ

Y 
 is estimated 

with the Gaussian kernel density estimator, defined in (2), then the log-transform 
kernel density estimation is given by: 

f̂X (x) = f̂Y (log x)
1

x
=

1

nh
i=1

n

∑ϕ
log x − log Xi

h

⎛
⎝
⎜

⎞
⎠
⎟

1

x
φ ,

 

(6)

=
1

n
i=1

n

∑ 1

xh 2π
exp −

1

2

log x − log Xi

h
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⎞
⎠
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2⎡

⎣
⎢

⎤

⎦
⎥ ,

 

(7)

=
1

n
i=1

n

∑Ln(x; log Xi ,h) .

 

(8)

The bandwidth h can be selected with the Silverman’s rule of thumb, the plug-in 
method of Sheather and Jones, or the cross-validation method, applied to the 
transformed sample logX

1
,…,logX

n
.

It is worth noticing that (8) is a sum of ‘bumps’ defined by lognormal distri-
butions, Ln, with medians X

i
 and variances (eh2

−1)eh2
Xi

2. The kernel density 
estimation based on a log-transformation of the data is then similar to use a 
lognormal kernel density estimation on the original data. Note that the dispersion 
of the ‘bumps’ varies: it increases as X

i
 increases. In some way it can be viewed 

as an adaptive kernel method.

2. the bIas and varIance

With nonnegative data, the support of x is bounded to the left: x ∈ [0,+∞). A 
problem encountered by standard and adaptive kernel methods is that they may 
put positive mass to some values outside the support. Indeed, when smallest values 
are close to the lower bound zero, the ‘bumps’ placed at those observations can 
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cross over the bound and, then, significant positive mass can be assigned to some 
negative values. A simple solution would be to ignore the boundary condition and 
to set f̂ (x) to zero for negative x. However, the density estimate would no longer 
integrate to unity over the support [0,+∞) and this would cause a bias in the 
boundary region9.

The log-transform kernel density estimation does not encounter such problem, 
it integrates to unity. Observe that f̂X  is a density since it is positive (as a sum of 
positive terms) and integrates to one, with a change of variable, y = log x, so that 
dy = dx / x, from (6) we have: 

0

∞

∫ f̂X (x)dx =
0

∞

∫ f̂Y (log x)
dx

x
=

−∞

∞

∫ f̂Y (y)dy = 1.  (9)

Since the log-transform kernel is a sum of lognormal distributions, and lognormal 
distributions are defined over the the nonnegative support only, it is also clear from 
(8) that it integrates to unity.

The behavior of the log-transform kernel density estimation in the neighborhood 
of 0 will depend on the behavior of fX (x) (and its derivatives) in the neighborhood 
of 0. Since f̂Y (ε) is estimated with a standard Gaussian kernel estimator, from a 
Taylor expansion, we have

bias{ f̂Y (ε)} =nn[ f̂Y (ε)]− fY (ε)nn
h2

2
f ʹ′ʹ′Y (ε)∼ ƒ"Y    

(e), (10)

see Silverman (1986), p.9. From (6) and (10), we have10: 

� [ f̂X (ε)] =
1

ε
� [ f̂Y (logε)]�

1

ε
fY (logε)+

h2

2
f ʹ′ʹ′Y (logε)

⎛

⎝
⎜

⎞

⎠
⎟∼

 
ƒ"Y  

(log e)� [ f̂X (ε)] =
1

ε
� [ f̂Y (logε)]�

1

ε
fY (logε)+

h2

2
f ʹ′ʹ′Y (logε)

⎛

⎝
⎜

⎞

⎠
⎟
 

, (11)

Since fY (log x) = x ⋅ fX (x) , it follows that

n[ f̂X (ε)]nnn fX (ε)+
h2

2ε
f ʹ′ʹ′Y (logε)∼
 
ƒ"

Y  
(log e). (12)

By deriving twice fY (y) = ey ⋅ fX (ey)  with respect to y and replacing y by log x, 
we obtain11: 

ƒ"
Y   

f ʹ′ʹ′Y (logε) = ε ⋅ fX (ε)+3ε2 ⋅ f ʹ′X (ε)+ε3 ⋅ f ʹ′ʹ′X (ε) ƒ'
X
(e) f ʹ′ʹ′Y (logε) = ε ⋅ fX (ε)+3ε2 ⋅ f ʹ′X (ε)+ε3 ⋅ f ʹ′ʹ′X (ε) ƒ"

X  
(e). (13)

Finally, replacing (13) in (12) gives

9. And using a multiplicative factor to insure that the density integrates to one will increase 
the probability to have large values.

10. The relationship can be related to the equation at the end of section 2 in Marron and Ruppert 

(1994):
 
nn[ f̂X (x)− fX (x)] =

1

x
(nn[ f̂Y (log x)− fY (log x)]).

11. Replace y = log x in ƒ"
Y   

f ʹ′ʹ′Y (y) = ey fX (ey)+3e2y f ʹ′X (ey)+e3y f ʹ′ʹ′X (ey)ƒ'
X

f ʹ′ʹ′Y (y) = ey fX (ey)+3e2y f ʹ′X (ey)+e3y f ʹ′ʹ′X (ey)
 ƒ"

X   
f ʹ′ʹ′Y (y) = ey fX (ey)+3e2y f ʹ′X (ey)+e3y f ʹ′ʹ′X (ey)
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bias{ f̂X (ε)}n
h2

2
fX (ε)+3ε ⋅ f ʹ′X (ε)+ε2 ⋅ f ʹ′ʹ′X (ε)( )

 
~

 
bias{ f̂X (ε)}n

h2

2
fX (ε)+3ε ⋅ f ʹ′X (ε)+ε2 ⋅ f ʹ′ʹ′X (ε)( )ƒ'

X
(e)bias{ f̂X (ε)}n

h2

2
fX (ε)+3ε ⋅ f ʹ′X (ε)+ε2 ⋅ f ʹ′ʹ′X (ε)( )ƒ"

X   
(e)bias{ f̂X (ε)}n

h2

2
fX (ε)+3ε ⋅ f ʹ′X (ε)+ε2 ⋅ f ʹ′ʹ′X (ε)( )  (14)

When the underlying density is zero at the boundary, ƒ
x
 (0) = 0, putting e = 0 in 

(14) shows clearly that the bias is zero. The log-transform kernel density estimation 
is then free of boundary bias. However, when fX (0) > 0  and is finite, there might 
be a significant bias depending on the behavior of the first and second derivatives 
of ƒ

X
 in the neighborhood of 0.

We now turn to the variance. Since f̂Y (ε) is estimated with a standard Gaussian 
kernel estimator, from a Taylor expansion, we have

Var[ f̂Y (ε)] =
1

nh
fY (ε) ∫K 2(u)du , (15)

see Silverman (1986), p.40. For the log-transform kernel density estimator, we then 
have

Var[ f̂X (ε)] =
1

ε2 Var[ f̂Y (logε)] 
1

ε2

1

nh
fY (logε) ∫K 2(u)du

⎛
⎝
⎜

⎞
⎠
⎟ . (16)

Finally, using fY (logε) = εfX (ε)  in (16), we obtain

Var[ f̂X (ε)] 
1

εnh
fX (ε) ∫K 2(u)du (17)

so that the variance of f̂X (ε)  is classically of order (nh)−1 , and is divided by e, which 
would be large in the neighborhood of 0. Compared to the variance of standard kernel 
estimator (15), equation (17) suggests that the variance of the log-transform kernel 
estimator would be larger for values of e close to zero (in the bottom of the distribution) 
and smaller for values of e far from zero (in the top of the distribution).

It is important to note that the log-transform kernel may perform poorly when 
the underlying distribution is not equal to zero at the boundary. Indeed, when 
fX (0) /= 0 , putting e = 0 in (14) and (17) shows clearly that the bias can be significant 

and the variance huge. As illustrated by Silverman (1986), Fig. 2.13, a large spike 
in zero may appear in the estimate. In such case, Gamma kernel density estimation 
may be more appropriate, as suggested by the application of Chen (2000) to the 
Silverman’s data, and the application of Bouezmarni and Scaillet (2005) to the 
Brazilian income distribution, which exhibits an accumulation of observed points 
near the zero boundary12.

To the opposite, when the distribution is equal to zero at the boundary, the 
log-transform kernel may perform well. It should be more efficient than the Gamma 

12. The use of other asymmetric kernels–beta, inverse and reciprocal inverse Gaussian distri-
butions–may also be used. They have been developped in the literature with nonnegative data to remove 
boundary bias near zero, see Chen, (1999), CSDA, Abadir and Lawford (2004), Scaillet (2004). Hagmann 
and Scaillet (2007). Bouezmarni and Rombouts (2010), Kuruwita, Kulasekera, and Padgett (2010).
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kernel. Indeed, the variance of f̂X (ε)  is of order (nh)-1 with the log-transform 
kernel (see above), while it is of order (nh2)-1 in the boundary area with Gamma 
kernel13. In addition, the log-transform kernel allows us to use standard bandwidth 
selection methods on the transformed sample, with well-known properties. With 
Gamma and other asymmetric kernels, bandwidth selection is often more prob-
lematic, there is no general rule-of-thumb bandwidth and cross-validation can be 
burdensome for large samples.

3. fInIte sample performance

We now turn to the performance in finite samples of the kernel density esti-
mation methods presented in the previous section.

13. Chen (2000) shows that the variance of the Gamma kernel density estimator is of order 
(nh2)-1 in the boundary area and of order (nh)-1 elsewhere.

FIGURE 1
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3.1 Model Design

In our experiments, data are generated from two unimodal and one bimodal 
distributions: 

• Lognormal: Ln(x;0,σ) , with s = 0.5, 0.75, 1;

• Singh-Maddala: SM(x; 2.8, 0.193, q), with; q = 1.45, 1.07, 0.75

• Mixture: 2

5
SM(x;2.8,0.193,1.7)+

3

5
SM(x;5.8,0.593,q) 2.8, 0.193, 1.7) 2

5
SM(x;2.8,0.193,1.7)+

3

5
SM(x;5.8,0.593,q) 5.8, 0.593, q), with 

q = 0.7,0.5,0.36 , plotted in Figure 1. It is a mixture of two Singh-Maddala 
distributions.

In the upper tail, the Singh-Maddala distribution SM (x;a,b,q) , also known as the 
Burr XII distribution, behaves like a Pareto distribution with tail-index α = aq. We 
select parameters such that the upper tail behaves like a Pareto distribution with 
α, respectively, close to 4, 3, 2. As s increases and q decreases the upper tail of 
the distribution decays more slowly: we denote the three successive cases as 
moderately, mediumly and strongly heavy-tailed. This design has been used in 
Cowell and Flachaire (2015).

We consider several distributional estimation methods. We first consider 
standard kernel density estimation based on the original sample, X

1
,…,X

n
, with 

the Silverman rule-of-thumb bandwidth (Ksil), the plug-in bandwidth of Sheather 
and Jones (Ksj) and the cross-validation bandwidth (Kcv). We also consider 
the adaptive kernel density estimation with a pilot density obtained by standard 
kernel density estimation, with the Silverman rule-of-thumb bandwidth (AKsil), 
the plug-in bandwidth of Sheather and Jones (AKsj) and the cross-validation 
bandwidth (AKcv). Then, we consider the log-transform kernel density estimation 
based on the transformed sample, log X

1
,…,log X

n 
with respectively, the Silverman 

rule-of-thumb bandwidth (LKsil), the plug-in bandwidth of Sheather and Jones 
(LKsj) and the cross-validation bandwidth (LKcv) obtained from the transformed 
sample.

The sample size is n = 500 and the number of experiments R = 1000.

3.2 Overall Estimation

To asses the quality of the overall density estimation, we need to use a distance 
measure between the density estimation and the true density. Here we use the mean 
integrated absolute errors (MIAE) measure14,

MIAE=E
−∞

+∞

∫ f̂ (x)− f (x) dx( ).  (18)

14. Another appropriate measure is the MISE =E
−∞

+∞

∫ [ f̂ (x)− f (x)]2 dx( ) , but it puts smaller 
weights to differences in the tails.
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Table 1 shows the quality of the fit obtained with standard, adaptive and 
log-transform kernel density estimation methods. The results show that: 

•  The popular standard kernel density estimation method with the Silverman’s 
rule of thumb bandwidth performs very poorly with bimodal and heavy-tailed 
distributions (MIAE=0.225, 0.266, 0.300).

•  Standard and adaptive kernel methods deteriorate as the upper tail becomes 
heavier (from moderate to strong).

•  Log-transform kernel methods do not deteriorate as the upper tail becomes 
heavier.

•  The log-transform kernel estimation method with the plug-in bandwidth of 
Sheather and Jones outperforms other methods (last column).

The MIAE criteria gives one specific picture of the quality of the fit: it is the 
mean of the IAE values obtained from each sample15. Boxplots of IAE values are 
presented in Figure 2: they provide information on the median, skewness, dispersion 

15. IAE =
−∞

+∞

∫ f̂ (x)− f (x) dx. 

TABLE 1

qualIty of densIty estImatIon obtaIned WIth standard,  
adaptIve and log-transform kernel methods: mIae crIterIa  

(Worst In ItalIcs, best In bold), n = 500.

Standard Adaptive Log-transform

Tail Ksil Kcv Ksj AKsil AKcv AKsj LKsil LKcv LKsj
Lognormal

Moderate 0.104 0.109 0.103 0.098 0.110 0.103 0.082 0.087 0.082 
Medium 0.133 0.133 0.125 0.110 0.128 0.118 0.082 0.087 0.082 
Strong 0.164 0.172 0.152 0.126 0.161 0.136 0.082 0.087 0.082 

Singh-Maddala

Moderate 0.098 0.105 0.099 0.093 0.102 0.096 0.087 0.094 0.087 
Medium 0.108 0.115 0.109 0.096 0.109 0.102 0.088 0.094 0.088 
Strong 0.129 0.138 0.128 0.103 0.126 0.114 0.090 0.096 0.090 

Mixture of two Singh-Maddala

Moderate 0.225 0.145 0.139 0.172 0.140 0.125 0.163 0.120 0.115 
Medium 0.266 0.164 0.157 0.206 0.154 0.135 0.158 0.121 0.115 
Strong 0.300 0.229 0.182 0.232 0.212 0.150 0.157 0.122 0.117 
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FIGURE 2

lognormal dIstrIbutIon WIth moderate heavy−taIl 
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note:  Boxplots of IAE values for the most and least favorable cases in Table 1 (first and last 
lines), that is, for the lognormal with moderate heavy-tail and for the mixture of two 
Singh-Maddala distributions with strong heavy-tail

mIxture dIstrIbutIon WIth strong heavy−taIl



152 L’ACTUALITÉ ÉCONOMIQUE

and outliers of IAE values. The median is the band inside the box. The first and 
third quartiles (q

1
,q

3
) are the bottom and the top of the box. The outlier detection 

is based on the interval [b;b] , where b = q1 −1.5IQR , b = q3 +1.5IQR  
and 

IQR = q
3 
–  q

1
 is the interquartile range. Any values that fall outside the interval 

[b;b]  are detected as outliers, they are plotted as individual circles. The horizontal 
lines at the top and bottom of each boxplot correspond to the highest and smallest 
values that fall within the interval [b;b] , see Pearson (2005)16.

The top plot in Figure 2 shows boxplots of IAE values for the lognormal dis-
tribution with moderate heavy-tail, the most favorable case in Table 1 (first row). 
Boxplots of log-transform kernel density estimation are closer to zero, while they 
provide quite similar dispersion, compared to boxplots of standard and adaptive 
kernel density estimation. Moreover, the cross-validation bandwidth selection 
exhibits more outliers than the Silverman rule of thumb and plug-in bandwidths. 
These results suggest that log-transform kernel density estimation, with the Silverman 
and plug-in bandwidth selection, perform slightly better.

The bottom plot in Figure 2 shows boxplots of IAE values for the mixture of two 
Singh-Maddala distributions with strong heavy-tail, the least favorable case in Table 
1 (last row). As suggested in Table 1, the standard kernel method with the Silverman 
bandwidth performs poorly, with a boxplot far from zero. In addition, we can see 
that the standard kernel method with cross-validation bandwidth exhibits many huge 
outliers. Overall, these results suggest that the log-transform kernel density estimation, 
with the plug-in bandwidth selection, outperforms other methods.

3.3 Pointwise Estimation

The approximate expressions derived for the bias and variance of the log-transform 
kernel density estimation at point x, given in (14) and (17), suggest that the 
log-transform kernel method exhibits smaller bias in the neigborhood of zero, 
compared to the standard kernel estimator, and smaller (larger) variance at the top 
(bottom) of the distribution, see the discussion in section 2.

To illustrate the bias and variance of pointwise kernel density estimation, Figure 
3 shows boxplots, biases and variances of standard, adaptive and log-transform kernel 
estimation at points x = 0.01, 0.02, …, 3, for the worst case in Table 1, that is, with a 
mixture of Singh-Maddala with strong heavy-tail. The bandwidth is obtained with 
the plug-in method of Sheather and Jones. By comparing the boxplots of standard 
(top left plot) and log-transform (top right plot) kernel methods, we can see that: 

• The standard kernel method exhibits significant biases in the bottom of the 
distribution (boxes are far from the line of the true density), not the log-transform 
kernel method.

16. If all observations fall within [b;b] , the horizontal lines at the top and bottom of the boxplots 
correspond to the sample maximum and sample minimum. It is the default boxplot command in R.
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• Compared to the standard kernel method, the log-transform kernel method 
exhibits larger variances in the bottom of the distribution and smaller variances 
in the top.

These results are confirmed by the plots of biases (bottom left plot) and of 
variances (bottom right plot). It appears that the log-transform kernel method fits 
the upper tail much better. Figure 4 shows results for the more favourable case in 
Table 1, that is, with a lognormal distribution with moderate heavy-tail. The same 
features are observed, even if less pronounced.

FIGURE 3
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4. applIcatIon

As an empirical study, we estimate the density of the income distribution in 
the United Kingdom (UK) in 1973. The data are from the family expenditure 
survey (FES), a continuous survey of samples of the UK population living in 
households. The data are made available by the data archive at the University of 
Essex: Department of Employment, Statistics Division. We take disposable household 
income (i.e., post-tax and transfer income) before housing costs, divide household 
income by an adult-equivalence scale defined by McClements, and exclude the 
self-employed, as recommended by the methodological review produced by the 

Standard Kernel

Bias

Log-transform Kernel

Variance

FIGURE 4
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FIGURE 5

standard, adaptIve and log-transform kernel densIty estImatIon  
of Income dIstrIbutIon In the unIted kIngdom (1973)
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Department of Social Security (1996). To restrict the study to relative effects, the 
data are normalized by the arithmetic mean of the year. For a description of the 
data and equivalent scale, see the annual report produced by the Department of 
Social Security (1998). The number of observations is large, n = 6968.

With these data, Marron and Schmitz (1992) showed that a nonparametric 
estimation of the income distribution in the United Kingdom produced a bimodal 
distribution, which was not taken into account in preceding work which had used 
parametric techniques to estimate this same density.

Figure 5 presents the results from the estimation of the UK income distribution in 
1973 with standard, adaptive and log-transform kernel method. As a benchmark, we 
plot a histogram with many bins, since we have a large number of observations.

The top plot shows results for the standard kernel estimation methods (see 
section 1.1). The value of the bandwidth obtained with the Silverman rule of thumb 
(Ksil) is equal to h = 0.08559 : it allows us to reproduce the results in Marron and 
Schmitz (1992). We also plot the results with the plug-in bandwidth of Sheather 
and Jones (Ksj) and with the cross-validation bandwidth (Kcv). The comparison 
of the three estimators reveals that the results differ significantly. With the Silverman 
rule of thumb, the first mode is smaller than the second, while in the two other 
cases the reverse holds. Clearly, the kernel density estimation with the Silverman 
rule of thumb bandwidth fails to fit appropriately the underlying density function. 
The cross-validation or plug-in bandwidths give better results, as expected from 
our simulation study (see section 2.2).

The middle plot shows adaptive kernel density estimation methods, based on 
three different preliminary pilot density estimates: based on the Silverman rule of 
thumb bandwidth (AKsil), the cross-validation bandwidth (AKcv) and the plug-in 
bandwidth of Sheather and Jones (AKsj). The results are not very different from 
the standard kernel density estimation (top plot) except that the first mode is slightly 
higher and the estimation is more volatile on the second mode.

The bottom plot shows log-transform kernel density estimation methods, based 
on the three different bandwidth (LKsil, LKsj, LKcv). It is difficult to distinguish 
by eyes the three lines, but the plug-in bandwidth provides a slightly higher first 
mode. Compared to standard and adaptive kernel methods, the estimation is 
smoothed everywhere and a small bumps is captured at the extreme bottom of the 
distribution. With respect to the histogram, used as benchmark, it appears that the 
log-transform kernel density estimation provides better results than the standard 
and adaptive kernel density estimation methods.

Finally, new features of the income distribution in the UK in 1973 are exhibited 
with the log-transform kernel density estimation. Compared to the initial estimation 
of Marron and Schmitz (1992), the main part of the income distribution is bimodal, 
but the first mode is higher than the second mode, and, a small group of very poor 
people appears in the bottom of the distribution.
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We have estimated the income distribution in the UK for several years, from 
1966 to 1999, with the FES dataset. We obtain similar results: the log-transform 
kernel density estimation provides better fit of the distribution, compared to standard 
and adaptive kernel methods, with the histogram used as benchmark.

conclusIon

With heavy-tailed distributions, kernel density estimation based on a preliminary 
logarithmic transformation of the data seems appealing, since kernel estimation 
may then be applied to a distribution which is no longer heavy-tailed.

We have seen that Gaussian kernel density estimation applied to the log-transform 
sample is equivalent to use lognormal kernel density estimation on the original 
data. We have then derived the bias and variance of the log-transform kernel density 
estimation at one point. It leads us to show that the method behaves correctly at 
the boundary if the underlying distribution is equal to zero at the boundary. 
Otherwise a significant bias and a huge variance may appear.

At first sight, our simulation study shows that using a preliminary logarithmic trans-
formation of the data can greatly improve the quality of the density estimation, compared 
to standard and adaptive kernel methods applied to the original data. It is clear from our 
simulation study based on a measure of discrepancy between the estimated and the true 
densities over all the positive support. Studying the bias and variance at pointwise esti-
mation, we show that the log-transform kernel density estimation exhibits smaller bias in 
the bottom of the distribution, but the variance is larger. Our simulation results show that 
the top of the distribution is much better fitted with a preliminary log-transformation.

In our application, the use of a histogram as benchmark and a visual inspection 
help us to show that the log-transform kernel density estimation performs better 
than other kernel methods. It provides new features of the income distribution in 
the UK in 1973. In particular, the presence of a small group of very poor individuals 
is not captured by standard and adaptive kernel methods.
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