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WILD CLUSTER BOOTSTRAP  
CONFIDENCE INTERVALS*

James G. MacKinnon  
Department of Economics 
Queen’s University

Abstract–Confidence intervals based on cluster-robust covariance matrices can be con-
structed in many ways. In addition to conventional intervals obtained by inverting Wald 
(t) tests, the paper studies intervals obtained by inverting LM tests, studentized bootstrap 
intervals based on the wild cluster bootstrap, and restricted bootstrap intervals obtained 
by inverting bootstrap Wald and LM tests. It also studies the choice of an auxiliary distri-
bution for the wild bootstrap, a modified covariance matrix based on transforming the 
residuals that was proposed some years ago, and new wild bootstrap procedures based on 
the same idea. Some procedures perform extraordinarily well even with the number of 
clusters is small.

Introduction 

It is now routine to employ cluster-robust standard errors whenever observa-
tions at the individual level are associated with a number of geographical areas 
and/or with a number of time periods. Each geographical area, or each time per-
iod, or perhaps each area-period pair, can be thought of as a cluster. When key 
regressors are measured at the cluster level, as is often the case when assessing the 
effects of policy changes, fixed effects cannot be used to account for intra-clus-
ter correlation, because the fixed-effect dummy variables would explain all the 
variation in the regressor(s) of interest. Instead, it is common to use cluster-robust 
standard errors, because they allow for heteroskedasticity within and across clus-
ters and also for intra-cluster correlation.

In large datasets, even very small levels of intra-cluster correlation can cause se-
vere errors of inference if standard errors are not robust to clustering. For example, 
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in a “placebo laws’’ experiment with over 500,000 observations on employment 
income data, where the average intra-cluster correlation coefficient is roughly 
0.032, Bertrand, Duflo and Mullainathan (2004) find that using standard errors 
which are robust to heteroskedasticity but not to clustering yields rejection fre-
quencies for interventions that did not actually take place which exceed 0.67 at 
the .05 level.

There has been a good deal of recent work on cluster-robust inference; see 
Cameron and Miller (2015) for a comprehensive survey. Much of this work has 
focused on testing, including bootstrap testing; see Cameron, Gelbach, and Miller 
(2008), and MacKinnon and Webb (2014). This paper focuses instead on confi-
dence intervals. The next section discusses the conventional cluster-robust confi-
dence interval, which is implicitly based on inverting a Wald test, and proposes 
a new interval based on inverting a Lagrange Multiplier, or LM, test. The latter 
is more computationally intensive than the former, but it should be quite feasible 
in most cases.

Section 2 then reviews the procedure for constructing a studentized bootstrap 
interval based on the wild cluster bootstrap. Section 3 proposes two new “re
stricted bootstrap’’ intervals, which are based on inverting bootstrap P values for 
Wald and LM tests, respectively. Unfortunately, these procedures are very com-
putationally intensive. Section 4 describes the design of simulation experiments 
to compare the performance of the five intervals considered in the previous two 
sections, and Section 5 presents the experimental results.

The remainder of the paper deals with two different issues. Section 6 dis-
cusses the choice of an auxiliary distribution for the wild cluster bootstrap and 
presents some further experimental results. Section 7 discusses several ways in 
which cluster-robust confidence intervals can be improved by using transformed 
residuals in covariance matrices and/or wild bootstrap DGPs and presents addi-
tional simulation results. Finally, Section 8 concludes.

1.	 Cluster-Robust Confidence Intervals

Consider the linear regression model

y ≡ 

y1
y2

yG  

= Xβ + u ≡ 

X1
X2

XG

 β + 

u1
u2

uG

 , 	 (1)

where the data are divided into G clusters, indexed by g. The gth cluster has N
g 

observations, and the entire sample has N =
g=1

G

∑ Ng  observations. The matrix X 

and the vectors y and u have N rows, X has K columns, and the parameter vector  
β has K elements. Least squares estimation of equation (1) yields OLS estimates  
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and residuals û. The disturbances are assumed to be uncorrelated across clusters 

but potentially correlated and heteroskedastic within clusters, so that 

E(u
g
u

g
') = Ωg E(ugug') =Ωg , g = 1,…,G,

where the Ng x Ng covariance matrices Ωg are unknown. Thus the covariance ma-
trix of u is assumed to be block diagonal.

Following, Liang and Zeger (1986), the covariance matrix of  can be estimated 
by using a cluster-robust [co]variance matrix, or CRVE. The most widely-used 
CRVE is 

G(N −1)

(G −1)(N −K)
(X'X)−1

g=1

G

∑Xg'ûgûg'Xg

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟(X'X)−1.

 

(X'X)
G(N −1)

(G −1)(N −K)
(X'X)−1

g=1

G

∑Xg'ûgûg'Xg

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟(X'X)−1.

 

Xg'ûgûg' 
G(N −1)

(G −1)(N −K)
(X'X)−1

g=1

G

∑Xg'ûgûg'Xg

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟(X'X)−1.(X'X)–1.	 (2)

This has the familiar sandwich form, with (X'X) -1 serving as the bread and a 
summation of K x K matrices over all clusters serving as the filling. The matrix  
ûg ûg' contains the squares and cross-products of all the residuals for cluster g. It 
evidently provides an inconsistent estimate of Ωg. Nevertheless, 1/N times the sum 
of the Xg' ûg ûg' Xg matrices does consistently estimate the filling in the asymptotic 
covariance matrix, and N times the CRVE consistently estimates the covariance 
matrix of N (  - β0). These results require that G tends to infinity with N at a 
fast enough rate; see Carter, Schnepel, and Steigerwald (2013).

The CRVE (2) resembles a standard heteroskedasticity-consistent covariance 
matrix, or HCCME. In fact, if Ng = 1 for all g and the factor of G/(G-1) is omitted, 
it reduces to the HC

1
 matrix of MacKinnon and White (1985). It will therefore 

be referred to as the CV
1 matrix. The first factor in (2) is a form of degrees of 

freedom correction. It is asymptotically negligible, but it always makes CV1
 larger 

when G and N are finite. When G is small, it can have a non-negligible effect.

When the CV1
 matrix is used to compute t statistics, it is common to base 

inferences on the t(G – 1) distribution; see Donald and Lang (2007), and Bester, 
Conley, and Hansen (2011). However, hypothesis tests based on this distribution 
tend to overreject when G is small, especially when the Ng vary substantially 
across clusters; see MacKinnon and Webb (2014). This suggests that conventional 
confidence intervals will tend to undercover.

In order to focus on the confidence interval for one parameter, say the kth, we 
can partition the parameter vector β into a scalar βk and a (K – 1)-vector β1. The 
most commonly used (1 – α ) % confidence interval for βk  is 

[  k  – c1–α/2 se (  k),   k 
+ c1–α/2 se (  k)],		  (3)

where se ( 
k 
) is the square root of the kth diagonal element of the CV1 matrix (2), 

and c1 –  α/2 is the 1 – α / 2 quantile of the t(G-1) distribution.

The confidence interval (3) is implicitly obtained by inverting a cluster-robust 
t test, which is really a Wald test. We could instead invert a Lagrange Multiplier 
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test. In this case, the LM statistic can be computed by using the Frisch-Waugh-Lovell, 
or FWL, regression 

M1(y – βk
0 xk) = M1xkbk  + residuals,		  (4)

where βk
0

 is a candidate value of βk, X = [X1  xk ], and M1  ≡ I – X1(X'1  X1)-1X'1 . 
The regressand in (4) is the vector of residuals from regressing y - βk

0 xk on X1 , 
and the regressor is the vector of residuals from regressing xk  on X1 . It is easy to 
show that the test statistic LM(βk

0 ) can be written as 

(G −1)(N −K −1)

G(N −1)
((y−βk

0xk ʹ′) M1xk )2/
g=1

G

∑(M1xk )g' ug ug'(M1xk )g

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟,' 

(G −1)(N −K −1)

G(N −1)
((y−βk

0xk ʹ′) M1xk )2/
g=1

G

∑(M1xk )g' ug ug'(M1xk )g

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟,/

(G −1)(N −K −1)

G(N −1)
((y−βk

0xk ʹ′) M1xk )2/
g=1

G

∑(M1xk )g' ug ug'(M1xk )g

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟,'

(G −1)(N −K −1)

G(N −1)
((y−βk

0xk ʹ′) M1xk )2/
g=1

G

∑(M1xk )g' ug ug'(M1xk )g

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟,'

(G −1)(N −K −1)

G(N −1)
((y−βk

0xk ʹ′) M1xk )2/
g=1

G

∑(M1xk )g' ug ug'(M1xk )g

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟,,	 (5)

	

where ug denotes the vector of restricted residuals for cluster g, that is, the ele-
ments of the vector M1(y – βk

0

 xk) that correspond to cluster g. Similarly, (M1xk
)

g de-
notes the rows of the vector M1xk that correspond to cluster g. Expression (5) is 
just the square of the scalar (y – βk

0 xk) 'M1  xk divided by a cluster-robust estimate 
of its variance.

In order to obtain a confidence interval, we need to invert the test statistic (5). 
That is, we need to find the set of values of βk

0 which satisfy the inequality 

 LM (βk
0 ) < c1−α

F
,

where c 1−α
F  denotes the 1 –  α quantile of the F(1, G – 1) distribution1. This needs  

to be done numerically. However, because the problem is one-dimensional and 
LM(βk

0) is smooth, it should not be very difficult. The resulting interval will have 
the form [βk

l ,βk
u ], where

LM(βk
l ) = LM(βk

u) = c1−α
F

.	 (6)

Unlike the Wald interval (3), the LM interval defined by (6) will generally not be 
symmetric around 

k

The Wald interval (3) can be expected to provide reliable inferences when-
ever Wald test statistics based on the CV1 matrix (2), do so. However, several 
studies, including Cameron, Gelbach, and Miller (2008), and MacKinnon and 
Webb (2014), suggest that this will generally not be the case when G is small 
and/or the Ng vary substantially across clusters. In these cases, the Wald interval 
is likely to undercover. Whether the LM interval (6) will perform better in such 
cases is an open question. In linear regression models, LM test statistics are often 
numerically smaller than corresponding Wald statistics; see Breusch (1979). Even 
if such an inequality does not hold strictly in this case, it seems very likely that 
the LM intervals will be longer, and therefore less prone to undercover, than the 
Wald intervals.

1. Asymptotically, it would also be valid to use the 1 –  α quantile of the χ2(1) distribution.
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2.	 The Wild Cluster Bootstrap

The wild bootstrap was proposed in Liu (1988) based on a suggestion in Wu 
(1986). Key papers include Mammen (1993) and Davidson and Flachaire (2008). 
An extension to clustered data was suggested in Cameron, Gelbach, and Miller 
(2008) in the context of hypothesis testing. Simulation evidence in that paper and 
in MacKinnon and Webb (2014) have shown that the wild cluster bootstrap can 
provide remarkably accurate inferences in cases where cluster-robust t statistics 
can overreject severely.

The idea of the wild cluster bootstrap is very simple. For the ordinary wild 
bootstrap, the residual associated with each observation is multiplied by an aux-
iliary random variable that has mean 0 and variance 1. For the wild cluster 
bootstrap, the residuals associated with all the observations in a given cluster 
are multiplied by the same auxiliary random variable. This ensures that the 
bootstrap DGP mimics both the intra-cluster correlations and the heteroskedas-
ticity of the residuals.

There are at least two ways in which the wild cluster bootstrap can be used 
to construct (1 – α) % confidence intervals. The most widely used and computa-
tionally efficient approach is to construct a “studentized bootstrap’’ interval. This 
works as follows: 

1. Estimate equation (1) by OLS to obtain estimates , residuals û, and the 
cluster-robust standard error se ( k).

2. Calculate t̂k = β̂k / se(β̂k ) , the t statistic for βk =0.

3. For each of B bootstrap replications, indexed by j, generate a new set of 
bootstrap dependent variables yg

* j

 
using the bootstrap DGP 

yg
* j = X

g   + û
g
v g

* j , g=1,…,G,	 (7)

where yg
* j

 
is the vector of observations on the bootstrap dependent variable 

for cluster g, and vyg
* j

 
is a random variable drawn from an auxiliary distri-

bution with mean 0 and variance 1. A good choice for the latter is usually 
the Rademacher distribution, which takes the values 1 and –1 with equal 
probability; see Davidson and Flachaire (2008). Other choices are discussed 
in Section 6.

4. For each bootstrap replication, estimate regression (1) using y*j as the re-
gressand, and calculate tk

* j

 
the t statistic for βk =  k , using the square root of the 

kth diagonal element of (2), with bootstrap residuals replacing the OLS residuals, 
as the standard error.

5.  Sort the tk
* j

 
from smallest to largest, and denote by cα/2

*  and c1−α/2
* , re-

spectively, the (B + 1)(α / 2) th

 and (B + 1)(1 –  α/2) th entries in the sorted list. For 
these indices to be integers, B must have been chosen so that (B + 1)(α / 2) is an 
integer. Natural choices are B = 999 and B = 9,999.
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6.  Construct the (1 –  α) % studentized bootstrap interval as 

[β̂k − se(β̂k )c1−α/2
* ,β̂k − se(β̂k )cα/2

* ]. s[β̂k − se(β̂k )c1−α/2
* ,β̂k − se(β̂k )cα/2

* ].[β̂k − se(β̂k )c1−α/2
* ,β̂k − se(β̂k )cα/2

* ]. s[β̂k − se(β̂k )c1−α/2
* ,β̂k − se(β̂k )cα/2

* ].
	 (8)

Studentized bootstrap confidence intervals are widely used. See Davison and 
Hinkley, (1997: chapter 5) and Davidson and MacKinnon (2004, Chapter 5) for 
introductory expositions. The key difference between the studentized bootstrap 
interval (8) and the Wald interval (3) is that the 1 –  α/2 quantile of the t(G – 1) 
distribution is replaced by either the 1 –  α/2 quantile or the α/2 quantile of the 
bootstrap distribution. Because the interval (8) uses two different quantiles, it will 
in general be asymmetric.

3.	 Bootstrap Intervals that Impose the Null

The bootstrap DGP (7) does not impose the null hypothesis. Because doing 
so makes the estimates more efficient, it is generally a good idea to impose the 
null whenever possible; see Davidson and MacKinnon (1999). In the context of 
a confidence interval, however, imposing the null is computationally demanding. 
There are two null hypotheses that correspond to the two ends of the interval, and 
neither of them is known initially. Thus an iterative procedure is necessary. How-
ever, the computational cost may be worth it, because there are circumstances 
in which such a “restricted bootstrap Wald interval’’ can work very much better 
than a studentized bootstrap interval; for an extreme example, see Davidson and 
MacKinnon (2014).

The procedure for constructing a restricted bootstrap Wald interval is similar 
to the one for the LM interval of Section 1 and is not difficult to describe. Step 1 
is unchanged from the first step for the studentized bootstrap interval. The pro-
cedure for determining the upper limit βk

u

 
then continues as follows: 

2. Pick a candidate upper limit, say βk
u†. This might be the upper limit of either 

the Wald interval (3) or the studentized bootstrap interval (8). Then calculate 
t̂k

u† = (β̂k −βk
u†) / se(β̂k ) , the t statistic for βk = βk

u†.

3. Calculate the residual vector 

u† ≡M1(y−βk
u†xk ) = M1y−βk

u†M1xk . 	 (9)

These are the residuals from a regression of y–βk
u†x

k 
on X

1
.

4. Generate B bootstrap samples using the bootstrap DGP 

yg
* j = βk

u†xkg + ug
†vg

* j, g = 1,…,G, 	 (10)

where ug
† is a subvector of u†. The right-hand side of equation (10) could also in-

clude X
1g

, where 
 
denotes the estimates of β1 conditional on βk =βk

u†
, but there 

is no need to include that term, because doing so would not change the bootstrap 
test statistic.
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5. For each bootstrap sample, calculate the bootstrap test statistic tk
* j

 
for the 

hypothesis that β
k 
=βk

u†

 by regressing y* j −βk
u†xk  on X, using the CV

1 
matrix (2) 

to calculate the standard error of β̂k
* j .

6. Calculate the equal-tail bootstrap P value 

p̂† ≡ p̂*(βk
u†) = 2min

1

B
j=1

B

∑I(tk
* j ≤ t̂k

u†),
1

B
j=1

B

∑I(tk
* j > t̂k

u†)
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟,

 

p̂† ≡ p̂*(βk
u†) = 2min

1

B
j=1

B

∑I(tk
* j ≤ t̂k

u†),
1

B
j=1

B

∑I(tk
* j > t̂k

u†)
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟,
, 	 (11)

where I(.) denotes the indicator function, which equals 1 if its argument is true 
and 0 otherwise.

7. If p̂† < α , the candidate upper limit βk
u† must be too large. If p̂† > α , 

it must be too small. Repeating steps 2 through 6 as many times as necessary, 
search over βk

u

 
using a root-finding algorithm that does not require derivatives, 

such as bisection, until it finds a value βk
u*

 
such that p̂*(βk

u*) = α . This is the upper 
limit of the confidence interval.

The procedure for finding the lower limit is almost identical. First, pick a 
candidate lower limit, say βk

l† . Then repeat steps 2 through 6 with appropriate 
modifications. If p̂† < α , the candidate lower limit βk

l† must be too small. If  
p̂† < α>α, it must be too large. Use the root-finding algorithm again to find a value 
βk

l*

 
such that p̂*(βk

l*) = α . This is the lower limit of the confidence interval. 

As with all simulation-based optimization procedures, it is essential that the 
same random numbers be used for each set of B bootstrap samples. Otherwise, the 
root-finding algorithm would probably never converge.

Instead of forming a confidence interval by inverting a bootstrap Wald test, 
we could form one by inverting a bootstrap test based on the LM statistic (5). The 
procedure for constructing this “restricted bootstrap LM interval’’ is very similar 
to the one for the restricted bootstrap Wald interval. In this case, both the test 
statistic itself and the bootstrap samples are conditional on the upper and lower 
limits of the interval. Thus step 1 is omitted. The remainder of the algorithm 
proceeds as follows: 

2. Given a candidate upper limit βk
u† , use expression (5) to compute the test 

statistic LM(βk
u†). Optionally, convert it into a signed statistic by taking the signed 

square root of expression (5).

3. Use equation (9) to compute the residual vector u†.

4. Generate B bootstrap samples using equation (10).

5. For each bootstrap sample, calculate the bootstrap test statistic LMLMk
* j , using 

the same procedure as in step 2. Optionally, convert it into a signed statistic.

6. Calculate the upper-tail bootstrap P value 

p̂† ≡ p̂*(βk
u†) =

1

B
j=1

B

∑I LMk
* j > LM(βk

u†)( ).M M 	 (12)
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If using signed statistics, calculate an equal-tail bootstrap P value, similar to (11), 
instead of (12).

7. Use a root-finding algorithm to find βk
u* , as before.

8. Repeat steps 2 through 7, with appropriate modifications, to find the lower 
limit βk

l* , as before.

When k is expected to be unbiased, there is no reason to convert the LM sta-
tistic into a signed statistic. However, when k is likely to be biased, as may well 
be the case when, for example, instrumental variables are being used to correct 
for endogeneity, doing so can make a substantial difference.

4.	 Design of the Experiments

The simulation experiments investigate the model 

ygi = β1 +β2dgi +β3Dgi +β4dgiDgi +ugi ,g = 1,…,G,i = 1,…,Ng , ygi = β1 +β2dgi +β3Dgi +β4dgiDgi +ugi ,g = 1,…,G,i = 1,…,Ng , ygi = β1 +β2dgi +β3Dgi +β4dgiDgi +ugi ,g = 1,…,G,i = 1,…,Ng ,	 (13)

where dgi  = 1 if any of the observations in cluster g is treated, and Dgi =1 if  i corres-
ponds to a time period in which there is treatment, which takes place for a constant 
fraction π of the observations in each treated cluster. Since an observation is actual-
ly treated if dgi Dgi  = 1, the coefficient of interest is β4 . The dummy variable dgi  is 
included to account for non-random effects that may characterize treated versus un-
treated clusters, and the dummy variable Dgi  is included to account for non-random 
effects that may characterize the time periods in which treatment occurs.

The model (13) can be thought of as a “difference-in-differences’’ regression, 
in which some groups are never treated, so that dgi  = 0 for all i, and other groups 
are treated for some but not all time periods (the same ones for each treated clus-
ter). If the data took the form of a balanced panel with one observation for each 
cluster and time period, then Ng would just be the number of time periods.

For simplicity, consider a balanced panel with just two time periods, indexed 
by 1 and 2, and two groups, indexed by a and b, where group a is never treated and 
group b is treated in period 2. For group a, equation (13) implies that 

E(yai)  = β1+ β3 Di, i = 1,2,

since Dai = Dbi ≡ Di  for both time periods. For this group, the difference between 
the conditional means for the two periods is 

E(ya2)  – E(ya1) = β3(D2 – D1) = β3.	 (14)

For group b, equation (13) implies that 

E(ybi) = β1 + β2 + β3 Di + β4 Di, i = 1,2.

For this group, the difference between the conditional means for the two per-
iods is 

E(yb2) – E(yb1) = β3 + β4.	 (15)
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The difference between the difference for group b in (15) and the difference for 
group a in (14) is simply β4. This explains why the estimate of that parameter in 
equation (13) can be thought of as a “difference-in-differences’’ estimate. For a 
more detailed discussion, see Angrist and Pischke (2009, Chapter 5). 

In most of the experiments, G  =  20 and N  =  1000. However, the way in 
which the N observations are allocated to G clusters depends on a parameter 
γ  ≥  0. Specifically, 

Ng =
N exp(γg / G)

j=1

G

∑exp(γj / G)

, for g = 1,…,G −1,
NG = N −

g=1

G−1

∑ Ng

Ng =
N exp(γg / G)

j=1

G

∑exp(γj / G)

, for g = 1,…,G −1,

 

Ng =
N exp(γg / G)

j=1

G

∑exp(γj / G)

, for g = 1,…,G −1,

where Ng is truncated to the nearest integer, and NG = N −
g=1

G−1

∑ Ng. When γ  = 0, 
the clusters are equal-sized, with Ng = 50 for all g. As γ  increases, the cluster 
sizes become more and more unequal. The largest value of γ  used in the ex-
periments is 4.5, for which the smallest and largest values of Ng  are 2 and 216, 
respectively.

The disturbances ugi
 are homoskedastic, normally distributed, equicorrelated 

within clusters with correlation coefficient ρ, and independent across clusters. Al-
though the value of ρ affects the results, it does so to a remarkably limited extent, 
with almost no observable effect for 0 ≤ ρ ≤ 0.5. Since its value does not matter 
much, ρ is set to 0.2 for all the reported experiments.

One feature of the model (13) is that all the regressors are the same for every 
replication of a given experiment. This makes it possible to perform many of the 
computations just once, which greatly reduces the cost of the simulations. The 
Wald interval is extremely inexpensive to compute. The LM interval is much 
more expensive, but still quite cheap. The studentized bootstrap interval is some-
what expensive, and the two restricted bootstrap intervals are quite expensive.

It may seem surprising that neither N nor G is varied in the principal exper
iments. Increasing N would have almost no effect on the results, but it would raise 
computational costs substantially. Increasing G would make all the intervals per-
form better, but it would not affect any conclusions about their relative perform-
ance. Some evidence on the latter point is provided in the next section.

Most experiments use 100,000 replications with  B = 999. For the same reason that 
the power of bootstrap tests increases with B (Davidson and MacKinnon, 2000), the 
length of bootstrap confidence intervals tends to decline (slightly) as B increases. It is 
therefore desirable not to use too small a value of B in the experiments. With 100,000 
replications, the standard error of an estimated coverage level that is truly 0.95 is 
0.00069. Because the same simulated data are used for all five intervals, however, the 
difference between any two estimated coverage levels is actually much smaller than 
this. In no case do simulation errors lead to results that are at all ambiguous.
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5.	 Performance of Alternative Confidence Intervals

Figure 1 shows the coverage of the five intervals discussed in Sections 1, 2, 
and 3 at the nominal 0.95 level as functions of P, the fraction of clusters treat-
ed. In these experiments, G = 20, N = 1000, and γ = 3, which implies that the 
smallest cluster has 8 observations and the largest has 155. Clusters are always 
treated from smallest to largest, and the results would undoubtedly be differ-
ent if any other ordering were used. The fraction of observations within each 
treated cluster that is treated, π, is 0.4. The actual number of treated clusters is 
obtained by truncation. For example, since 8 x 0.4 = 3.2, three observations are 
treated when Ng = 8.

The Wald interval (3) always undercovers, and it does so quite severely when 
P is large or small. This is what would be expected based on the results for t tests 
in MacKinnon and Webb (2014). In contrast, the LM interval defined by equa-
tions (6) always overcovers. No results for LM intervals are shown for P < 0.20 or 
P > 0.85, because, in those cases, there often appeared to be no finite solution to 
equations (6).

The studentized bootstrap interval (8) always performs better than the Wald 
interval. Like the latter, it always undercovers, but it does so to a very limited 
extent for intermediate values of P. When P is large or small, however, the under-

FIGURE 1

Coverage versus Proportion of Clusters Treated for  

G = 20, γ = 3, π = 0.4
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coverage can be quite severe. In the extreme case of P  =  0.05, in which just one 
cluster is treated, the Wald and studentized intervals cover the true value just 
14.2 % and 15.2 % of the time, respectively. This case is not shown in order to 
avoid making the main part of the figure difficult to read.

The two restricted bootstrap intervals behave very similarly. They per-
form extremely well for moderate values of P, say 0.30 ≤ P ≤ 0.75, but they 
undercover slightly for somewhat more extreme values, and they overcover 
severely for P ≤ 0.15 and P ≥ 0.90. Note that, if G had been larger, the range of 
excellent performance would have been wider. MacKinnon and Webb (2014) 
show that bootstrap tests perform badly only when the number of treated clus-
ters, PG, rather than P itself, is small or large. The results of that paper also 
apply here, since the restricted bootstrap intervals are obtained by inverting 
bootstrap tests.

Figure 2 shows coverage as a function of γ, holding P and π constant at 0.3 and 
0.4, respectively. As expected, all the intervals perform less well as γ increases 
and the values of Ng  consequently become more dispersed. With increasing γ, the 
Wald and studentized bootstrap intervals undercover more severely, and the LM 
interval overcovers more severely. The two restricted bootstrap intervals always 
undercover slightly, but they perform extremely well for all values of γ.

FIGURE 2

Coverage versus γ for G = 20, P = 0.3, π = 0.4
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FIGURE 3

Coverage versus Fraction of Treated Clusters Treated for  

G = 20, γ = 3, P = 0.3
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FIGURE 4

Coverage versus G for γ = 3, P = 0.333, π = 0.4

15 18 21 24 27 30 33 36 39 42 45 48
0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

.............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

............................
.............................

............................
....................................

..................................
....................................

...................................
.........................................

.....................................................................
................................................

............................................................................................
.....................................................................................................................................................

...................................................................................................................................................
................................................................................................................

Wald interval



LM interval

.......
..........

................
....................

................................................... ............ ....

Studentized bootstrap interval

........................................
.................................................................................................................... ........ ...................................

............ ........................ Restricted LM bootstrap interval

• • • • • • • • • • • •

Restricted Wald bootstrap interval

G

Coverage

• • •



23WILD CLUSTER BOOTSTRAP CONFIDENCE INTERVALS

Figure 3 shows coverage as a function of π, the fraction of observations within 
treated clusters that is treated. Coverage improves sharply for both the Wald and 
LM intervals, and to a lesser extent for the studentized bootstrap interval, as π 
increases from 0.10 to 0.25, but there is little further improvement as π continues 
to increase.

Figure 4 shows what happens as both G and N increase together. In the fig-
ure,  G takes the values 15, 18, 21, …, 48 and N  =  50G. The value of P is 1/3, so 
that the numbers of treated clusters are 4, 5, 6, …, 16. As we would expect, all 
the intervals perform better as G increases. In particular, the restricted bootstrap 
intervals perform almost perfectly for G ≥ 21, and the studentized bootstrap inter-
val performs very well for G ≥ 39. In contrast, it appears that G would have to be 
very large indeed for the Wald and LM intervals to perform really well.

In the experiments reported on so far, the fraction π of observations that is 
treated is the same for all treated clusters. This assumption substantially simpli-
fies the task of running the experiments and reporting the results, but it is some-
what restrictive. In order to see how much it matters, the experiments reported 
in Figure 1 were rerun with one major change. Instead of π  =   0.4 for all clus-
ters, odd-numbered clusters now have π  =  0.2, and even-numbered clusters have 
π  =  0.6. Note that, with this modification, equation (13) is no longer interpretable 
as a difference-in-differences model. Figure 5 shows the results.

FIGURE 5

Coverage versus Proportion of Clusters Treated for  

G = 20, γ = 3, π = 0.2 and 0.6
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At first glance, Figure 5 looks very much like Figure 1. Upon closer in-
spection, however, a number of differences become apparent. The studentized 
bootstrap interval now performs substantially worse, especially when P is small 
or large. So does the Wald interval, although its performance does not deteri-
orate as much. The LM interval can no longer be calculated for P  =  0.20, and 
it now undercovers for some large values of P. The two restricted bootstrap 
intervals also perform a bit less well, especially for large values of P. Thus the 
assumption that the fraction of treated clusters is constant certainly matters. 
However, there is no indication that the results would change radically if this 
assumption were relaxed.

The results in Figures 1 through 5 should not have been surprising. Conven-
tional Wald intervals always undercover, and they sometimes do so severely. In 
contrast, LM intervals usually overcover. Studentized bootstrap intervals always 
outperform the Wald intervals on which they are based, but their performance 
can be problematical, especially when G is not large and cluster sizes are quite 
dispersed. In contrast, the two restricted bootstrap intervals perform extremely 
well, and almost identically, except when PG, the number of treated clusters, is 
very small or very large. Thus, even though these intervals are relatively difficult 
and expensive to compute, they are probably worth using in many cases.

6.	 Wild Bootstrap Auxiliary Distributions

In principle, a great many different auxiliary distributions could be used to gen-
erate the random variables vg

*

 
that play a key role in the bootstrap DGPs (7) and 

(10). These include the asymmetric two-point distribution proposed Mammen (1993), 
which is probably the most widely used, and the Rademacher distribution proposed in 
Davidson and Flachaire (2008), which seems to be a much better choice in most cases. 

For the wild bootstrap to work well, the residuals must provide good approx
imations to the unknown disturbances. Sometimes, the residuals are transformed 
in order to make the approximations better; see Section 7. Provided the approx
imations are in fact good, we want the disturbances in the bootstrap DGP to have 
mean zero and the same higher moments as the (possibly transformed) residuals. 
For that to be the case up to the fourth moment, the auxiliary distribution must 
satisfy the conditions 

E(v*) = 0,E(v*2) = 1,E(v*3) = 1,andE(v*4 ) = 1. E(v*) = 0,E(v*2) = 1,E(v*3) = 1,andE(v*4 ) = 1. E(v*) = 0,E(v*2) = 1,E(v*3) = 1,andE(v*4 ) = 1. and E(v*) = 0,E(v*2) = 1,E(v*3) = 1,andE(v*4 ) = 1. 	 (16)

Unfortunately, it is impossible for any distribution to satisfy these conditions.

To see why not, consider the outer product of the vector [1v*v*2 ʹ′] [1v*v*2 ʹ′] with itself 
for a random variable v* with expectation 0 and variance 1. This yields a 3 x 3 
matrix with expectation 

E 
1
v*

v*2

v*

v*2

v*3

v*2

v*3

v*4

 

= 
1
0
1

0
1
μ

3

1
μ

3

μ
4

 ,
	 (17)
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where μ
3
 and μ

4 
denote the third and fourth moments of v*. The determinant of the 

matrix on the right-hand side of equation (17) must be nonnegative because the 
matrix is positive semidefinite. This determinant is μ

4 
–

 
µ3

2
 
– 1. Therefore, 

µ4 −µ3
2 ≥1. 	 (18)

If μ
3
 = 1, equation (18) implies that μ

4 
≥

 
2. Conversely, if μ

4
 = 1, it implies that 

μ
3
 = 0. Thus there exists no distribution of v* which satisfies conditions (16). This 

means that there is no ideal auxiliary distribution. We either need to relax the 
requirement that μ

3
 = 1 or allow μ

4 
≥

 
2.

Since it takes the values 1 and –1 with equal probability, it is easy to see that 
the Rademacher distribution has μ

3
 = 0 and μ

4
 = 1. Thus it satisfies three of the 

four conditions in (16). However, because its third moment is zero, it imposes 
symmetry on the bootstrap disturbances.

Mammen (1993) suggests the two-point distribution 

– ( 5 – 1)/2 with probability ( 5 + 1) / (2 5 ),

( 5 + 1)/2    with probability ( 5 – 1) / (2 5 ). 	 (19)

This distribution satisfies the first three conditions in (16), but it has μ
4
 = 2. 

Thus it violates the last condition, although it does come as close to satisfy-
ing it as any distribution with μ

3
 = 1 can, because the inequality (18) holds 

as an equality.

Davidson and Flachaire (2008) provide evidence that the Rademacher distri-
bution is a better choice than Mammen’s two-point distribution (19) even when 
the disturbances are not symmetric. Davidson, Monticini, and Peel (2007) con-
sider a class of two-point distributions of which Rademacher and (19) are spe-
cial cases. In experiments with disturbances that are heavily skewed and severely 
heteroskedastic, the Rademacher distribution clearly outperforms Mammen’s dis-
tribution (19) and all the others considered. Thus it appears that having a fourth 
moment equal to 1 is more important for an auxiliary distribution than having a 
third moment equal to 1.

With a two-point distribution, each observation can have only two bootstrap 
disturbances associated with it. In the cluster case, this means that there are only 
2G possible bootstrap samples. When G is small (say, less than 12) this can cause 
serious problems, as Webb (2013) points out. That paper therefore suggests an 
auxiliary distribution with six mass points, 

− 1.5, −1, − 0.5, 0.5,1, 1.5,

each of which has probability 1/6. It is easy to see that: 

E(v*) = 0,E(v*2) = 1,E(v*3) = 0,andE(v*4 ) = 7 / 6. E(v*) = 0,E(v*2) = 1,E(v*3) = 0,andE(v*4 ) = 7 / 6. E(v*) = 0,E(v*2) = 1,E(v*3) = 0,andE(v*4 ) = 7 / 6. and E(v*) = 0,E(v*2) = 1,E(v*3) = 0,andE(v*4 ) = 7 / 6.
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Because 6G is very much larger than 2G , the six-point distribution can safely be 
used even when G is very small. Its only disadvantage, relative to Rademacher, is 
that the fourth moment is slightly higher than 1.

Of course, it is not essential to limit ourselves to auxiliary distributions with 
a finite number of mass points. Since the standard normal distribution has mean 
0 and variance 1, it may seem to be a natural choice for the distribution of v*. 
However, μ

3 
= 0 and μ

4 
= 3, so that the standard normal violates two of the condi-

tions in (16). It violates the last condition much more severely than the six-point 
distribution does.

Another continuous distribution with the correct mean and variance is the 
uniform distribution 

U − 3, 3⎡⎣ ⎤⎦, 
U − 3, 3⎡⎣ ⎤⎦, ,

which has μ
3 
= 0 and μ

4
 = 1.8. It also violates two of the conditions in (16), but it 

violates the fourth-moment condition less severely than the standard normal does.

FIGURE 6

Coverage of Studentized Bootstrap Intervals versus  

G for γ = 3, P = 0.333, π = 0.4
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In addition to the two-point distribution, Mammen (1993) suggests the con-
tinuous distribution 

v* = u / 2 +
1

2
(w2 −1),

where u and w are independent standard normal random variables. It can be 
shown that 

E(v*) = 0,E(v*2) = 1,E(v*3) = 1,andE(v*4 ) = 6. E(v*) = 0,E(v*2) = 1,E(v*3) = 1,andE(v*4 ) = 6. E(v*) = 0,E(v*2) = 1,E(v*3) = 1,andE(v*4 ) = 6. and E(v*) = 0,E(v*2) = 1,E(v*3) = 1,andE(v*4 ) = 6.

Thus the first three moments satisfy conditions (16), but the fourth moment is 
very much larger than 1.

None of the simulation evidence in Davidson and Flachaire (2008) and David-
son, Monticini, and Peel (2007) concerns the wild cluster bootstrap. I therefore 
investigate studentized bootstrap intervals using the six auxiliary distributions 
discussed above. Because the differences among the auxiliary distributions may 
be quite small, all experiments use 400,000 replications. This is feasible because 
studentized bootstrap intervals are much less expensive to compute than restrict-
ed bootstrap intervals.

Figure 6 shows the coverage of studentized bootstrap intervals at the nomin-
al 0.95 level as functions of G for G = 9, 12, 15, …, 30, with N = 50G, P = 1/3, 
and π  =  0.4. It is similar to Figure 4, except that G = 9 and G = 12 are added, 

FIGURE 7

Coverage of Studentized Bootstrap Intervals versus P for  

G = 16, γ = 3, π = 0.4
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because the failures of the algorithm for the LM interval for those cases are now 
irrelevant, and values of G greater than 30 are omitted. The results are strik-
ing. For every value of G, the Rademacher distribution yields the most accurate 
coverage, followed closely by Webb’s six-point distribution. Surprisingly, this is 
true even for G = 9, where there are only 512 distinct bootstrap samples. The uni-
form distribution comes next, but after a noticeable gap, followed by the standard 
normal and Mammen continuous distributions. The worst undercoverage, by a 
considerable margin, is provided by the Mammen two-point distribution, which 
is probably still the most widely used auxiliary distribution in practice.

Figure 7 shows the coverage of studentized bootstrap intervals at the nominal 
0.95 level as functions of P , the proportion of clusters treated, for G = 16 and  
N = 800, again with π = 0.4. The actual number of clusters treated varies from 
2 to 14. The ordering of the six auxiliary distributions is precisely the same as 
in Figure 6. The Rademacher distribution always performs best, followed close-
ly by the six-point distribution, and the Mammen two-point distribution always 
performs worst.

These results strongly support the use of the Rademacher distribution, even 
when G is very small, although the six-point distribution also works well and may 
be safer in that case. Other distributions should not be employed. Using Mammen’s 
classic asymmetric two-point distribution (19) appears to be a particularly bad idea.

7.	 Modified CRVEs and Bootstrap DGPs

Following MacKinnon and White (1985), it is common to transform residuals 
prior to using them in the filling of a sandwich HCCME. The most popular such 
HCCME is probably the HC

2 covariance matrix, which uses the transformation 

ui = (1−Xi (X'X)−1Xi')
−1/2 ûi ,i = 1,…,N ,'ui = (1−Xi (X'X)−1Xi')
−1/2 ûi ,i = 1,…,N , ui = (1−Xi (X'X)−1Xi')
−1/2 ûi ,i = 1,…,N , 	 (20)

where Xi denotes the ith row of the regressor matrix X. The HC
2
 matrix has been 

studied extensively. Both theoretical and simulation results suggest that it usually 
yields more accurate inferences than HC

1
, in which û

i
 is effectively just multiplied 

by a degrees-of-freedom correction. For a recent survey on heteroskedasticity- 
robust inference, see MacKinnon (2012).

Bell and McCaffrey (2002) proposed the cluster-robust analog of HC
2 
as an 

alternative to the widely-used CV
1 
matrix (2). It seems logical to refer to their 

covariance matrix estimator as CV
2
. It omits the first factor in (2), which is es-

sentially a degrees-of-freedom correction, and replaces the residual subvectors û
g
 

by the subvectors 

ug = (I−Pgg )−1/2 ûg ,g = 1,…,G,
	 (21)

where(.)–1/2 denotes the symmetric square root of the inverse of the matrix inside 
the parentheses,

Pgg ≡Xg (X'X)−1Xg',',
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and X
g
 denotes the Ng x k  submatrix of X corresponding to the observations in 

cluster g. Thus P
gg 

is the Ng  x Ng   block that corresponds to cluster g on the diag-
onal of the projection matrix PX = X(X'X) -1X'. Equation (21) evidently reduces 
to equation (20) if all clusters have just one member, so that G = N and N

g
 = 1 

for all g.

Imbens and Kolesar (2012) provides some evidence that CV
2
 outperforms 

CV
1
. Based on this evidence and the much more extensive body of evidence that 

HC
2 
outperforms HC

1
, it might seem logical to use CV

2
 all the time. There is a 

problem, however. The matrices I – P
gg 

are Ng  x Ng. When Ng  is large, finding the 
symmetric square root can be expensive. Indeed, when Ng  is very large, simply 
creating and storing these matrices may be infeasible. This is a very real prob-
lem, because empirical work that uses cluster-robust inference often employs very 
large samples. For example, the largest cluster (for California) in the placebo 
laws experiments of MacKinnon and Webb (2014), which are based on the exper
iments of Bertrand, Duflo and Mullainathan (2004), has 42,625 observations The 
corresponding P

gg 
matrix would take up more than 14 GB of memory.

The basic idea of the CV
2
 matrix can be extended in several ways. First, we 

could define a CV
3
 matrix similar to the simplified HC

3 
matrix of Davidson and 

MacKinnon (1993)2. This would involve replacing (.)–1/2 by (.)–1 in equation (21). 
Although it seems extremely unlikely that CV

3
 would outperform CV

2
 in general, 

it might well do so in many cases, just as HC
3 
often outperforms HC

2
.

A more interesting application of the CV
2
 idea is to use transformed resid-

uals in the bootstrap DGP. Davidson and Flachaire (2008) suggest transforming 
the residuals in wild bootstrap DGPs in ways analogous to the transformations 
used in the HC

2 
and  HC

3 
covariance matrices. That paper and MacKinnon 

(2012) find that bootstrap DGPs based on transformed residuals typically yield 
improved results, even when the covariance matrix does not employ the same 
transformation.

At least four different wild cluster bootstrap DGPs can be based on these 
ideas. Two of the four use a transformation like the one used in CV

2
, and the other 

two use a transformation like the one used in CV
3
. One of each pair, like (10), 

imposes the null, and the other, like (7), does not. The former would be appro-
priate for hypothesis testing and for restricted bootstrap intervals, and the latter 
would be appropriate for studentized bootstrap intervals. For example, the CV

2 

-like bootstrap DGP analogous to (7) is 

￼ yg
* j = Xgβ+ ugvg

* j, g = 1,…,G,  yg
* j = Xgβ+ ugvg

* j, g = 1,…,G,	 (22)

with the vectors üg defined by (21). The wild cluster bootstrap DGPs (7) and (22) 
will be referred to as wc

1 
and wc

2 
, respectively.

2 	 As MacKinnon (2012) explains, this is not quite the same as the jackknife HC
3
 matrix 

originally proposed in MacKinnon and White (1985).
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FIGURE 8

Coverage versus G for γ = 3, P = 0.333, π = 0.4
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Figures 8 and 9 report simulation results for the performance of the CV
1
 and  

CV
2

 covariance matrices and the wc
1 and wc

2 bootstrap DGPs. These are similar 
to Figures 6 and 7, respectively, except that they are based on only 100,000 repli-
cations because the CV

2
 covariance matrix is mucth more expensive to compute 

than CV
1

 even when the (I-Pgg)–1/2 matrices have been precomputed.

It is evident in both figures that Wald confidence intervals based on CV
2 
per-

form substantially better than ones based on CV
1
. Thus, if the sample size is small 

enough to make computation of CV
2 
feasible, and the bootstrap is not going to be 

used, it is apparently a good idea to employ CV
2
.

The studentized bootstrap confidence intervals almost always perform better 
than the Wald intervals. The improvement is always quite substantial in Figure 8, 
but it is very small for some values of P in Figure 9. Using the  wc

2  
bootstrap DGP 

always works better than using the  wc
1  

bootstrap DGP, except when P = 0.125. 
Interestingly, however, it makes almost no difference whether wc

2 is paired with 
CV

1
 or CV

2
 . Since the CV

2
  matrix is a great deal more expensive to compute than 

the CV
1

  matrix, these results suggest that combining wc
2  

with CV
1
  may be the 

most attractive variant of the studentized bootstrap when the sample size is large 
but not extremely large3.

The CV
1
 + wc

2 intervals perform quite well except when G is very small and/
or P is small or very large. However, if we compare Figure 9 with Figure 1, there 
appear to be no values of P where they would perform as well as restricted boot-
strap intervals based on either LM or Wald tests.

Conclusion

Conventional cluster-robust confidence intervals are implicitly obtained by in-
verting t statistics based on cluster-robust standard errors. The simulation results 
in Section 5, combined with the ones in MacKinnon and Webb (2014), suggest 
that these intervals work well when the number of clusters is reasonably large, 
cluster sizes are not very dispersed, and the fraction of clusters subject to treat-
ment (if the key regressor can be thought of as a treatment dummy) is moderate. 
However, when any of these conditions fails, they are prone to undercover, some-
times severely.

Various alternative confidence intervals are studied. The ones that usually 
work best are obtained by inverting bootstrap tests, but the procedure for 
calculating them can be computationally challenging; see Section 3. Studen-
tized bootstrap intervals work well in many cases and are much less expen-
sive to compute.

3.	 Just what “a great deal more expensive’’ means depends on N, G, K and the Ng. In the 
experiments, the CV

2
 + wc

2 
intervals are about 4.7 times as expensive to compute as the CV

1 
+wc

2 
 

intervals. When N is increased from 800 to 1600 or 3200, however, the CV
2
+wc

2 
intervals become 

7.7 and 52 times as expensive, respectively.
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The performance of both conventional intervals and studentized bootstrap 
ones can be improved by using the CV

2 
 covariance matrix instead of the much 

more common CV
1 
matrix. Unfortunately, the cost of computing CV

2 
rises very 

rapidly with the number of observations in the largest cluster(s). For moderately 
large samples, it can easily be more expensive than the studentized bootstrap, and, 
for very large samples, it can be infeasible.

When it is feasible to compute CV
2
, it should also be feasible to compute studen-

tized bootstrap intervals that use transformed residuals in the bootstrap DGP together 
with CV

1 
in the test statistics. These seem to work a little better than studentized boot-

strap intervals where the bootstrap DGP does not use transformed residuals.

Section 6 studies the choice of an auxiliary distribution for the wild bootstrap. 
The results provide additional evidence in favor of the two-point Rademacher distri-
bution and against the popular two-point Mammen distribution. They also suggest 
that it is unwise to use the standard normal or several other continuous distributions.
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