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The Doctrine of Triangles is the second half of GlenVan Brummelen’s history
of trigonometry. The first part, The Mathematics of the Heavens and the
Earth [Van Brummelen 2009] dealt with the early history of trigonometry,
from “precursors” in ancient Egyptian and Babylonian sources (dating from
the second millennium bc), through to the trigonometric tables of Georg
Rheticus in the 16th century ad. The present volume begins with a brief
account of the story so far and then continues the story through to the early
20th century. It will be helpful to review briefly that “story so far”.
Trigonometry was born of a desire to understand the heavens, and the first
known quantitative modeling of the motion of the heavenly objects was
done by ancient Babylonians in the eighth century bc. However, these calcu
lations didn’t involve any geometric models and so, for Van Brummelen, the
real story of trigonometry begins a bit later, with Greek astronomers using
geometric models to predict events such as eclipses and first risings. Since
these models used circular orbits, and since astronomical observations in
volved angular displacements, it was useful to be able to convert angles at
the center of a circle into lengths of the chords determined by such angles,
and vice versa. Hipparchus (second century bc) seems to have been the first
person to construct a table of arcs (equivalent to angles) and corresponding
chords, but the earliest surviving table comes from Ptolemy’s Almagest in
the second century ad.
Ptolemy also showed how his table was constructed. and his techniques set
the pattern for building many chord (and, eventually, sine) tables over the
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next thousand years or more. By viewing chords of certain angles as sides
of constructible regular polygons, Ptolemy first calculates a basic set of
chords (namely, those for 90, 72, and 60 degrees). In this case, “constructible”
probably means that the relevant lengths can be calculated using nothing
more complicated than square roots, but that ends up being equivalent to
the polygons’ being constructible by ruler and compass techniques. After
proving some general rules for chords of sums and differences of angles, and
of bisected angles, Ptolemy can then calculate chord values for all angles that
aremultiples of 3 degrees. Finding the chord of 1 degree is a bitmore difficult,
as there is no general “construction” for trisecting angles. Instead, he first
proves that if angles α and β satisfy α > β then chord(α)/chord(β) < α/β,
and then uses the known chord values for 3⁄2 and 3⁄4 degrees to deduce upper
and lower estimates which prove that the chord of 1 degree must be 1;2,50
(to two sexagesimal places). Armed with this value, he produces a table for
chords of all angles from 1⁄2 degree to 180 degrees, in steps of 1⁄2 degree. He
also shows how to use what we would call linear interpolation to calculate
chords for angles given to the nearest minute of arc.
Mathematicians have tended to think of their subject as developing linearly,
each new advance depending directly on the previous one. But Van Brum
melen shows that the early development and transmission of trigonometry
is surprisingly nonlinear. Intermittent moments of cultural contact, sepa
rated by long periods of apparent isolation, seem to have led to hundreds
of years of relatively independent development of trigonometry in three
separate cultures: Greek, Islamic, and Indian.
It seems that the first transmission (or possibly, an independent develop
ment) saw the appearance in India of a Babylonian version of astronomy,
in the form of astronomical period relations, possibly in the fifth century
bc. Around the third or fourth century ad, a version of Greek astron
omy and chord tables seems to have reached India. Somewhat surprisingly,
it was not Ptolemy’s version but something cruder. Almost immediately,
though, the chord tables were replaced by sine tables (roughly speaking,
chord(2θ) = 2 sin(θ)), the advantage being that this simplifies many astro
nomical calculations. Perhaps because Indian astronomy and mathematics
were part of a mostly oral culture, these sine tables are quite short, with a
step size of 3.75 degrees (equivalent to a step size of 7.5 degrees in a chord
table), and the gaps are sometimes filled in by secondorder interpolation
techniques which were also described briefly (in verse).
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The birth of Islam in the seventh century ad brought a third culture into the
mix. Situated geographically between the Greek and Indian spheres of influ
ence, it soon reached out to both cultures. Within a century or two, Islamic
scholars had access to up-to-date versions of both the Indian and Greek ver
sions of astronomy and trigonometry and were developing their own synthe
sis. In the case of trigonometry, the convenience of sine tables won out over
the chord tables, but they adopted Ptolemy’s methods for calculating the
table entries. They also made their own innovations. Work on the construc
tion and use of sundials led to the development of shadow tables, which
would later become tangent and cotangent tables. Trigonometry was also
used to solve characteristically Islamic problems, such as determining the
beginning of the month Ramadan and the direction of prayer towardMecca.
This last development meant that trigonometry was now the mathematics
of the Earth as well as the heavens.
Islamic influence spread across North Africa and into Spain, and by the 12th
century Latin scholars began to get access to some of the works of Islamic
scholars. European Renaissance writers tended to see this as simply (part of)
the return of classical culture to its original home, but in any case it sowed
the seeds of trigonometry in yet another culture. Whether it was the same
culture as the Greek one that originally gave birth to trigonometry is a bit
doubtful, of course, but the net result (eitherway)was that trigonometry now
thrived in three living cultures (Indian, Islamic, and “European”). However,
distance was not conducive to easy communication, and friendly relations
between these cultureswere at best intermittent. So, to the lasting discomfort
of linearly minded (tidy?) historians, trigonometry developed more or less
independently in all three cultures. Thus, for example, neither al-Kāshī’s
15th-century calculation of sine of 1 degree by using an iterative method
to solve a cubic equation, nor Mādhava’s late 14th-century discovery of the
power series for sine and cosine, reached Europe in time to influence similar
developments there.
In both volumes of his history, Van Brummelen deals with this complicated
situation by covering each culture separately. Thus, by the start of The Doc
trine of Triangles, he has already covered developments in India and in Islam;
and he has brought the story in Europe up to the mid-1500s. In this second
volume, he follows the European story through to the start of the 20th cen
tury and, almost as an aside, covers a fourth cultural strand of trigonometry
that developed in China.
At this point I found it useful to recall my own introduction to trigonometry.
It may conjure up similar memories for some of my older readers. I first met
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the subject as a 13 year old at high school in 1966. In our regularmathematics
classes, we learned about geometry and algebra. Geometry was about angles,
parallel lines, triangles, circles, chords, and tangents, all presented more
or less in the style of Euclid. Algebra seemed to be about pretending that
letters could be numbers. It took me ages to figure out what the teacher was
doing when there was aminus sign in front of a set of brackets.We were also
introduced to logarithm tables as an easy way to multiply numbers. (Slide
rules came along a couple of years later, and mechanical calculators did not
appear until our physics labs at university.) Even with logarithms, negative
numbers caused me confusion when some logarithms had a negative whole
number part (indicated by a bar over it) and a positive decimal part. Then,
once a week, at the usual time for our mathematics class, a different teacher
introduced us to trigonometry, which seemed to be about calculating sides
and angles in rightangled triangles. I assumed this new teacher was more
expert at the subject than our regular mathematics teacher, possibly because
he also taught technical drawing to the less academic boys in the school. A
key tool in trigonometry was another set of tables which listed angles and
corresponding ratios called tangents (“opposite over adjacent”). No one ever
told me that these two uses of the word tangent were related. Because of the
context, all the angles were strictly between zero and 90 degrees. Because
we did not meet functions or graphs until the following year, tangents came
only as tables. Sines and cosines were not introduced until the following year.
As the curtain rises in 1550 in this second installment of the history of
trigonometry, sine tables have been around for a 1000 years; but they list
lengths (of halfchords in circles of various standard radii) rather than ratios,
as we now think of them. Tangent and cotangent tables, in the form of
shadow lengths corresponding to varying heights of gnomon, have been
around since at least the time of al-Khwārizmī in the ninth century. However,
tangents are not yet called tangents, even though Abū’l-Wafā had drawn
the trigonometric tangent as a tangent line in his classic diagram of all six
standard trigonometric quantities as long ago as the 10th century. Indeed
trigonometry itself had not yet received its modern name. That did not
happen until Pitiscus [36] coined a New Latin title for his Trigonometriae in
1595. But trigonometry in the guise of a doctrine of triangles was alive and
well. On the other hand, algebra, logarithms, and even a general acceptance
of negative numbers were still in the future, albeit the relatively near future.
AlthoughThe Doctrine of Triangles is certainly history written from the point
of view of the people of the time, the basic narrative thread is essentially the
story of how sine and cosine (and tangent) developed from lengths, or ratios
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of lengths, to being functions acting on any real (or even complex) number.
Not just that, they are differentiable functions that satisfy the wave equation
and, through Fourier Series, they can also be used to solve the heat equation.
It is very tempting to read this amazing story as a “royal road to us”.
The Doctrine of Triangles opens (chapter 1) with an account of what Van
Brummelen calls the coming of age of European trigonometry. Once again,
the story is far from linear, as competing presentations of trigonometry
include different “functions”, picture these functions in different ways, and
measure them against different “radii”. Presumably, history then selects
the fittest for survival. For example, Regiomontanus in his major work,
De triangulis omnimodis (published in 1533), pictures the sine, cosine, and
versine as lengths in a circle of radius 𝑅 = 100,000; but he omits any form
of the tangent [4]. He did include the tangent in his Tabula directionum
(published in 1490), but it is called “tabula fecunda”. On the other hand,
Rheticus, in his Canon doctrinae triangulorum (published in 1543), lists all
six functions: sine, cosine; secant, tangent; and cosecant, cotangent and
pictures themas these pairs, coming from three typical rightangled triangles
in which either the hypotenuse, or one of the other sides (respectively) is the
standard “radius”𝑅 = 10,000,000. In this case, trigonometry has almost been
freed from its circular origins [9]. The large values for the radius 𝑅 seem
to reflect a desire to work with whole numbers, rather than with decimal
fractions. Using even larger 𝑅 values allowed table makers to use smaller
step sizes and to display more accurate values.
Although Cardano had shown Europeans how to solve cubic equations in
1545, all of these everfiner tables were still built up using essentially the
same technique as Ptolemy used when he calculated the sine of 1 degree.
When Viète invented symbolic algebra in the late 1500s, he was able to
offer an alternative route to finding the sine of not just 1 degree but also
of 1 minute [27]. The key idea was to find recurrence relations for sin(𝑛θ)
and cos(𝑛θ). Using his algebra he was then able to express sin(3θ) as a cubic
polynomial in powers of sin(θ), and similarly for higher multiples of the
angle. So the sine of 1 degree could be calculated by solving a cubic equation
(as al-Kāshī had done almost 200 years earlier within the Islamic culture).
Viète didn’t actually carry out the final calculation himself, but Briggs did
in 1633.
In the late 1500s trigonometry in Europe crossed a different kind of cultural
boundary. Trigonometry had begun as a servant of astronomy but now it
began to be used in surveying and other “practical geometry” [46]. Typi
cally practitioners of practical geometry solved problems by using similar
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triangles and the Pythagorean theorem. This would have been a bit like the
cultural divide that existed 50 years ago between universities and polytech
nics. I imagine my first trigonometry teacher, a technical drawing teacher,
as a descendant of this tradition. Trigonometry’s crossing of the divide is
shown by Fincke (1583) and Clavius (1604), who wrote books showing how
problems involving heights, distances, and lengths could be solved using
tangents and other trigonometric functions.
Trigonometry clearly had potential uses in navigation too but, even if there
had been no cultural divide, there would be serious practical issues to be
solved first. Trigonometric techniques generally involved multiplying and
dividing long numbers from the tables, and these calculations were slow
and difficult to perform reliably. As schoolboys in the 1960s we faced the
same problem with our trigonometric calculations. We were perhaps the
last generation to experience the problem. In chapter 2, Van Brummelen
describes how Napier, in 1614, solved the problem by inventing logarithm
tables. Suddenly multiplication and division were more or less as easy as
addition and subtraction. As with trigonometric tables, Napier’s logarithms
were all whole numbers (10,000,000 × log(𝑥), in our terms). Unfortunately,
some logarithms were negative and some positive, which led to errors in
calculations; and it was not long before Speidell (1627) hit on the idea of
subtracting all Napier’s logarithms from 100,000,000, thus making them all
positive [73]. As I mentioned earlier, this idea persisted through to the log
tables of my youth, although it was only on reading this book that I realized
what had been happening! It seems to be clear that Napier was motivated
by the trigonometric calculations used in astronomy, but we have seen that
the need to simplify calculations extended to other “professions”; and it was
not long before trigonometric and logarithm tables were published not just
in Latin (the usual language of scholars) but also in the contemporary lan
guages of Europe. In other concessions to practical needs, smaller sets of ta
bles were produced, using fewer significant figures but more suited to use on
sea voyages [75]. Incidentally, language barriers did not always cut European
society the same way. Thus, Descartes originally published his Géometrie in
French [95], but it did not become widely known until van Schooten trans
lated it into Latin. The bonds that “united” Europe, and made it possible to
conceive of a Eurocentric view of history, were sometimes quite tenuous.
Chapter 3 shows how trigonometric functions feature in the development
of calculus in the 17th century. In the years leading up to the discovery
of calculus, much effort was devoted to calculating the areas of regions
enclosed by curves and to constructing tangents to curves. Here curves
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were generally defined by algebraic equations (following the invention of
coordinate geometry by Fermat and Descartes) but sometimes they could be
generated by a mechanical process. Thus Van Brummelen shows Roberval,
in the 1620s or 1630s, calculating the area under a cycloid, a curve described
by the motion of a point on the circumference of a rolling circle [113]. In
this case a cosine curve appears as a result of a geometric transformation
of the area sought, but Roberval also gives a direct construction of a sine
graph and calculates the area under this graph. This seems to be the first
acceptance that a trigonometric function could define a curve. By 1670, the
curves associated with sine, cosine, tangent, and secant had all appeared in
print [117]. Not surprisingly, given their origins, these curves were drawn
just for angles in the first quadrant. The spur to considering larger angles
seems to have come from looking at multiple angle formulas for the basic
trigonometric functions. A formula for sin(𝑛θ) in terms of powers of sin(θ)
and cos(θ), for example, could give rise to equations where one side of the
equation made sense, but the other side involved angles larger than 90, or
even 360, degrees. Cotes [148] gives graphs of the tangent and secant over
several periods in 1722.
On another front, Newton’s study of infinite series in the 1660s showed that
trigonometric functions could also be thought of as algebraic if we extend
algebraic operations to infinite series. Van Brummelen [129] shows how
Newton derived an infinite series for arcsine. By extending to infinite series
the known arithmetical algorithms for long division and finding square
roots, he finds an infinite series representing an element of arc length on a
circle. Integrating this element gives the desired series for arcsine. Inverting
this series, that is, finding its inverse function as a series, then gives the now
standard infinite series for sin(𝑥). Within a generation infinite series, and
with them the standard trigonometric functions, became part of the routine
toolbox of mathematics. In the 1740s, Euler used series to solve differential
equations and found the exponential and trigonometric functions involved
together in solutions to oscillation problems [161].
Chapter 4 is an interlude dealing with trigonometry in China. As Van
Brummelen says [xv], there was no obvious place to put this chapter. One
consequence of China’s relative isolation and independence is that it has
(until very recently) had little impact on the development of “European”
mathematics. As a consequence, there is no obvious point in the history of
trigonometry, as there was with Indian or Islamic culture, where “we” could
talk about “their” contribution to “our” story. In those two cases, the entry
points also offer “us” the opportunity to continue “their” story after the two
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stories diverged, before taking up the main thread of “our” story once again.
I can imagine Chinese historians discussing Indian, Islamic, and European
contributions to the Chinese story in almost the same words. Indian con
tributions to the Chinese history of trigonometry probably began with the
arrival of Buddhism around the first century ad, but the first surviving doc
ument [186] is a translation of an astronomical treatise from the seventh
century ad. In the section on eclipses, there is a typically Indian table of
sines in steps of 3.75 degrees. However, because of the treatise’s astrologi
cal content, the document was kept secret and seems not to have had any
lasting impact.
Van Brummelen looks for signs of a native trigonometry in China and there
are some promising leads. There was a different unit for measuring angles,
corresponding to the distance the Sun travels along the ecliptic in one day.
Of course, our degreemay have started life that way too, but the Chinese “du”
corresponds to one year being 365.25 days rather than 360. Van Brummelen
gives an example [188], from the eighth century, of a table of shadows for
various angles measured in “du”. Some thirdcentury (ad) Chinese geome
try comes close enough to trigonometry to cause European scholars to argue
about the definition of trigonometry: Liu Hui shows how to calculate the di
mensions of a walled city using sightings from afar. Van Brummelen leaves
the reader to decide for themselves. Much later, in the 13th century, Guo
Shoujing is supposed to have calculated a variety of astronomical quanti
ties by using a home grown version of the versed sine [199]. By this stage
some aspects of Islamic culture, in particular astronomical instruments,
have reached China; but Guo seems to have worked within an indigenous
tradition that was independent of such foreign influences. His own writings
are lost and Van Brummelen has to rely on how later commentators have
reported and interpreted them.
In the late 1500s, Jesuit missionaries came to China, keen to share Euro
pean knowledge of science and technology, and keen too to collaborate with
Chinese intellectuals. One outcome, for example, was a Chinese edition of
the first six books of Euclid’s Elements [203]. The Jesuits’ idea of “sharing”
probably amounted to what we would call transmission, but the differing
outlooks of the two cultures at this stage in history made that an unlikely
outcome. Euclid’s system of axioms, theorems, and proofs, for example, was
out of step with Chinese interest in measurement and computation. For
Van Brummelen, the result is “a complicated narrative of appropriation and
naturalisation” rather than simple transmission [204]. But as we have seen,
this is what each culture so far has done to trigonometry when it arrived
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on their shores. In the Chinese case this appropriation and naturalization
lasted for almost 200 years. Thus, trigonometric tables [206] and logarithms
[211] came to China, but there was some disagreement as to whether angles
should be measured in “du” or degrees; and if it was to be in degrees, should
the degrees be subdivided into minutes or into hundredths? Other develop
ments seem to be more original, and Van Brummelen devotes the end of
chapter 4 to Chinese work on infinite series, culminating in Li Shanlan’s de
rivation [239] of a series for arcsine in themid 1800s. Then a second influx of
“Western” learning, including some translations by Li himself, followed by
the political disruption of the OpiumWars, led to China’s eventually being
incorporated into the global mathematical enterprise.
Finally, Chapter 5 returns to the story of trigonometry in the European
culture, tracing developments after the time of Euler. Euler’s work had
effectively incorporated trigonometry into the general mathematical toolbox
that was available for solving other mathematical problems, as well as “real
life” problems from outside mathematics. Van Brummelen gives examples
of trigonometry’s being used by Legendre to solve largescale surveying
problems where the Earth’s curvature needs to be taken into account [262]
and of its being used by Fourier to solve the heat equation [285]. On the
other hand, there was also progress within trigonometry. For example, in
another reminder of life before computers, the search continued [250] for
logarithmfriendly identities, that is, identities that used only multiplication,
division, and square roots (as opposed to identities which combined these
operations with addition and subtraction). For me, in a pleasing endnote
to my experience of tables, slide rules, and calculators, Van Brummelen
describes [280] an early (1950s) computer algorithm for sine and cosine. All
my 13-yearold grandchildren need to do now is push buttons on a calculator.
Van Brummelen discusses many other topics. In particular, I have dismally
failed to do justice to his coverage of spherical trigonometry. As usual, he
is very easy to read, and there are lots of helpful diagrams, especially for
the spherical trigonometry. As in the first volume of his history, the story
is deeply enriched by extracts from contemporary texts, given first in fairly
literal English translations, often accompanied by the original diagrams,
and then explained in modern terms. So mathematical readers (and, I hope,
their students) can experience a little of what trigonometry was actually like
at each stage in its history.
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