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séquestration de l’arsenic (As) et d’autres éléments traces; (ii) la redistribution
de ces éléments durant les transformations catagénétiques. Ces membres sont
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ABSTRACT

The Byram and Walls Island members in the lower and upper sections, respectively, of the Lockatong Formation 
in the Newark basin near the border between Pennsylvania and New Jersey were chosen to assess (i) the role of 
euxinic/anoxic conditions in sequestering arsenic (As) and other trace elements and (ii) the redistribution of these 
elements during catagenetic transformations. These members are rich in organic matter and host pyrite which occurs 
as disseminations, small patches, and subparallel veins. The sulfur isotope values of pyrite samples range between 
-7.5 and 0.5 ‰CDT (average = -3.5‰CDT). The negative δ34S values are indicative of Bacterial Sulfate Reduction (BSR) 
under low temperature and euxinic/anoxic conditions. The total organic carbon (TOC) values in this member fluctuate 
between 0.5 and 2.1%. These euxinic/anoxic conditions enhanced the incorporation of As and other trace elements in 
both organic matter and pyrite. The As concentrations range from 13 to 800 mg/kg and from 1.4 to 34 mg/kg in pyrite 
and black shale samples, respectively. Rock Eval analyses reveal that organic matter is over-mature which altered the 
correlation between TOC and As. The thermal cracking of organic matter resulted in the removal of these elements 
from organic matter and their subsequent incorporation in pyrite and bitumen. Organic matter- and pyrite-rich anoxic 
black shale layers and bitumen veins are potential sources of arsenic in groundwater in the Newark basin, with arsenic 
values that reach up to 215 μg/L.

RÉSUMÉ

Les membres des îles Byram et Walls dans les sections inférieures et supérieures, respectivement, de la formation 
Lockatong dans le bassin Newark près de la frontière de la Pennsylvanie et du New Jersey ont été choisis pour évaluer: 
(i) le rôle des conditions euxiniques et anoxiques dans la séquestration de l’arsenic (As) et d’autres éléments traces; (ii) 
la redistribution de ces éléments durant les transformations catagénétiques. Ces membres sont riches en matière 
organique et contiennent de la pyrite qui se présente sous forme de disséminations, de petites plaques et de veines 
subparallèles. Les valeurs isotopiques du soufre des échantillons de pyrite varient de -7,5 à 0,5 ‰  CDT (moyenne = 
-3,5 ‰ CDT). Les valeurs négatives δ34S indiquent la présence de bactéries sulfato-réductrices qui ont réduit les sulfates à  
basse température et dans des conditions euxiniques et anoxiques. Les valeurs du carbone organique total (COT) dans  
ces membres varient entre 0,5 et 2,1 %. Ces conditions euxiniques et anoxiques ont renforcé l’incorporation de l’As et 
d’autres éléments en traces, tant dans la matière organique que dans la pyrite. Les concentrations d’As varient entre 13 
et 800 mg/kg et de 1,4 à 34 mg/kg dans les échantillons de pyrite et de schiste noir, respectivement. Les analyses Rock- 
Eval révèlent que lamatière organique présente une maturité avancée, altérant la corrélation entre le COT et l’As. Le 
craquage thermique de la matière organique a causé l’expulsion de ces éléments de la matière organique et leur incorp- 
oration subséquente dans la pyrite et le bitume.  Les couches anoxique de schiste noire riche matière organique et en 
pyrite ainsi que les niveaux riche en veines de bitume sont des sources potentielles d’arsenic dans l’eau souterraine du 
bassin Newark, avec des valeurs d’arsenic atteignant jusqu’à 215 μg/l.
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are beyond the scope of this paper; readers are referred to 
Serfes et al. (2005, 2010) and Blake and Peters (2015) who 
investigated the processes that remobilize As from pyrite 
and released it into the groundwater.

The Walls Island and Byram members in the Nursery 
core and the Walls Island Member in the Titusville core 
were sampled because they represent the organic matter-
rich members of the Lockatong Formation. To complete 
this project, sulfur isotope analysis of pyrite, As and other 
trace element analyses of black shale, pyrite, and bitumen, 
and Rock-Eval analyses of black shale were performed.

GEOLOGY

Geological setting

The early Mesozoic Newark basin is one of the most 
studied Newark supergroup rift basins in the northeastern 
United States (Fig. 1). The Newark basin is an elongate 
half-graben that is 190 km long and up to 50 km across 
(Olsen 1986). The Precambrian and early Paleozoic rocks 
representing the southwestern Appalachian part of the New 
England upland border the Newark basin to the northeast. 
To the southeast, the basin is bordered by the Paleozoic 
and Precambrian Appalachian highlands of the Blue Ridge 
and Piedmont provinces (Olsen 1980). The Appalachian 

INTRODUCTION

Arsenic is a poisonous element that poses a health hazard 
in drinking water worldwide. It has an average crustal 
concentration of 1.8 mg/kg (Smedley and Kinniburgh 
2002). Occurrences of geogenic arsenic have been found 
in the bedrock aquifers in the northeastern United States, 
leading many researchers to investigate different possible 
controls on the amount of As in these aquifers (Ayotte et 
al. 2003; Serfes et al. 2005; Lipfert et al. 2006; Peters and 
Burkert 2007; Peters 2008; Serfes et al. 2010; Ryan et al. 
2013; Ryan et al. 2015; Blake and Peters 2015; O’Shea et 
al. 2015). These authors related the high As concentration 
either to the nature of the bedrock aquifers and/or to the 
geological processes affecting the bedrock (e.g., crustal 
recycling of As in the northern Appalachian mountain belt, 
Peters (2008); degree of metamorphism in western New 
England, Ryan et al. (2015)).

Newark basin groundwater has arsenic concentrations 
that exceed the standard limit (<10 μg/L) set by the USA 
Environmental Protection Agency (EPA) in public-water 
supplies. Fifteen percent of the 94 sampled New Jersey 
public-supply wells that tap the Lockatong and Passaic 
formations had As concentrations greater than 10 μg/L 
(Serfes et al. 2005). Two major sources of arsenic have been 
identified in the Newark basin: pyrite and hematite. Pyrite 
has been identified as the main source of As in black shale 
of the Lockatong Formation (Serfes et al. 2005; Serfes et al. 
2010; Blake and Peters 2015; Rddad 2016). Hematite has 
been identified as another source of As in red mudstone 
of the Passaic Formation (Serfes et al. 2005). An increase 
in the amount of As has been also linked to the amount of 
organic matter in the Lockatong Formation aquifer (Serfes 
et al. 2005; Serfes et al. 2010; Blake and Peters 2015). Red 
mudstone, grey shale, and black shale of the Passaic and 
Lockatong formations in the Newark basin contain As 
concentrations of as much as 14.8, 50, and 240 mg/kg, 
respectively (Serfes et al. 2005). Although the As content is 
higher in black shale layers compared to grey and red beds, 
no positive correlation occurs between total organic carbon 
(TOC) values and As concentration in the black shale 
(Rddad 2016). Besides the control by abundance of organic 
matter on the amount of As, the degree of organic matter 
(OM) maturity, which can alter the OM-As relationship, is 
another control that should be taken into consideration. 
The purpose of this paper is to (i) investigate the conditions 
under which As and other TE were incorporated into both 
organic and inorganic phases, (ii) determine, if possible, the 
organic matter contents (TOC, pyrolyzable carbon (PC), 
and residual carbon (RC)) to which As is mainly linked, 
and (iii) the impact of the degree of OM maturity in the 
redistribution of As in different available organic (bitumen) 
and inorganic phases (pyrite). Ultimately, this study aims 
at verifying if the bitumen veins are potential sources of As 
in groundwater. It should be noted that the processes of 
mobilization of As from the bedrock to the groundwater 

Figure 1. (a) Reconstruction of Pangea for the middle 
Norian showing the zone of early Mesozoic rifting 
(shaded) and the preserved basins of the Newark 
Supergroup (green). (b) Early Mesozoic rift basins of 
eastern North America (after Olsen et al. 1996).
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(1) Stockton Formation (1800 m) – alluvial/fluvial arkosic 
and sandstone facies.

(2) Lockatong Formation (1000 – 2000 m) – mainly cyclic 
organic matter-rich black shale and grey to red mudstone, 
siltstone, and sandstone facies with intercalations of 
argillaceous carbonate (e.g., Van Houten 1964; Olsen 1986).

(3) Passaic Formation (2800 m) – mainly red mudstone 
and sandstone containing evaporites with minor lacustrine 
black shale beds.

(4) Jurassic rocks (300 – 400 m) – clastic sedimentary 
rocks intercalated with basaltic flows and intruded by fine- 
grained gabbro.

Lithostratigraphic description of the sampled core

The samples for this study were collected from the 
Walls Islands Member and the Byram Member which, 
respectively, represent the upper and lower organic matter-
rich sections of the Lockatong Formation (Fig. 2). Two 
cores were chosen for this project: the Titusville and 
Nursery cores (Fig. 2). These cores represent part of 6770 
m of core obtained from the Newark Basin Continental 
Drilling Project (NBCDP).

highlands are the result of collisions between the North 
American continent and various Gondwanan fragments, 
including Africa, during the Paleozoic, leading to the 
formation of the supercontinent Pangea (e.g., Nance and 
Linneman 2008).

The Newark basin underwent rifting during the break-
up of Pangea and the opening of the Atlantic Ocean 
(Manspeizer 1988). During this continental rifting, 
the Triassic extensional tectonic activity led to the 
reactivation of Paleozoic NE-SW-trending major faults, 
and subsequently the formation of a half-graben (Ratcliffe 
et al. 1986; Schlische et al. 2003). The resulting basin was 
filled by 6 to 8 km of non-marine, lacustrine sediments 
intercalated with a few basaltic flows (Olsen et al. 1996). 
The sediments were derived from weathering and erosion 
of the surrounding Precambrian and Paleozoic highlands 
(Schlische and Olsen 1990), which consist mainly of granitic 
gneiss, schist, and minor mafic rocks (Serfes et al. 2010). 
The main sources of arsenic were the mafic and sulfide 
minerals (Van Houten 1964; El Tabakh and Schreiber 1998; 
Serfes et al. 2010). Overlying the Precambrian–Paleozoic 
basement are Triassic–Jurassic fluvio-lacustrine formations 
(Olsen 1986), which are listed and briefly described below
from oldest to youngest:
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The Walls Island and Byram members, described in 
Figures 3 and 4, consist mainly of black shale intercalated 
with grey to light grey shale and pinkish-grey shale. This 
succession reflects the development of small-scale anoxic 
events (black shale) separated by oxic to suboxic events 
(light grey to pinkish-grey shale). The black shale, typically 
rich in organic matter, contain pyrite as disseminated, 
euhedral to subhedral, millimetre- to centimetre-size 
crystals, and as small horizontal veins. The light grey to 
pinkish-grey shales commonly host numerous bitumen–
filled fractures typically associated with calcite.

SAMPLING AND METHODS

Seven samples of black shale and six samples of pyrite 
were collected from the Walls Island and Byram members of 
the Lockatong Formation in the Nursery and Titusville cores 
of the Newark basin. Six shale samples were collected 
at different depths from dark layers and one from a light 
grey layer. Pyrite samples were exclusively collected from 
dark layers. Two bitumen samples were collected from the 
bitumen-rich veins hosted in the grey shale in the Nursery 
and Titusville cores.

Pyrite samples were carefully crushed and handpicked 
under a binocular microscope. Isotopic analyses were 
carried out on five samples at the spectrometry facility at
the Department of Engineering, University of Nevada. 
Sulfur isotope analyses were performed using a Eurovector 

elemental analyzer connected to a Micromass isoprime 
stable isotope ratio mass spectrometer, after the methods of 
Giesemann et al. (1994) and Grassineau et al. (2001). Sulfur 
isotopic compositions in pyrite samples are expressed as 
δ34S values relative to the Vienna Canyon Diablo Troilite 
(VCDT) standard. Reproducibility was ±0.2‰ for sulfur.

Analyses of arsenic and other trace elements in black shale  
and bitumen samples were performed at Activation Labora-
tories Ltd (Actlabs) using INAA (Instrumental Neutron Act-
ivation Analysis). INAA is an analytical technique dependent 
on measuring gamma radiation induced in the sample by 
irradiation with neutrons. The primary source of neutrons 
for irradiation is usually a nuclear reactor. Each activated 
element emits a “fingerprint” of gamma radiation which can 
be measured and quantified. Routine multi-element analyses 
by INAA are performed on practically any material from the 
smallest sample which can be weighed accurately to very 
large samples. A 30 g aliquot of sample is encapsulated in a 
polyethylene vial and irradiated with flux wires, standards, 
and blanks at a thermal neutron flux of 7 × 1012 n.cm-2 s-1. 
The samples are measured the next day for the induced 
Au-198 photopeak at 411.8 KeV. Samples are compared 
to a calibration developed from multiple international 
reference materials. After a 7-day period to allow Na-24 to 
decay the samples are counted on a high purity Ge detector 
with resolution of better than 1.7 KeV for the 1332 KeV 
Co-60 photopeak. Using the flux wires, the decay-corrected 
activities are compared to a calibration developed from 
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Figure 4. Log of the Walls Island Member and the Byram Member of the Lockatong Formation in the Nursery core, 
Newark basin.

multiple certified international reference materials. The 
standard provides a check on accuracy and is not used 
for calibration purposes. From 10–30% of the samples are 
rechecked by re-measurement. For values exceeding the 
upper limits, assays are recommended. One standard is run 
for every 11 samples. One blank is analyzed per work order. 

Duplicates are analyzed when samples are provided.
The analysis of bitumen for As and other TE using laser 

ablation-inductively coupled plasma-mass spectrometry 
(LA-ICP-MS) was attempted. The bitumen samples did not 
ablate very well and intensities on almost all masses were 
very low and signals were unstable. Moreover, carbon-
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derived standards were not used. Therefore, the results 
from the LA-ICP-MS of the bitumen are not considered 
here.

The total organic carbon (TOC) analyses of the black shale 
samples were also performed at Actlabs. The C-Organic is 
calculated according to the following equation: C-Organic = 
Total C – CCO2 – CGraphitic. Carbon analysis is performed by the 
absorption of IR energy which can be attributed only to 
carbon dioxide (CO2) which absorbs IR energy at a precise 
wavelength within the IR spectrum. The concentration of 
CO2 is detected as a reduction in the level of energy at the 
detector. It can be measured in either an inert atmosphere 
or an oxygen atmosphere (binding carbon species with the 
oxygen to form CO (converted to CO2 prior to detection) 
and CO2, the majority being CO2, and is measured as 
carbon dioxide in the IR cell as gases flow through the 
IR cells. Energy from the IR source is absorbed as the gas 
passes through the cell, preventing it from reaching the IR 
detector. All other IR energy is prevented from reaching 
the IR detector by a narrow bandpass filter. Because of the 
filter, the absorption of IR energy can be attributed only to 
carbon dioxide (CO2). The concentration of CO2 is detected 
as a reduction in the level of energy at the detector.

Programmed pyrolysis was performed on 12 black shale 
samples using Rock-Eval 6 in the commercial laboratories 
of Weatherfordlab (www.weatherfordlabs.com). The Rock-
Eval technique is used to identify the type of organic matter, 
assess the source rock potential, and the thermal maturity 
of organic matter (Tissot and Welte 1978). Approximately 
100 mg of sample was powdered and placed in an inert 
atmosphere (helium) and combusted at a programmable 
temperature from 250°C to 550°C, and a speed of  25°C/
min. A detailed description of the procedure is given 
by Espitalié et al. (1985). Pyrolyzed hydrocarbons and 
carbon dioxide are measured as a function of temperature, 
where S1 represents free hydrocarbons in the kerogen 
and S2 represents pyrolyzable hydrocarbons generated by 
pyrolysis related to the petroleum-generating potential 
of the sediment. S2 is normalized to TOC to calculate the 
hydrogen index (HI), which is proportional to the kerogen 
elemental H/C ratio. In a similar way, the pyrolyzable CO2 
is measured and normalized to TOC to determine the 
oxygen index (OI), which is in some cases proportional to 
the kerogen elemental O/C ratio. Tmax is the temperature at 
which the S2 peak reaches its maximum evolution.

Trace elements were analyzed in six pyrite samples 
using laser ablation-inductively coupled plasma-mass 
spectrometry (LA-ICP-MS) at the U.S Geological Survey 
in Denver. Images of grains of interest were used to guide 
LA-ICP-MS analyses. A Photon Machines Analyte G2 LA 
system (193 nm, 4 ns excimer) was coupled to a PerkinElmer 
DRC-e ICP-MS. Spot analyses were used for individual 
analyses of known location. Typical operating conditions 
for these analyses are listed in Table 1. Ablation was carried 
out using a 50-micrometre spot size at 5 J/cm2. Single spot 
analyses were ablated using 5 pulses/sec (5 Hz). Ablated 

material was transported via a He carrier gas to a modified 
glass mixing bulb where the He + sample was mixed 
coaxially with Ar prior to the ICP torch. Concentration 
and detection limit calculations were conducted using the 
protocol of Longerich et al. (1996). Signals were calibrated 
using USGS MASS-1 sulfide reference material (Wilson et 
al. 2002). The reference material (MASS-1) was analyzed 
5-10 times at the beginning of the analytical session and 
monitored throughout the session for drift. Iron (57Fe) was 
used as the internal standard for concentration calculations. 
Signals were screened visually for heterogeneities such as 
micro-inclusions or zoning.

RESULTS AND DISCUSSION

The sulfur isotopes in pyrite, arsenic concentrations in 
pyrite, black shale, and bitumen samples, total organic carbon 
(TOC), and Rock-Eval data are reported in Tables 2–5.

Sulfur isotopes

The δ34S values for pyrite range between -7.5 and +0.5 
‰CDT (average = -3.5 ‰CDT, n = 5) (Table 2). These values 
are lower than those of Triassic seawater (δ34S = +11 to 20 
‰) and Jurassic seawater (δ34S = +14 to 18‰) (Fig. 5) 
(Claypool et al. 1980). This indicates that the Newark basin 
was isolated from the open ocean. On the basis of Sr isotopic 
composition of sulphates in the Passaic Formation, El 
Tabakh et al. (1997) reached the same conclusion. Triassic–
Jurassic seawaters are, therefore, excluded as a source of 
sulfur. This leads to the conclusion that the source of sulfur 

Wavelength 193 nm
Spot Size 50  µm
Pulse Frequency 5 Hz (spots)
Energy Density ~5 J/cm2

Table 1. Laser System used for LA-ICP-
MS analyses of pyrite.
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 N362.4Py N383.7Py N430.4Py T2693Py T2727.6Py T2729.2aPy T2729.2bPy T2729.2cPy 

111 117 131 821 831 832 832 832

6 4 5 5 5 3 3 3

min 13.1 41.4 335 22.2 44 53.5 216 121.9
max 49.2 176.1 799.9 263.3 211.3 221.9 424.2 233.8

mean 27.2 105.8 533.7 134.2 114.8 128 317.8 180.6

min 16.7 30.4 34.1 19 20.6 19.8 23.1 24.2
max 32.1 39.7 7052.8 27.3 197.5 31.3 28.1 105.6

mean 23 34.1 1465.4 23.9 62.3 24.2 25.9 51.7

min 2.5 3.4 22.9 8.2 29.5 2.5 2.6 32
max 9.7 7.7 53.2 13.1 95.4 4.3 2.6 32

mean 4.5 5.3 53.2 10.3 51.2 3.6 2.6 32

min 9.5 − 33 10.7 46.8 36.9 33.9 10.9
max 20.9 − 142.7 11.6 256.7 96.2 40 58.6

mean 13.2 − 98.9 11.2 113.8 57 37.5 39.2

min 17.1 17.7 38 31.6 15.7 30.4 36.6 46.5
max 175.7 35 71.2 278.4 55.3 75.9 46.1 54.9

mean 58.4 25.7 56.9 128 25.5 53.9 42.1 51.1

min 3.1 13.3 17.1 4.2 4.5 13.8 30.3 36.4
max 8.7 24.6 62.6 115.1 23.2 42.1 44.3 63.6

mean 6.6 18.1 47.7 51.4 9.8 31.1 36.6 48.8

min 0.2 0.2 3.8 0.3 0.2 0.8 2.5 0.5
max 0.9 1.2 10.6 0.4 1.8 3.1 4.8 1.9

mean 0.6 0.5 7.8 0.3 0.8 1.6 3.6 1.3

min 3.8 10.1 116.5 12.3 40.3 18.2 11.7 13.7
max 45.7 49.6 581 233.3 277.1 58.7 26.6 154

mean 22.3 23.9 363.1 102.9 125.1 34.8 20.3 61.3

Table 3. Concentrations (mg/kg) of trace elements in pyrite hosted in the Nursery and Titusville cores of the Lockatong Formation.

As 
(2.43)

Mn 
(3.76)

Co 
(2.24)

Ni 
(8.94)

Pb 
(0.589)

Sample**

Depth (m)

# Spots

Notes: * Detection limit in mg/kg for the analyzed trace elements and shown in brackets under element; **Numbers in sample 
reference indicate depth of the sample in feet; N = Nursery and T = Titusville.

Mo 
(2.51)

Sb 
(0.625)

Tl 
(0.16)

Sample Depth (m) Mineral δ34SVCDT (‰)

N1916.15py 584.04 Pyrite 0.5
N2035.8py 620.27 Pyrite -7
T2693py 820.83 Pyrite 0.5
T2727.6py 831.37 Pyrite -7
T2729.2py 831.86 Pyrite -7.5

Table 2. Sulfur isotopic composition of pyrite hosted in the
Lockatong Formation in the Nursery and Titusville cores.
(Numbers in sample reference indicate depth of the samples
in feet).
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Core

Sample N362.4 N381.3 N383.7 N429 T2671 T2693 T2727.6

Depth (m) 111 116 117 131 814 821 831

TOC % 2.72 0.6 1.71 0.79 1.9 0.8 1.2
S1 mg/g 0.07 0.05 0.08 0.03 0.11 0.04 0.06
S2 mg/g 0.39 0.19 0.31 0.18 0.15 0.13 0.16
S3 mg/g 0.34 0.20 0.25 0.22 0.26 0.25 0.18

Tmax °C 595 510 542 522 304 332 608

R0
*  °C – – 1.94 – – – 2.39

Tmax* °C – – 506 – – – 531
HI 14.3 31.8 18.2 22.7 8.0 16.1 13.9
OI 12.5 33.4 14.7 27.7 13.9 31.0 15.7

S2/S3 1.15 0.95 1.24 0.82 0.60 0.50 0.90
(S1/TOC) x 100 2.57 8.36 4.69 3.78 5.90 5.00 5.20

PI 0.15 0.21 0.21 0.14 0.40 0.20 0.30
PC wt% 0.04 0.02 0.03 0.02 0.02 0.01 0.02
RC wt% 2.68 0.58 1.67 0.78 1.84 0.79 1.13
GP wt% 0.46 0.24 0.39 0.21 0.26 0.17 0.22

Nursery Titusville

Table 4. Rock Eval data for the pyrolyzed black shale samples from the Nursery and Titusville 
cores, Newark basin. Detection limit for TOC is 0.5%.

Notes: TOC: Total Organic Carbon, wt %; S1: Volatile/free hydrocarbon (HC) content, mg HC/g  
rock; S2: Remaining HC generative potential, mg HC/ g rock; S3: Carbon dioxide content, mg CO2/ 
g rock; Tmax : Temperature of peak S2 maximum, °C; R0*: Vitrinite reflectance from Malinconico 
(2010); Tmax Calculated Tmax based on R0 using R0 + 7.16)/0.018 equation (after Peters et al  
2005), °C; HI: Hydrogen Index = (S2 × 100)/TOC, mg HC/g TOC; OI: Oxygen Index = (S3 × 100)/
TOC, mg CO2/g TOC; PI: Production Index = S1/(S  1 + S2); PC: Pyrolysable Organic Carbon =
((S1 + S2)/10) x 0.83, wt %; RC: Residual Organic Carbon = TOC – PC, wt%; GP: Genetic Potential
 = S  1 + S2.

*

: 

Core

Sample** N362.4 N381.3 N383.7 N429 N433 Bit. T2671 T2693 T2727.6 T2701.5 Bit.

Depth (m) 111 116 117 131 132 814 821 831 823

As (0.5) 15.4 1.4 33.6 24.6 103 17.1 22.9 20.9 70.8
Co (1.0) 16 36 20 26 10 19 34 26 70
Cr (5.0) 67 90 63 82 26 73 84 79 66
Fe (0.01) 3.75 5.49 4.66 6.18 1.9 4.14 5.42 4.33 5.12
Ni (20) − − − − 43.4 − − − 34.1

Mo (1.0) 25 − 94 − − 230 34 5 −
Th (0.2) 6.1 15.9 7.9 5.4 41 10.6 6.7 8.6 24.5
U (0.5) 12.1 14.1 10.4 8.6 34 14.6 10.4 10.9 22

Table 5. Concentration of trace elements (mg/kg) and major element Fe (in %) in black shale and bitumen of the 
Nursery and Titusville cores. 

     Nursery Titusville

Notes: *Detection limit for Fe is given in % and detection limit for trace elements is given in mg/kg in brackets; 
−  Below detection limit; **Numbers in sample reference indicate depth of the sample in feet; N = Nursery, T = 
Titusville, Bit. = Bitumen.
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may be the dissolved sulfates carried by streams to the lake.
Two pathways are possible for reducing sulfates via 

bacterial sulfate reduction (BSR): open and closed systems, 
depending on the availability of dissolved sulfates (Machel 
2001; Gomes and Hurtgen 2013, 2015).

Under open conditions (i.e., oxidizing to slightly 
reducing) where dissolved sulfate is continuously 
replenished, the dissolved SO4

-2 will be reduced to light 32S 
which will be incorporated in pyrite. Conversely, under 
closed conditions (i.e., euxinic), where dissolved SO4

2 is 
limited, all available dissolved sulfates will be reduced to 
sulfur. As the sulfate reduction continues, the light isotope 
is incorporated in pyrite while the remaining/residual 
sulfate reservoir becomes enriched in heavy 34S (e.g., 
Jørgensen 1979; Gautier 1986; Lyons 1997). Therefore, the 
δ34S in pyrite becomes heavier with time.

The low negative δ34S values recorded in pyrite samples 
are indicative of BSR under slightly reducing conditions. It 
is also possible that BSR took place under closed conditions 
where most of the pyrite formation occurred before 
enrichment of 34S in the remaining sulfate reservoir (Sælen 
et al. 1993). Pyrite is known to form under the reducing 
conditions found in black shales (Berner 1984). Low Co/
Ni ratio (<1) and the high concentration of Ni in the pyrite 
samples suggest syngenetic/diagenetic origin of these pyrite 
grains (Loftus-Hills and Solomon 1967; Bajwah et al. 1987) 
in an organic-rich environment (Dill and Kemper 1990; 
Guy et al. 2010). The Th/U ratios in black shales can be 
used to estimate the paleo-redox conditions because of the 
contrasting behavior of Th and U (Tribovillard et al. 2005; 
Pattan and Pearce 2009). Lower Th/U values indicate anoxic 
conditions whereas higher values point to dysoxic and oxic 
conditions (Jones and Manning 1994; Pattan and Pearce 
2009). The very low Th/U values for the analyzed black 
shale samples (Th/U = 0.50–1.13) indicate strong anoxic 
conditions in which organic matter was accumulated and 
the analyzed pyrite grains were formed. This conclusion is 
supported by the inverse correlation between Th/U ratio 
and TOC values (Fig. 6) and the abundance of pyrite in 
organic matter-rich black shales in the sampled members.

In conclusion, the reduced sulfur is derived from the 
BSR of dissolved sulfate in euxinic/ anoxic conditions. This 
sulfur combined with the reactive available iron to form 
diagenetic pyrite. The latter are more abundant in the OM-
rich black shales.
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Figure 6. Plot TOC versus Th/U ratio in the black shale 
samples from the Titusville and the Nursery cores.

Arsenic in pyrite

Arsenic values in the pyrite samples range from 13 to 800 
mg/kg (mean = 217 mg/kg) and from 22 to 425 mg/kg (mean 
= 165 mg/kg), respectively, in the Nursery and Titusville 
cores (Table 3). The concentration of arsenic in pyrite of 
the Newark basin can reach a maximum range of 3,000 to 
40,000 mg/kg (Serfes et al. 2005). Pyrite is considered as a 
potential sink for arsenic in the Newark basin (Serfes et al. 
2005) and also for other TE, particularly Pb, Ni, Mo, and 
Co. The other trace element concentrations in pyrite show 

the following trend As>Pb>Ni>Mo>Mn>Co>Sb>Tl for the 
Nursery core samples and As>Pb>Mo>Ni>Mn>Sb>Co>Tl 
for the Titusville core samples. The incorporation of As in 
pyrite may have facilitated that of other TE due mainly to 
the significant distortion/defects of the pyrite structure 
(Deditius et al. 2008). At the sample scale, the core of 
centimetre-sized pyrite crystals is enriched relative to the 
rims (Fig. 7). This enrichment is explained by the removal 
of arsenic by early pyrite crystals, which caused depletion 
in the remaining residual fluid. Serfes et al. (2005) reached 
the same conclusion.

Figure 7. Centimetre-sized pyrite sample hosted in black 
shale of the Lockatong Fm, showing the analyzed spots; a 
and c: rims; b: core. (a = T2729.2aPy, b = T2729.2bPy, c = 
T2729.2cPy, refer to Table 3 for more details)
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The HI values were not originally low, but rather reveal loss 
in hydrogen content due to organic matter maturity. The Tmax
values are widespread (304–608°C) and are unreliable due to  
the very low S2 values. Using the equation Tmax = (R0 + 7.16)/ 
0.018 (Peters et al. 2005) and the available R0 data (1.94 to 2.69% 
(Malinconico 2010), the calculated Tmax range from 506 
to 531°C (Table 4). These Tmax values indicate that organic 
matter of the analyzed samples is over mature and had 
already generated hydrocarbons (oil and gas). In fact, the 
presence of bitumen in the cores (Fig. 8) indicates that 
the organic matter in these rocks had already generated 
hydrocarbons.

Arsenic in black shale and bitumen

The arsenic values for black shale samples from the 
Nursery core range from 15.4 to 33.6 mg/kg (mean = 21.9 
mg/kg) with one value (1.4 mg/kg) recorded in a light grey 
sample (Table 5). The arsenic values vary between 17.1 and 
22.9 mg/kg (mean = 20.3 mg/kg) for black shale samples 
from the Titusville core (Table 5). These values generally 
fall within the range of those determined by Serfes et al. 
(2010) (10–110 mg/kg; mean = 60 mg/kg) for the Newark 
basin, and by Blake and Peters (2015) (10–35 mg/kg; mean 
= 23 mg/kg) for the Newark and Gettysburg basins. Other 

Quantity and maturity of organic matter

The TOC values vary between 0.6 and 2.72% and between 
0.8 and 1.9%, respectively, in the Nursery and Titusville 
cores (Table 4). These values indicate that the black shales 
are relatively rich in organic matter and are considered as fair 
to good source rocks for hydrocarbons (petroleum and gas).

The hydrogen index (HI) of the analyzed samples is less 
than 100 mg HC/g TOC, indicating that the organic matter 
in the analyzed samples seems to be is kerogen of type III. 

 

Grey shale
rich in bitumen

Black shale level
rich in organic
matter and pyrite

Calcite

Bitumen

Pyrite

3

0

cm

Figure 8. Alternating black shale rich in pyrite and grey 
shale rich in bitumen.

analyzed TE, in particular Mo, Cr, Th, and U, show high 
concentrations reaching a maximum of 230, 90, 15.9, 14.6
mg/kg, respectively. Ni shows concentrations below detec-
tion limit (<20 mg/kg). Some of these elements (Mo, Cr, U,
As) are redox-sensitive trace elements that indicate anoxic
to euxinic conditions under which organic matter is deposit-
ed (Tribovillard et al. 2006).

It is known that arsenic and other TE are commonly 
absorbed onto organic matter through bio-concentration of 
elements by organisms during sedimentation (Arthur et al. 
1988) and the chelation of elements during early diagenesis 
(Disnar 1982, 1996; Trichet at al. 1987). Through the plots 
of As versus organic matter phases/contents (TOC, PC, 
RC), it is possible to find out the organic matter phase to 
which As is mainly linked. Due to the over-maturity of the 
OM, PC is tremendously reduced (PC = 0.01–0.02 wt%). 
Therefore, correlation between As and PC is not possible. 
Given that TOC≈RC, only correlation between TOC and 
As is attempted. A plot of As versus TOC in the black 
shale samples reveals weak correlation between organic
matter and trace elements, including As (Fig. 9). This sug-
gests a priori the absence of geochemical affinity between
OM and As. Two explanations are proposed to account for
the absence of the OM-As affinity. First, the arsenic is 
likely partitioned into OM, diagenetic pyrite, and oxy-
hydroxide phases (Fig. 10a). The competition of these 
three phases (OM, pyrite, oxyhydroxide) in sequestering 
arsenic resulted in the lack of positive correlation between 
As and OM. Second, the over- maturity of organic matter 
altered the expected positive covariance between As and 
TOC (Fig. 9).

Diagenetic processes are known to induce the transfer of 
some arsenic from organic matter to pyrites (Tribovillard et 
al. 2006). This arsenic expulsion from organic matter and 
its incorporation into pyrite led to the further enrichment 
of pyrite relative to black shales (Fig. 10b).

During early diagenesis, the decomposition of organic 
matter resulted in the release of arsenic from organic matter
and its incorporation in pyrite. Due to the intense maturity
of the OM, it is likely that most of the arsenic was trans-
ferred from organic matter to pyrite during catagenetic 
processes. The latter took place during active subsidence 
where organic matter of the Lockatong Formation including 
the Walls Island and Byram members in both the Titusville 
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 Figure 9. Plots between trace elements and TOC in black shale samples of the Nursery and Titusville cores, Lockatong 
Formation.
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Early diagnenesis

Catagenesis

1 cm

1 cm

(a)

(b)

(c)

Figure 10. Distribution of arsenic during (a) early diagenesis and (b) late diagenesis processes (Catagenesis), and (c) 
concentration of As in bitumen in the Lockatong Formation. As: Arsenic, Fe: Iron, S: Sulfur, SO4

-2 : Dissolved sulfate 
ions, FeS2 : Pyrite, OM: Organic matter, OM-As: Organic matter-As complexes, BSR: Bacterial sulfate reduction.
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(71–103 mg/kg) (Table 5). The overpressure caused by the 
accumulation and saturation of hydrocarbons within the 
pores may have cracked the rocks (hydraulic fracturing) 
liberating the arsenic, other TE, and hydrocarbons. The As-
rich bitumen migrated from the adjacent organic matter-
rich black shale and subsequently filled the available 
fractures typically hosted in grey shale (Fig. 8). The As-rich 
bitumen fractures can be considered as a potential source 
of arsenic in groundwater.

Model for arsenic fixation and redistribution during 
diagenetic processes

The proposed model for the fixation and redistribution 
of arsenic is illustrated in Figure 10. The development of 
euxinic/anoxic conditions was crucial in the fixation of 
arsenic and other trace elements in pyrite and organic 
matter. These conditions enhanced the preservation 
of organic matter, the production of sulfur via BSR, 
and ultimately the formation of pyrite in the presence 
of reactive iron (Fig. 10). These reducing conditions 
promoted the incorporation of arsenic and other trace 
elements in organic matter during sedimentation and 
early diagenesis. These elements were also incorporated 
in the diagenetic pyrite. The latter has been considered as 
a potential sink for arsenic in organic matter-rich shale 
in the Newark basin (Serfes et al. 2005; Blake and Peters 
2015; Rddad 2016) and in other locations worldwide 
(Huerta-Diaz and Morse 1992; Tribovillard et al. 2006). 
During the catagenetic transformation of OM, a fraction 
of arsenic and other trace elements would have been 
expelled from OM-rich black shale and incorporated 
in pyrite and bitumen (Fig. 10). The latter migrated and 
filled small fractures in the adjacent grey shale (Fig. 8).

This model clearly shows that the organic matter 
richness, dependent on anoxic conditions during 
sedimentation and early diagenesis, and the degree of 
organic matter maturity, dependent on later diagenetic/
catagenetic processes, are the important controls on the 
amount of As in black shale and groundwater. The anoxic 
events developed in the Newark basin correspond to 
OM- and pyrite-rich black shale facies of the Lockatong 
Formation. These facies extend laterally over large 
distances. Given the fact that the Lockatong Formation 

and Nursery cores underwent catagenetic transformation. 
This catagenesis reduced the amount of the original TOC 
initially preserved in the black shale. Consequently, a 
fraction of the metal endowment, initially concentrated in 
organic matter during sedimentation and early diagenesis, 
was released and migrated along with the hydrocarbons 
(bitumen) (Fig. 10c). Dissociation of the organo-elements 
complexes resulted in the lack of a positive correlation 
between these elements and organic matter. A fraction of 
the expelled elements was subsequently incorporated into 
pyrite whereas the other fraction was partitioned into the 
bitumen phase, which contains high arsenic concentration 

is over-mature, the anoxic, dark layers with high TOC 
values and the associated abundant bitumen rich-veins 
help to predict the regions of high arsenic concentration 
in groundwater. The remobilization of arsenic from 
pyritic black shale is achieved through the oxidation of 
pyrite releasing arsenic which is subsequently adsorbed 
onto hydrous ferrous oxide (Serfes et al. 2010). While 
Arsenic can be derived from the oxidation of pyrite, it can be 
also sourced from bitumen-rich fractures. In fact, given 
the fact that the black shale in the Lockatong Formation 
has very low permeability, the groundwater flows 
mainly through available interconnected small fractures 
commonly filled with arsenic-rich bitumen. It follows that 
these bitumen-rich fractures can be also potential source 
of arsenic contaminating the groundwater in the Newark 
basin. Moreover, the interconnected small fractures offered 
suitable contact surfaces between flowing groundwater 
and As-rich pyritic black shale. The groundwater flowing 
through these veins removes arsenic from As-rich pyritic 
black shale causing As contamination of the groundwater.

CONCLUSIONS

Based on the geochemical data presented in this paper, 
the following conclusions can be drawn.

1. Euxinic/anoxic conditions enhanced the preservation 
of OM, the generation of sulfide via BSR during early 
diagenesis, and subsequent formation of diagenetic 
pyrite. The latter is a potential sink for arsenic and other 
trace elements as has been proposed previously by Serfes 
et al. (2005). The development of these euxinic/anoxic 
conditions controls the original concentration of As in the 
pyritic black shale.

2. The thermal cracking of organic matter has caused 
the dissociation of the organo/inorganometallic complexes 
resulting in the release of arsenic and other TE. These 
elements were subsequently incorporated into pyrite and 
bitumen.

3. The bitumen-rich veins are enriched in arsenic, and 
are considered as source of As in groundwater.

4. Considering the low permeability of the Lockatong 
Formation, the groundwater is forced to flow through the 
numerous interconnected veins and consequently leaches 
arsenic from black shale and oxidizes available pyrite 
minerals. This further contributes to the arsenic contamin-
ation of the groundwater. 
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