Résumés
Abstract
The integration of aeromagnetic, LiDAR, and previously acquired seismic-reflection data and surficial geologic maps supports the existence of the East Coast fault system ( and faults associated with its 12⁰ Summerville restraining bend beneath the South Carolina Coastal Plain. Aeromagnetic data revealed a 10- to 15-km-wide zone of subtle, 22- to 35-km-long linear magnetic anomalies trending ~N10°E across the southern meizoseismal area of the 1886 Charleston earthquake that we postulate are associated with Cenozoic low-displacement brittle faults in the crystalline basement west of Charleston. We hypothesize that lineaments ML4 and ML5 represent the principal displacement zone along the southern end of the ECFS because they coincide with steeply dipping, west-side-up buried faults interpreted from previously acquired seismic-reflection profiles and a ~320-m dextral offset in the Brownsville Pleistocene beach ridge deposit. The alignment of the NNE-SSW-oriented Edisto dome, uplift along releveling line 9, gently upwarped longitudinal profiles along the Caw Caw and Horse Savanna swamps, local incision along the Ashley River, and exposures of the early Oligocene Ashley Formation near the incised part of the Ashley River support Quaternary uplift along the southern ECFS. The 12⁰ change in trend formed by lineaments ML4 and ML5 supports the existence of the Summerville restraining bend in the ECFS, east of which are numerous ENE-WSW- to NW-SE-oriented LiDAR lineaments that we postulate are surface expressions of faults that formed to compensate for the increased compression produced by dextral motion along the bend. Sinistral displacement along one of these proposed faults associated with the ~40-km-long, east-west-oriented Deer Park lineament may have produced the main shock of the 1886 Charleston earthquake.
Résumé
L’intégration de données aéromagnétiques, de données lidar et de données de réflexion sismique récemment obtenues ainsi que de cartes géologiques de surface appuie l’existence du système de failles de la Côte est (SFCE) et des failles associées à son inflexion de restriction de 12 degrés de Summerville au-dessous de la plaine côtière de la Caroline du Sud. Les données aéromagnétiques ont révélé une zone de 10 à 15 kilomètres de largeur d’anomalies magnétiques linéaires subtiles sur une longueur de 22 à 35 kilomètres, orientées approximativement vers le nord à 10 degrés est à travers l’aire pléistoséiste méridionale du séisme de Charleston de 1886 qui, postulons-nous, sont associés à des failles cassantes de faible déplacement, cénozoïques, dans le socle cristallin à l’ouest de Charleston. Nous supposons que les linéaments ML4 et ML5 représentent la principale zone de déplacement le long de l’extrémité méridionale du SFCE parce qu’ils coïncident avec des failles enfouies dont le toit est à l’ouest et qui s’inclinent profondément, interprétées à partir de profils de réflexion sismique précédemment obtenus et du mouvement dextre d’environ 320 mètres dans le dépôt de la levée de plage du Pléistocène de Brownsville. L’alignement du dôme Edisto orienté du nord-nord-est au sud-sud-ouest, le soulèvement le long de la ligne du levé d’appoint 9, les profils longitudinaux doucement bombés le long des marécages Caw Caw et Horse Savanna, l’incision locale longeant la rivière Ashley et les affleurements de la Formation de l’Oligocène précoce d’Ashley près de la partie enfoncée de la rivière Ashley appuient l’hypothèse d’un soulèvement quaternaire le long du SFCE méridional. La variation de 12 degrés de l’orientation créée par les linéaments ML4 et ML5 appuie l’existence de l’inflexion de restriction de Summerville dans le SFCE, à l’est des nombreux linéaments lidar orientés de l’est-nord-est/ouest-sud-ouest au nord-ouest/sud-est que nous supposons des expressions en surface de failles qui se sont formées pour compenser la compression accrue produite par le mouvement dextre le long de l’inflexion. Le mouvement senestre le long des failles proposées associé au linéament d’une quarantaine de kilomètres de longueur orienté d’est en ouest de Deer Park pourrait avoir produit la principale secousse du séisme de Charleston de 1886.
Veuillez télécharger l’article en PDF pour le lire.
Télécharger
Parties annexes
Bibliography
- Bakun, W.H. and Hopper, M.G. 2004. Magnitudes and locations of the 1811–1812 New Madrid, Missouri, and the 1886 Charleston, South Carolina, earthquakes. Bulletin of the Seismological Society of America, 94, pp. 64–75. https://doi.org/10.1785/0120020122
- Bartholomew, M.J. and Rich, F.J. 2007. The walls of colonial Fort Dorchester: A record of structures caused by the August 31, 1886 Charleston, South Carolina, earthquake and its subsequent earthquake history. Southeastern Geology, 44, no. 4, pp. 147–169.
- Bartholomew, M.J. and Rich, F.J. 2012. Pleistocene shorelines and coastal rivers: Sensitive potential indicators of Quaternary tectonism along the Atlantic Coastal Plain of North America. In Recent advances in North American paleoseismology and neotectonics east of the Rockies. Edited by R.T. Cox, M.P. Tuttle, O.S. Boyd, and J. Locat. Geological Society of America, Special Paper 493, pp. 17–36. https://doi.org/10.1130/2012.2493(02)
- Behrendt, J.C. 1983. Did movement on a northeast trending listric fault near the southeast edge of the Jedburg Triassic-Jurassic(?) basin cause the Charleston, South Carolina, 1886 earthquake? In A workshop on the 1886 Charleston, SC, earthquake and its implications for today. Edited by W.W. Hays and P.L. Gori. United States Geological Survey, Open File Report 83-843, pp. 126–131.
- Bollinger, G.A. 1977. Reinterpretation of the intensity data for the 1886 Charleston, South Carolina, earthquake. In Studies related to the Charleston, South Carolina, earthquake of 1886: A preliminary report. Edited by D.W. Rankin. United States Geological Survey, Professional Paper 1028-B, pp. 17–32.
- Buckner, J.C. 2011. Crustal structure in a Mesozoic extensional terrane: The South Georgia Rift and epicentral area of the 1886 Charleston, South Carolina, earthquake. Unpublished Masters thesis, Virginia Polytechnic and State University, Blacksburg, Virginia, 50 p.
- Chapman, M.C. and Beale, J.N. 2008. Mesozoic and Cenozoic faulting imaged at the epicenter of the 1886 Charleston, South Carolina, earthquake. Bulletin of the Seismological Society of America, 98, pp. 2533-2542. https://doi.org/10.1785/0120080923
- Chapman, M.C. and Beale, J.N. 2010. On the geologic structure at the epicenter of the 1886 Charleston, South Carolina, earthquake. Bulletin of the Seismological Society of America, 100, pp. 1010–1030. https://doi.org/10.1785/0120090231
- Chapman, M.C., Beale, J.N., Hardy, A.C., and Wu, Q. 2016. Modern seismicity and the fault responsible for the 1886 Charleston, South Carolina, earthquake. Bulletin of the Seismological Society of America, 106, no. 2, pp. 364–372. https://doi.org/10.1785/0120150221
- Colquhoun, D.J., Woollen, I.D., Van Nieuwenhuise, D.S., Padgett, G.G., Oldham, R.W., Boylan, D.C., Howell, P.D., and Bishop, J.W. 1983. Surface and subsurface stratigraphy, structure and aquifers of the South Carolina Coastal Plain. Columbia, State of South Carolina, Office of the Governor, Ground Water Protection Division, Report for Department of Health and Environmental Control, 78 p.
- Colquhoun, D.J., Johnson, G.G., Peebles, P.C., Huddlestun, P.F., and Scott, T. 1991. Quaternary geology of the Atlantic Coastal Plain. In Quaternary nonglacial geology: Conterminous U.S. Geology of North America. Edited by R.B. Morrison. Geological Society of America, K-2, Boulder, Colorado, pp. 629–650. https://doi.org/10.1130/DNAG-GNA-K2.629
- Costain, J.K. and Glover, L., III. 1983. Seismicity in the eastern United States and the role of crustal reflectivity. In Proceedings of Conference XX: A workshop on “The 1886 Charleston, South Carolina, earthquake and its implications for today.” Edited by W.G. Hays and P.L. Gori. United States Geological Survey, Open File Report 83-843, pp. 207–220.
- Cox, R.T., Harris, J., Forman, S., Brezina, T., Gordon, J., Gardner, C., and Machin, S. 2012. Holocene faulting on the Saline River fault zone, Arkansas, along the Alabama-Oklahoma transform. In Recent advances in North American paleoseismology and neotectonics east of the Rockies. Edited by R.T. Cox, M.P. Tuttle, O.S. Boyd, and J. Locat. Geological Society of America, Special Paper 493, pp. 17–36. https://doi.org/10.1130/2012.2493(07)
- Crone, A.J., Machette, M.N., and Bowman, J.R. 1997. Episodic nature of earthquake activity in stable continental regions revealed by palaeoseismicity studies of Australian and North American Quaternary faults. Australian Journal of Earth Sciences, 44, pp. 203–214. https://doi.org/10.1080/08120099708728304
- Daniels, D.L. 2005. South Carolina aeromagnetic and gravity maps and data: A website for the distribution of data. United States Geological Survey, Open File Report 2005-1022. URL http://pubs.usgs.gov/or/2005/1022/, accessed 1 March 2020). https://doi.org/10.3133/ofr20051022
- Daniels, D.L., Zietz, I., and Popenoe, P. 1983. Distribution of subsurface lower Mesozoic rocks in the southeastern United States as interpreted from regional aeromagnetic and gravity maps. In Studies related to the Charleston, South Carolina, earthquake of 1886−Tectonics and seismicity. Edited by G.S. Gohn. United States Geological Survey, Professional Paper 1313-K, 24 p.
- Doar, W.R., III. 2014. The geologic implications of the factors that affected relative sea-level positions in South Carolina during the Pleistocene and the associated preserved high-stand deposits. Unpublished Ph.D. thesis, University of South Carolina, Columbia, South Carolina, 172 p.
- Durá-Gómez, I. and Talwani, P. 2009. Finding faults in the Charleston area, South Carolina: 1. Seismological data. Seismological Research Letters, 80, pp. 883–900. https://doi.org/10.1785/gssrl.80.5.883
- Dutton, C.E. 1889. The Charleston earthquake of August 31, 1886. United States Geological Survey, U.S. Government Printing Office, Washington, D.C., pp. 203–528.
- Gohn, G.S. (Editor). 1983. Studies related to the Charleston, South Carolina, earthquake of 1886−Tectonics and seismicity. United States Geological Survey, Professional Paper 1313, 8 plates, 467 p. https://doi.org/10.3133/ofr82134
- Gohn, G.S. 1988. Late Mesozoic and early Cenozoic geology of the Atlantic Coastal Plain: North Carolina to Florida. In The Atlantic continental margin: Geology of North America. Edited by R.E. Sheridan and J.A. Grow. Boulder, Colorado, Geological Society of America, I-2, pp. 107–130. https://doi.org/10.1130/DNAG-GNA-I2.107
- Gohn, G.S., Houser, B.B., and Schneider, R.R. 1983. Geology of the basement rocks near Charleston, South Carolina−Data from detrital rock fragments in lower Mesozoic(?) rocks in Clubhouse Crossroads test hole #3. In Studies related to the Charleston, South Carolina, earthquake of 1886‒Tectonics and seismicity. Edited by G.S. Gohn. United States Geological Survey, Professional Paper 1313-E, 22 p. https://doi.org/10.3133/ofr82134
- Guccione, M., Marple, R., and Autin, W. 2005. Evidence for Holocene displacements along the Bootheel fault (lineament) in southeastern Missouri: Seismotectonic implications for the New Madrid region. Geological Society of American Bulletin, 117, no. 3/4, pp. 319–333. https://doi.org/10.1130/B25435.1
- Hamilton, R.M., Behrendt, J.C., and Ackermann, H.D. 1983. Land multichannel seismic reflection evidence for tectonic features near Charleston, South Carolina. In Studies related to the Charleston, South Carolina, earthquake of 1886‒Tectonics and seismicity. Edited by G.S. Gohn. United States Geological Survey, Professional Paper 1313-I, 18 p.
- Hudnut, K.W., Seeber, L., and Pacheco, J. 1989. Cross-fault triggering in the November 1987 Superstition Hills earthquake sequence, southern California. Geophysical Research Letters, 16, no. 2, pp. 199–202. https://doi.org/10.1029/GL016i002p00199
- Johnston, A.C. 1989. The seismicity of “stable continental interiors.” In Earthquakes at North Atlantic passive margins: Neotectonics and postglacial rebound. Edited by S. Gregersen and P.W. Basham. Kluwer Academic Publishers, Dordrecht, Netherlands, NATO ASI Series C, Mathematical and Physical Sciences, 266, pp. 299–327. https://doi.org/10.1007/978-94-009-2311-9_18
- Johnston, A.C. 1996. Seismic moment assessment of earthquakes in stable continental regions−III, New Madrid 1811–1812, Charleston 1886 and Lisbon 1755. Geophysical Journal International, 126, pp. 314–344. https://doi.org/10.1111/j.1365-246X.1996.tb05294.x
- King, E.R. and Zietz, I. 1978. The New York-Alabama lineament: Geophysical evidence for a major crustal break in the basement beneath the Appalachian basin. Geology, 6, pp. 312–318. https://doi.org/10.1130/0091-7613(1978)62.0.CO;2
- King, G. and Nábělek, J. 1985. Role of fault bends in the initiation and termination of earthquake rupture. Science, 228, pp. 984–987. https://doi.org/10.1126/science.228.4702.984
- Lennon, G. 1985. Identification of a northwest-trending seismogenic graben near Charleston. Unpublished Masters thesis, University of South Carolina, Columbia, South Carolina, 84 p.
- Levandowski, W., Herrmann, R.B., Briggs, R., Boyd, O., and Gold R. 2018. An updated stress map of the continental United States reveals heterogeneous intraplate stress. Nature Geoscience, 11, pp. 433–437. https://doi.org/10.1038/s41561-018-0120-x
- Lund Snee, J. and Zoback, M.D. 2020. Multiscale variations of the crustal stress field throughout North America. Nature Communications. pp. 1–8. https://doi.org/10.1038/s41467-020-15841-5
- Madabhushi, S. and Talwani, P. 1993. Fault plane solutions and relocations of recent earthquakes in Middleton Place-Summerville seismic zone near Charleston, South Carolina. Bulletin of the Seismological Society of America, 83, no. 5, pp. 1442–1466.
- Markewich, H.W. 1985. Geomorphic evidence for Pliocene-Pleistocene uplift in the area of the Cape Fear arch, North Carolina. In Tectonic geomorphology. Edited by M. Morisawa and J.T. Hack. Proceedings, 15th Annual Binghamton Geomorphology Symposium. Allen and Unwin, Boston, Massachusetts, pp. 279–297.
- Marple, R.T. 1994. Discovery of a possible seismogenic fault system beneath the Coastal Plain of South and North Carolina from an integration of river morphology and geological and geophysical data. Unpublished Ph.D. thesis, University of South Carolina, Columbia, South Carolina, 354 p.
- Marple, R.T. 2011. Comment on the Companion articles “Finding faults in the Charleston area, South Carolina: 1. Seismological data” by I. Durá-Gómez and P. Talwani and “Finding faults in the Charleston area, South Carolina: 2. Complementary data” by P. Talwani and I. Durá-Gómez. Seismological Research Letters, 82, no. 4, pp. 599–605. https://doi.org/10.1785/gssrl.82.4.599
- Marple, R.T. and Hurd, J.D., Jr. 2019. LiDAR and other evidence for the southwest continuation of and Late Quaternary reactivation of the Norumbega fault system and a cross-cutting structure near Biddeford, Maine, USA. Atlantic Geology, 55, pp. 323–359. https://doi.org/10.4138/atlgeol.2019.011
- Marple, R.T. and Hurd, J.D., Jr. 2020. Interpretation of lineaments and faults near Summerville, South Carolina, USA, using LiDAR data: Implications for the cause of the 1886 Charleston, South Carolina, earthquake. Atlantic Geology, 56, pp. 73–95. https://doi.org/10.4138/atlgeol.2020.004
- Marple, R.T. and Hurd, J.D., Jr. 2021. Investigation of the Cape Fear arch and East Coast fault system (ECFS) in the Coastal Plain of North Carolina and northeastern South Carolina, USA, using LiDAR data. Atlantic Geology, 57, pp. 311–341. https://doi.org/10.4138/atlgeol.2021.015
- Marple, R.T. and Miller, R. 2006. Association of the 1886 Charleston, South Carolina, earthquake and seismicity near Summerville with a 12° bend in the East Coast fault system and triple-fault junctions. Southeastern Geology, 44, no. 3, pp. 101–128.
- Marple, R.T. and Schweig, E.S., III. 1992. Remote sensing of alluvial terrain in a humid, tectonically active setting: “The New Marid Seismic Zone”. Photogrammetric Engineering and Remote Sensing, 58, no. 2, pp. 209–219.
- Marple, R.T. and Talwani, P. 1993. Evidence of possible tectonic upwarping along the South Carolina Coastal Plain from an examination of river morphology and elevation data. Geology, 21, no. 7, pp. 651–654. https://doi.org/10.1130/0091-7613(1993)0212.3.CO;2
- Marple, R.T. and Talwani, P. 2000. Evidence for a buried fault system in the Coastal Plain of the Carolinas and Virginia−Implications for neotectonics in the southeastern United States. Geological Society of America Bulletin, 112, no. 2, pp. 200–220. https://doi.org/10.1130/0016-7606(2000)1122.0.CO;2
- Marple, R.T., Hurd, J.D., Jr., Liu, L., Travis, S., and Altamura, R.J. 2018. Investigation of the 1727 Newbury, Massachusetts, USA, earthquake using LiDAR imagery and P-wave velocity tomography. Atlantic Geology, 54, pp. 267–283. https://doi.org/10.4138/atlgeol.2018.009
- McCartan, L., Lemon, E.M., Jr., and Weems, R.E. 1984. Geologic map of the area between Charleston and Orangeburg, South Carolina. United States Geological Survey, Miscellaneous Investigations Map I-1472, 1 sheet, scale 1:250 000.
- McKinley, C. 1887. A descriptive narrative of the earthquake of August 31, 1886. In Appendix for the City of Charleston Year Book, 1886, Walker, Evans, and Cogswell Company, Charleston, South Carolina, pp. 345–441.
- Peters, K. and Herrmann, R.B. (Editors). 1986. First-hand observations of the Charleston earthquake of August 31, 1886, and other earthquake materials. Reports of W.J. McGee, Earle Sloan, Gabriel E. Manigault, Simon Newcomb, and others. South Carolina Geological Survey, Bulletin 41, 116 p.
- Phillips, J.D. 1977. Magnetic basement near Charleston, South Carolina−A preliminary report. In Studies related to the Charleston, South Carolina, earthquake of 1886−A preliminary report. Edited by D.W. Rankin. United States Geological Survey, Bulletin 1028-J, 11 p.
- Phillips, J.D. 1988. Buried structures at the northern end of the early Mesozoic South Georgia Basin, South Carolina, as interpreted from aeromagnetic data. In Studies of the early Mesozoic basins of the eastern United States. Edited by A.J. Froelick and G.R. Robinson. United States Geological Survey, Bulletin 1776, pp. 248–252.
- Poley, C.M. and Talwani, P. 1986. Recent vertical crustal movements near Charleston, South Carolina. Journal of Geophysical Research, 91, pp. 9056–9066. https://doi.org/10.1029/JB091iB09p09056
- Popenoe, P. and Zietz, I. 1977. The nature of the geophysical basement beneath the Coastal Plain of South Carolina and northeastern Georgia. In Studies related to the Charleston, South Carolina, earthquake of 1886−A preliminary report. Edited by D.W. Rankin. United States Geological Survey, Bulletin 1028-I, 19 p.
- Powell, C.A. and Thomas, W.A. 2015. Grenville basement structure associated with the Eastern Tennessee seismic zone, southeastern USA. Geology, 44, no. 1, pp. 39–42. https://doi.org/10.1130/G37269.1
- Pratt, T.L., Shah, A.K., Counts, R.C., Horton, J.W., Jr., and Chapman, M.C. in press. Shallow faulting and folding in the epicentral area of the 1886 Charleston, South Carolina, earthquake. Bulletin of the Seismological Society of America, 27 p. https://doi.org/10.1785/0120210329
- Prowell, D.C. 1988. Cretaceous and Cenozoic tectonism on the Atlantic coastal margin. In The Atlantic continental margin: Geology of North America. Edited by R.E. Sheridan and J.A. Grow. Boulder, Colorado, Geological Society of America, I-2, pp. 557–564. https://doi.org/10.1130/DNAG-GNA-I2.557
- Rankin, D.W. (Editor). 1977. Studies related to the Charleston, South Carolina, earthquake of 1886−A preliminary report. United States Geological Survey, Bulletin 1028, 204 p. https://doi.org/10.3133/pp1028
- Rhea, S. 1989. Evidence of uplift near Charleston, South Carolina. Geology, 17, pp. 311–315. https://doi.org/10.1130/0091-7613(1989)0172.3.CO;2
- Schilt, F.S., Brown, L.D., Oliver, J.E., and Kaufman, S. 1983. Surface structure near Charleston, South Carolina: Results of COCORP reflection profiling in the Atlantic Coastal Plain. In Studies related to the Charleston, South Carolina, earthquake of 1886‒Tectonics and seismicity. Edited by G.S. Gohn. United States Geological Survey, Professional Paper 1313-H, 19 p.
- Schumm, S.A. 1986. Alluvial river response to active tectonics. In Studies in Geophysics: Active Tectonics. National Academy Press, Washington, D.C., pp. 80–94.
- Seeber, L. and Armbruster, J.G. 1981. The 1886 Charleston, South Carolina earthquake and the Appalachian detachment. Journal of Geophysical Research, 86, no. B9, pp. 7874–7894. https://doi.org/10.1029/JB086iB09p07874
- Shedlock, K.M. 1988. Seismicity in South Carolina. Seismological Research Letters, 59, pp. 165–171. https://doi.org/10.1029/JB086iB09p07874
- Sibson, R.H. 1990. Rupture nucleation on unfavorably oriented faults. Bulletin of the Seismological Society of America, 80, pp. 1580–1604.
- Sims, P.K. 2009. The Trans-Rocky Mountain fault system−A fundamental Precambrian strike-slip system. United States Geological Survey, Circular 1334, 13 p. https://doi.org/10.3133/cir1334
- Soller, D.R. 1988. Geology and tectonic history of the lower Cape Fear River valley, southeastern North Carolina. United States Geological Survey, Professional Paper 1466-A, 60 p. https://doi.org/10.3133/pp1466A
- Stein, R.S. and Yeats, R.S. 1989. Hidden earthquakes. Scientific American, 260, no. 6, pp. 48–57. https://doi.org/10.1038/scientificamerican0689-48
- Steltenpohl, M.G., Zietz, I., Horton, J.W., Jr., and Daniels, D.L. 2010. New York-Alabama lineament: A right-slip fault bordering the Appalachians and mid-continent North America. Geology, 38, no. 6, pp. 571–574. https://doi.org/10.1130/G30978.1
- Stevenson, D., Gangopadhyay, A., and Talwani, P. 2006. Booming plutons: Source of microearthquakes in South Carolina. Geophysical Research Letters, 33, 4 p. https://doi.org/10.1029/2005GL024679
- Talwani, P. 1982. An internally consistent pattern of seismicity near Charleston, South Carolina. Geology, 10, pp. 655–658. https://doi.org/10.1130/0091-7613(1982)10%3C654:ICPOSN%3E2.0.CO;2
- Talwani, P. 1999. Fault geometry and earthquakes in continental interiors. Tectonophysics, 305, pp. 371–379. https://doi.org/10.1016/S0040-1951(99)00024-4
- Talwani, P. and Durá-Gómez, I. 2009. Finding faults in the Charleston area, South Carolina: 2. Complementary data. Seismological Research Letters, 80, pp. 901–919. https://doi.org/10.1785/gssrl.80.5.901
- Talwani, P. and Schaeffer, W.T. 2001. Recurrence rates of large earthquakes in the South Carolina Coastal Plain based on paleoliquefaction data. Journal of Geophysical Research, 106, pp. 6621-6642. https://doi.crossref.org/simpleTextQuery#:~:text=https%3A//doi.org/10.1029/2000JB900398
- Talwani, P., Kellog, J.N., and Trenkamp, R. 1997. Validation of tectonic models for an intraplate seismic zone, Charleston, South Carolina, with GPS geodetic data. United States Nuclear Regulatory Commission, Report no. NUREG CR-6529, United States Nuclear Regulatory Commission. Washington, D.C., 41 p. https://doi.org/10.2172/446309
- U.S. Geological Survey. 2021. Earthquakes map. https://earthquake.usgs.gov/earthquakes/map/?extent=32.9198,-80.19642&extent=32.97044,-80.09617&range=search&baseLayer=terrain&timeZone=utc&search=%7B%22name%22:%22Search%20Results%22,%22params%22:%7B%22starttime%22:%221900-01-01%2000:00:00%22,%22maxlatitude%22:35.317,%22minlatitude%22:31.85,%22maxlongitude%22:-78.459,%22minlongitude%22:-83.513,%22minmagnitude%22:0,%22orderby%22:%22time%22%7D%7D
- Weems, R.E. and Lemon, E.M., Jr. 1984. Geologic map of the Mount Holly Quadrangle, Berkeley and Charleston counties, South Carolina. United States Geological Survey, Geologic Quadrangle Map GQ-1579, 1 sheet, scale 1:24 000.
- Weems, R.E. and Lemon, E.M., Jr. 1988. Geologic map of the Ladson Quadrangle, Berkeley, Charleston, and Dorchester counties, South Carolina. United States Geological Survey, Miscellaneous Investigations Map GQ-1630, 1 sheet, scale 1:24 000.
- Weems, R.E. and Lewis, W.C. 2002. Structural and tectonic setting of the Charleston, South Carolina, region: Evidence from the Tertiary stratigraphic record. Geological Society of America Bulletin, 114, pp. 24–42. https://doi.org/10.1130/0016-7606(2002)1142.0.CO;2
- Weems, R.E. and Obermeier, S.F. 1989. The 1886 Charleston earthquake−An overview of geological studies. In Proceedings of the United States Nuclear Regulatory Commission, Seventeenth Water Reactor Safety Information Meeting, United States Nuclear Regulatory Commission, Report no. NUREG/CP-0105, 2, Rockville, Maryland, pp. 289–313.
- Weems, R.E., Lemon, E.M., Jr., and Nelson, M.S. 1997. Geology of the Pringleton, Ridgeville, Summerville, and Summerville Northwest 7.5-minute quadrangles, Berkeley, Charleston, and Dorchester counties, South Carolina. United States Geological Survey, Miscellaneous Investigations Series Map I-2502, 2 sheets, scale 1: 24 000.
- Weems, R.E., Lewis, W.C., and Lemon, E.M., Jr. 2014. Surficial geologic map of the Charleston region, Berkeley, Charleston, Colleton, Dorchester, and Georgetown counties, South Carolina. United States Geological Survey, Open-File Report 2013-1030, 1 sheet, scale 1:100 000. https://doi.org/10.3133/ofr20131030
- Wells, D.L. and Coppersmith, K.J. 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 94, pp. 974–1002.
- Yang, T., Yang, X., Duan, Q., Chen, J., and Dekkers, M.J. 2016. Rock magnetic expression of fluid infiltration in the Yingxiu-Beichuan fault (Longmen Shan thrust belt, China). Geochemistry, Geophysics, Geosystems, 17, pp. 1065–1085. https://doi.org/10.1002/2015GC006095
- Zoback, M.D. and Zoback, M.L. 1989. Tectonic stress field of the continental United States. Geological Society of America, Memoir 172, pp. 523–540. https://doi.org/10.1130/MEM172-p523