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ABSTRACT

We consider a nonparametric method to estimate conditional expected shortfalls, i.e. 
conditional expected losses knowing that losses are larger than a given loss quantile. We 
dérivé the asymptotic properties of kernel estimators of conditional expected shortfalls in 
the context of a stationary process satisfying strong mixing conditions. An empirical 
illustration is given for several stock index returns, namely CAC40, DAX30, S&P500, 
DJ1, and Nikkei225.
Keywords: Nonparametric, Kernel, Time Sériés, Conditional VaR, Conditional Expected 
Shortfall, Risk Management, Loss Severity Distribution.

RÉSUMÉ

Nous développons un modèle non-paramétrique afin d’estimer les pertes espérées condi
tionnelles; en d’autres termes, nous voulons estimer quel est la perte espérée étant donné 
que nous savons que la perte est plus élevée qu’un certain niveau. Nous étudions les 
propriétés asymptotiques du noyau des estimateurs des pertes espérées conditionnelles 
dans un contexte où le processus stationnaire satisfait des conditions fortes de transfert. 
Nous illustrons nos résultats au moyen d’un exemple numérique basé sur le rendement de 
cinq indices boursiers : CAC40, DAX30, SNP500, DJ135 et Nikkei225.
Mots clés : Modèle non-paramétrique, noyau des estimateurs, séries temporelles, VaR 
conditionnel, pertes espérées conditionnelles, gestion des risques, distribution des pertes 
à haute sévérité.
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I. INTRODUCTION

640

Most financial institutions are now routinely using risk manage
ment Systems to adequately control their risks or to suitably allocate 
their capital. This has been impulsed by either internai requirements 
(efficient use of capital invested by shareholders, development of new 
business fines) or external constraints (Capital Adequacy Require- 
ment of the Basle Committee on Banking Supervision, prudential 
rules imposed by European or American regulators on financial insti
tutions). In this context Value at Risk (VaR) and expected shortfall 
(ES) hâve become essential tools to assess riskiness of trading activ- 
ities (see e.g. J.P. Morgan (1996), Wilson (1996), Duffie and Pan 
(1997), Jorion (1997), Dowd (1998), Stulz (1998) for a detailed 
analysis and applications in risk management). From a formai point 
of view, VaR is simply a quantile of the loss distribution over a pre- 
scribed holding period, while ES is the expected loss knowing that 
the loss is above VaR.

Decisions concerning the reserve amount and the way of allo- 
cating the capital to cover adverse market movements are directly 
linked to such risk measures. Appropriate risk measurement tools 
should therefore be allowed to adapt to varying market conditions, 
and to reflect the latest available information in a non-i.i.d. frame- 
work. Up to now most of the risk management literature has focused 
on marginal VaR and marginal ES, i.e. risk measures referring to 
marginal or stationary distributional features1. These are especially 
suited for a long term view, but can be less valuable for short term 
adjustments.

In this paper our main concern is to propose conditional tools 
that will ideally complément marginal measures. Hence we develop 
estimators of conditional VaR and conditional ES in a nonparametric 
framework when the conditioning information is made of past 
observed returns. Our approach is similar in spirit to conditional 
parametric approaches for VaR based on GARCH modelling of 
financial return sériés (see e.g. Alexander and Leigh, 1997; Boudoukh, 
Richardson and Whitelaw, 1997; McNeil and Frey, 2000; or Barone- 
Adesi, Bourgoin, and Giannopoulos, 1998). It is however more flex
ible and permits to capture other market features than only changing 
volatility backgrounds (for another flexible, but parametric, approach, 
see the CAViaR model of Engle and Manganelli, 1999). We propose 
to enlarge the setting enough to support a broad class of dependence 
structures, namely strong mixing.2 The estimation procedure based 
on a kernel approach is extremely fast and easy to implement. It basi- 
cally only requires the standard functionalities of any spreadsheet
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used in financial statement reporting. This paper extends the 
nonparametric analysis proposed in a marginal framework by 
Gouriéroux, Laurent and Scaillet (2000) for VaR, and by Scaillet 
(2004) for ES. In fact our estimator for the conditional VaR is based 
on inverting a Nadaraya-Watson type estimator3 of the conditional 
distribution function for time sériés data. It is akin to the estimator 
studied by Cai (2002) (see the references therein for other propos
ais4). The latter relies however on a smoothing in the direction of the 
lagged values only and not in ail directions. Hence by construction 
our estimator provides smoother estimâtes, which are better suited 
for graphical purposes. Asymptotically and for interior points, i.e. 
quantiles not to far in the tails, properties of both estimators coincide. 
For boundary points, the estimator of Cai (2002) exhibits better 
asymptotic properties in the sense of avoiding the so-called bound
ary bias. His estimator involves a heavier computational burden 
since it requires estimating and optimizing additional weights aimed 
to correct for this bias. Performance of both estimators should be 
close in practice because sample sizes are large for financial data5 
and the quantiles used in market risk management cannot be consid- 
ered as extremes.

Let us also remark that relying on VaR for risk measurement 
purposes has been recently challenged by Artzner, Delbaen, Eber 
and Heath (1999) since VaR fails to be subbadditive. This subaddi- 
tivity property expresses the idea that the total risk on a portfolio 
should not be greater than the sum of the individual risks, and is part 
of the necessary requirements to be a cohérent measure of risk in the 
sense of Artzner, Delbaen, Eber and Heath (1999). ES can be shown 
to be a cohérent measure of risk for continuons distributions6. We 
further refer the reader to Acerbi and Tasche (2002) for an illuminat- 
ing and précisé mathematical discussion of several risk measures 
related to what we call ES. Note also that another disadvantage of 
VaR is that it tells us nothing about the potential size of the loss that 
exceeds it, while ES does.

Let us finally stress that when we speak about conditional VaR, 
we refer to a VaR computed with respect to a conditional distribu
tion. In the risk management literature “conditional VaR” (see e.g. 
Rockafellar and Uryassev, 2002) sometimes refer to what we call 
ES. Since it seems that there does not exist a universally agreed 
terminology we prefer to use ES to avoid the somewhat odd term 
“conditional conditional VaR” in place of conditional ES. We could 
also hâve used TailVaR instead of ES as in Artzner, Delbaen, Eber 
and Heath (1999). The term ES seems to be more in line with actu- 
arial practice.
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The paper is organised as follows. In Section 2 we introduce the 
basic notations and concepts underlying our framework. In Section 3 
we give the form of the kernel estimators for conditional VaR and 
ES, and provide the asymptotic distributions of these nonparametric 
estimators. Section 4 is devoted to a Monte Carlo experiment. The 
behavior of the estimators in finite sample is assessed for an AR(1)- 
ARCH(l) example. An empirical application on several stock index 
returns, namely CAC40, DAX30, S&P500, DJI, and Nikkei225, is 
provided in Section 4. Concluding remarks are presented in Section 
5. Mathematical developments are gathered in an appendix.

2. FRAMEWORK

We consider a real-valued strictly stationary process {Yt e Z} and 
assume that our data consist in a realization of {Y{\ t = 1,..., T}. These 
data may correspond to observed returns at several dates. They may 
also correspond to simulated values drawn from a parametric model 
(VARMA, multivariate GARCH or diffusion processes), possibly 
fittcd on another set of data. Simulations arc oftcn rcquired whcn the 
structure of financial assets is too complex, as for some dérivative 
products and crédit sensitive instruments. This, in turn, implies that 
the sample length T can sometimes be controlled, and asked to be 
sufficiently large to get satisfying estimation results.

Let us take a positive integer n, and let 0 < ^ < ... < be inte- 
gers, so that we define Z = (K T,..., K T )'. In particular we may take 
T] = 1,= n, which gives Zz = (^ p ..., Yt n). In the foliowing we 
define conditional objects w.r.t. Zp i.e. lagged returns. We dénoté by 
/(y, z), F(y, z), the marginal p.d.f. and c.d.f. of Z')', while the 
conditional p.d.f. and c.d.f. are written f(y | z), and F (y | z), respec- 
tively.

The conditional VaR knowing that past returns Z( are equal to 
Ç g IR" is formally defined by the equality

P[-Yl>VaR^,p)\Z=(3\=p, (1)

where p is the loss probability. The conditional VaR is a function of 
the loss probability, which typically ranges from 1% to 5%, while 
stock returns are usually measured over a one day period or a ten day 
period. Expression (1) which can be rewritten

P[Yt < - VaR&, p) | Z, = Ç] = F(-VaR(Ç p) | Ç) = p,
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gives the relationship

eo=-v<P), (2)

bctwccn the quantile <2(Ç, p) of the conditional distribution of Yt and 
VaÆ(Ç p).

The conditional ES is defined as the conditional expected loss 
knowing that the loss is above the conditional VaR:

E[-y,l-yz> v«Æ(Ç,p),z, = Ç]
= E[-Yt | Yt < Q(Ç p), Zt = Ç] ee m(Ô(Ç p), Q. (3)

3. KERNEL ESTIMATORS OF CONDITIONAL VaR 
AND ES

We start with the définition of the kernel estimators before 
moving to their asymptotic distribution.

3.1 Définition
From (2) and (3), we see that we are in fact interested in esti- 

mating conditional quantités, and conditional expectations knowing 
that we are below conditional quantiles.

For a quantile of order p g (0, 1), we assume that the cumulative 
distribution function F(. | Ç.) of Yt given Zt at distinct points Ç. g IR”, 
z = 1,..., d, is such that the équation F(y | Ç.) = p admits a unique solu
tion for each of the Ç. denoted Q(Ç p).

For conditional expectations, we look at the quantities

P), Ç.)/(Q P = -E[Yt I Yt < Q(Ç p), Z, = y <) p (4) 

at distinct points Ç. g IR”, z = l,d, where/denotes the p.d.f. of Z{.

Let k^u) be a real bounded and symmetric function on IR such that

J^.(m)Jm=1, z=l,...,d, rz,

and
n

K.(u; //'>) = J} / /r), i = 1,cl,
7=1

Nonparametric Estimation of Conditional Expected Shortfall 643
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where is a diagonal matrix with éléments (F)"=1 and déterminant 
| /z(/) | (for a scalar x, | x | will dénoté its absolute value), while the 
bandwidths h.. are positive functions of T such that

| | + (T | I)’1 0 when T -> <*>.

In addition, let / and h or l. and hp z = 1, ..., df satisfy the same 
conditions as any of the k.. and h...J lJ u

The p.d.f. of Z{ at Ç., i.e./(Q, will be estimated by

while the p.d.f. of (IÇ, Zf) at (£., Q, i.e. f(£,y, Q, will be estimated by

11 ; q = (T /r I h" I )-> £ Z/Ty'(^ - y,)) - Z,; h^.

r=l+t„

Hence, estimators of the conditional cumulative distribution of 
Y} given Z{ = at distinct points j = 1,..., d, are obtained as

| Q = £ [1; «, du ! [1 ; Q M(Ç., Q / [1 ; Ç;], (5)

calling <|)(^., Q = I /(zz, Ç.) du. The first dérivatives with respect to 

£, of F(^ | Ç.) will be denoted by/(^ | Ç.). Based on (5) and taking 
h. - h, l. = 1, the conditional quantile <2(Ç.,p), namely -VaÆ(Çf.,p), can 
be estimated by

ô(Ç,,p) = inf {y : Ay | Q >p}. 
' yelR

Finally, to estimate the conditional expectation of -Yt given 
Y < Q(ÇP p) and Zt = we will need the foliowing estimate of (4) :

= X YJ^h-'fu-Y^K^-Z-.h^du,
00 '=>+*,,

so that the conditional ES can be estimated by

»XQ(^,p). U = - f Ç] du ! (11; ç, I p) = -$(M,p). Ç,) ! (11; ç. I P).
•7—00

If a single Gaussian kernel F.(zz) - (p(zz) and a single bandwidth h 
are adopted, we simply get:

Assurances et gestion des risques, vol. 72(4), janvier 2005
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where (p and O dénoté the p.d.f. and c.d.f. of a standard Gaussian 
variable, respectively.

3.2 Asymptotic distribution
The asymptotic normality of kernel estimators for conditional 

VaR and ES can be established under suitable conditions on the ker
nel, the asymptotic behavior of the bandwidth, the regularity of the 
conditional expectations and densities, and some mixing properties 
of the process. Below we mainly follow the présentation of Robinson 
(1983) (see e.g. Bierens, 1985 or Bosq, 1998 for alternative sets of 
assumptions).

Assumption 1 (kernel and bandwidth)
(a) Bandwidths satisfy | 111 /zw 114 T —> 0.

(b) Kernels and bandwidths satisfy | kr(u) | < C(1 + \ u |)-(|+œ/«\
and 11 11"+œ'-2 < C | h^ |, ; ü). > 2.

Assumption 2 (process)
(a) The process (Yf) is strong mixing with coefficients a. such

that a,1’270 = O(7V_I), as N while E | Yt | 0 < w,for 
l=N

some 0 > 2.

(b) For each we hâve f^.) > 0 andJ{Q(t>P p) | Q > 0.

(c) Second order partial dérivatives for the p.d.f of (Yp Z) are 
continuons in neighbourhoods of ail pairs (^., Ç) where esti
mation is performed.

(d) T/?c p.d.f of(Zp Zt + 5) exists and is bounded in a neighbour- 
hood of ail pairs Ç), i,j = 1, d, uniformely in s> 1.

(e) The conditional expectation m(^, z) is twice continuons ly
différentiable att) = /?) and z = i = 1, ..., d.

Nonparametric Estimation of Conditional Expected Shortfall 645
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(f) The conditional expectation z) = E[Y2 | Yt<^,Z{ = z], is 
continuous at^- <2(Ç-, p) and z = i = 1,d.

(g) The conditional expectation E[ | Y( | y | Y{ < Zt - z], is bounded 
fory>Qat^-Q^p) andz = C,Pi = 1, ...» d.

Let 5 and 5 be the ddimensional vector with components Si / V2 
and S f ! V2, respectively given by:

= i),/2{é(Çp)-e(Ç/^)},

2 = p(l-p)K,.

' M)/(e(C^)|C)2’
and

s. = (T I /zw |)1/2 {m (Q(Ç p), Q - p), Q},

V2 = ——
' /COp

j(eO|Q2 AM-pO

Proposition 1 Under Assumptions 1 and 2(a)-(d), S converges in 
distribution to a vector of independent standard normal random 
variables.

Proof: see Henry and Scaillet (2000) and the developments in the 
proof of Proposition 2.

Proposition 2 Under Assumptions 1 and 2, S converges in distribu
tion to a vector of independent standard normal random variables.

Proof: see Appendix.

Consistent estimâtes of asymptotic variances V2 and V2 may be 
derived after replacement of the various terms by adéquate density 
and conditional moment kernel estimators. However block or local
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bootstrap procedures (see the review of Bühlmann, 2002) reveal 
more appropriate in small samples to build pointwise confidence 
bands.

Finally, let us remark that ail asymptotic results will not be 
affected if simulations of a parametric model are used as input data, 
when estimated parameters satisfy the usual rate of convergence. 
The number of simulations could then be chosen large enough to be 
on the safe side of asymptotic theory.

4. EMPIRICAL ILLUSTRATION

This section illustrâtes the implémentation of the estimation 
procedure described in Section 3. The empirical illustration concerns 
data on stock index returns. We analyze five major stock indices: 
CAC40, DAX30, S&P500, DJI, and NIKKEI225. The data are one 
day returns recorded daily from 03/01/1994 to 07/07/2000, i.e. 1700 
observations. Table 1 gathers the summary statistics for these data 
including the empirical marginal VaR (loss quantile of level p) and 
the empirical marginal expected shortfall (empirical mean of losses 
above VaR divided by the probability of occurrence) for a loss prob- 
ability level p equal to 5%. We may observe that European and Japa- 
nese indices are riskier than US indices from a marginal point of 
view, even if the kurtosis is larger for the latter.

I
 TABLE I

SUMMARY STATISTICS OF STOCK INDEX RETURN 
DATA

CAC40 DAX30 S&P500 DJI Nikkei225

mean .001 .001 .001 .001 .000

st. dev. .012 .013 .010 .010 .014

skew. -.157 -.498 -.440 -.546 .066

kurt. 1.685 3.267 5.591 5.491 3.243

médian .000 .001 .000 .000 .000

VaR .020 .022 .016 .015 .023

ES .028 .031 .023 .023 .031

Nonparametric Estimation of Conditional Expected Shortfall 647
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To conduct the nonparametric analysis we hâve selected a sin
gle bandwidth value according to the usual rule of thumb (empirical 
standard déviation times r!/5) and a single Gaussian kernel.

We start with the European indices, namely CAC40 and 
DAX30. Figures 1 and 2 report conditional VaR and conditional ES 
with a 5% loss probability level. The left columns contain estimâtes 
for a single conditioning variable equal to a one period lagged return. 
Pointwise confidence bands at 90% are also provided. They are built 
from a block bootstrap procedure (Künsch, 1989) with a block length / 
of 11 data (this length corresponds to the rule of thumb given
in Bühlmann, 2002). The right columns give estimâtes with one period 
and two period lagged returns as conditioning set. The conditioning 
values are taken between the first and third quartiles of the return 
data. Outside this range, the estimation becomes very unstable due to 
the lack of observations. Conditional VaR and conditional ES of the 
left column are U-shaped for CAC40. Hence the risk tends to be 
lower when yesterday return is close to the empirical average and 
larger otherwise. This means that CAC40 is likely to correct strongly 
when a large positive return occurs the day before, or to fall deeper 
when a large loss has already occurred the day before. DAX30 does 
not sharc this propcrty. The CAC40 U-shapc is invcrtcd in the right 
column when we consider very négative values of the two period 
lagged return. A third large loss is thus less likely when two losses 
hâve already been successively endured. For DAX30 this is not 
observed, and the second conditioning variable seems to bring less 
information (flatter surfaces).

Let us now proceed with US indices, namely S&P500 and DJI. 
Figures 3 and 4 show a similar decreasing behavior in their left col
umn. Hence we do not see a tendency to strongly correct after a large 
upmove. Both indices differ in their right column. A third large fall 
of S&P500, resp. DJI, is more, resp. less, likely after two successive 
downmoves. Besides the more diversified S&P500 exhibits flatter 
surfaces than the less diversified DJI.

Finally we find on Figure 5 the same U-shape for the Nikkei225 
as for CAC40, but not the inversion when we consider very négative 
values of the two period lagged return.
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5. CONCLUDING REMARKS

654

In this paper we hâve proposed simple nonparametric estima
tion methods of conditional VaR and conditional ES. The estimation 
procedure relies on a kernel approach in the context of a general sta- 
tionary strong mixing process. These estimators hâve been proved to 
be empirically relevant in the analysis of stock index returns. We 
think that they complément ideally the existing battery of risk man
agement tools since they allow revealing the very different types of 
conditional risk structures présent in the data. Eventually we should 
probably hâve supplemented our nonparametric methodology with 
some validation method to be fully convincing about its utility. We 
leave this interesting, but difficult, task for future research since there 
is no simple and efficient ways to validate statistically a nonparamet
ric model in the context of conditional VaR and conditional ES as 
opposed to the case of marginal VaR and conditional means.

Insurance and Risk Management, vol. 72(4), January 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission



APPENDIX
PROOF OF PROPOSITION

Let us adopt for a while the compact notations:

2, = Q(^t, Pf = 0(2,■ Q> mt = m(Qp f: =f(Q-

Using the expansions

M Q = 0(2,-, Q + ir,; 2,, y {2, - e,},

F(Ô,.|Q=P = /(2,|Q

= FiQ,i Q +hQli Q {2,-2,},

and

Ae,. I - F(Q, I Q = B-' {- (f),} A, Bp {[1 ; Ç,J , 

where

I2,-2,I<I2,-2,I,

where

1 C, - m.f.p I < I - 0(^, Q - m.f. P |.

We need to show that

(T|M')|)1/2{-E$(<2, Q -m.f.p} ^0, (6)

(T |/i(,) | )1/2 {£ (jr-<]).}—> 0, (7)

(8)
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APPENDIX (continued)

We hâve:

£-0(Ô;,Ç,.) = £ „p(T/j | /j"| rlCù/(/71(u-(0))À:,(Ç-X;/7“>)/((ùA)^</X</(û 

= | _ Jt,(z7-/7(o)/((o)Â'/(%;l)/(M-/?œ,Ç;-/î1'’ X)dudXd<o

= f, P + JC ) JK®2/(œ)</œ +\[|Hœ'’Mœ) ilu

+ o(h2 + max(Al2))

= —m, f p + û(/i2 + max(/î2 )).

In the same way,

+<?(/? + max(/?ly )),

and

£[1;Ç, ] =’L °A/œ)Joj+°(max<^ ))■ 
7=1 2 '

This proves the three stated results (6)-(8) using

Now following the construction in Robinson (1983) 
Theorem 5.3 step by step, we take = -^Hj r (<D, g{ - -Y{ - g(, 
for some D, 0 < £> < °°, and also Wjt = g{ Lj{, Wjt = gt Ljr with 
L, = Kit £ /(/?“'(« - y,)) du, K. = Kfa - Z- //')). We further 

introduce V, = c. (W., - E Wit), Vi+d, = ci+(l (L. - E L.), Vi+2d , 
= cj+2d (Kit - E W.(), where c., ci+(/, ci+2d, i = 1,.... d, are arbitrary 

T 3r/
constants. Then consider ST = (T | h(,) |)-1/2 zz V.f Since 

/=1 ./=1 
T

V[(T | /î(/) | )~)/2 Wy —> 0 as D —> <*>, uniformly in large T, we 
/=i

only hâve to show that ST has, for fixed D, an asymptotic 
normal distribution.
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APPENDIX (continued)

First let us put o = lim^ E[Vh V.] / (| || W |)l/2, i,
j = 1, 3d. We hâve

®i+d, i+2d “ Ci+d Ci+2d Ki

for i = 1, d, where m(D = E[-Yt H|y. |£/J | Yt < Q., Z, = Ç.], 
/z/' = E[F;2 II' r |s.D | Fz < g., Zf = Ç.J, and o.. = 0, otherwise.

Second the continuity of mj and H. implies the continuity 
of m.D and HP. Hence the central limit theorem of lemma 7.1 in 
Robinson (1983) valid for bounded V7 may be applied to Sr 
We get the final stated resuit of the proposition since mP m., 
HP H, by letting £> —> by using the convergence in prob- 
ability of

Q, Qp [y- g;, g m,Z„ /(g,. I Q -^.f(Q, I & 

where m. = E\Yf II g I Z, = Ç.], and by computing
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APPENDIX (continued)

( 1 f Z 0, >«, f p
U m\ Uf- m OZ3 f.1

f Hi fi p mi f p mi f p'

m, f P 0,
l™, Z p Z J

( 1 m, Z f p
lz z(e,| oz2 z(a i O Z3 f-

HiP miP2 ,n/2(b | 2m< m'P '
z z I z JI(Z(ô,h,)z)2 zcaiozj

from (j). /Z = P
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Notes
1. For time dépendent data marginal VaR and marginal ES are defîned with 

respect to the stationary distribution of the losses. We use the term conditional to refer 
to risk measures defîned with respect to conditional distributions instead of stationary 
distributions. In an i.i.d. setting we do not need to make a différence between marginal 
and conditional risk measures.

2. This type of mixing conditions, also called a-mixing, is standard for time 
sériés since strong mixing is a very weak condition on the dependence structure. Strong 
mixing sequences encompass dynamics generated by most commonly used parametric 
models, see Doukhan (1994) for several examples, such as standard ARMA models. 
GARCH models and stochastic volatility models can also be shown to be strong mixing 
under some conditions (Carrasco and Chen, 2002).

3. As noticed by Cai (2002), this type of estimator always produces conditional 
distribution fonction estimâtes which lie between zéro and one, and are monotone 
increasing. This is particularly advantageous if an inversion of the conditional distribution 
estimator is used to deliver an estimator of a conditional quantile.

4. Note also that our paper is the first to consider nonparametric estimation of 
conditional ES.

5. This allows to use small values for the smoothing parameter and thus reduce 
the boundary area.

6. On the contrary Acerbi and Tasche (2002) find that simply taking a condi
tional expectation of losses beyound VaR can fail to yield a cohérent measure of risk 
when there are discontinuités in the loss distribution. Assumptions underlying our 
smoothing approach rule out this possibility.
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