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On-line Network Synthesis

S. N. Kabadi and D. Du

Faculty of Business Administration, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3

Abstract

We consider on-line network synthesis problems. LetN = {1, · · · , n} be a set ofn sites. Traffic flow requirements
between pairs of sites are revealed one by one. Whenever a newrequestrij = rji (i < j) between sitesi and j is
revealed, an on-line algorithm must install the additionalnecessary capacity without decreasing the existing network
capacity such that all the traffic requirements are met. The objective is to minimize the total capacity installed by the
algorithm. The performance of an on-line algorithm is measured by the competitive ratio, defined to be the worst-case
ratio between the total capacity by the on-line algorithm and the total optimal (off-line) capacity assuming we have priori
information on all the requirements initially. We distinguish between two on-line versions of the problem depending on
whether the entire set of sites is known a prior or not. For thefirst version where the entire set of site is unknown, we
present a best possible algorithm along with a matching lower bound. For the second version where the entire set of
sites is known a priori, we present a best possible algorithmfor n ≤ 6.
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1. Introduction

In the traditional NETWORK SYNTHESIS PROBLEM

(NSP), one is given ann× n, symmetric, non-negative
matrix R (with rii = 0 ∀i = 1, 2, . . . , n), of minimum
flow requirements between all pairs of distinct sites in
the setN = {1, 2, . . . , n}. The goal is to construct an
undirected networkG = [N, E, c] on site setN , with
edge setE and non-negative, real-valued edge capaci-
ties{c(e) : e ∈ E}, such that (i) all the minimum flow
requirements are met one at a time, (that is, for any
i, j ∈ N, i 6= j, the maximum flow value inG between
i andj is at leastrij), and (ii)

∑
e∈E c(e) is minimum.

Without loss of generality, we assume the constructed
network is simple, i.e., no loops and parallel edges. Oth-
erwise we can delete any loop and merge any parallel
edges without affecting the results in this paper.

Gomory and Hu [10] and Mayeda [13] present ef-
ficient combinatorial algorithms for the problem NSP.
Gomory-Hu algorithm is strongly polynomial and pro-
duces an optimal network withO(n) edges. Also, when
all the elements of the matrixR are integers, the edge
capacities in the final network are multiples of half. Al-
ternate, combinatorial algorithms for the problem are
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D. Du and S N Kabadi
Email: S. N. Kabadi [kabadi@unb.ca], D. Du [ddu@unb.ca].

presented in [9] and [20]. The algorithm in [9] is a mod-
ification of the Gomory-Hu algorithm [10]. It has a time
complexityO(n2) and produces a network with at most
2n edges.

Very often, in practical network designing, the source
and destination and the flow requirements only become
known and/or are updated one by one in sequence and
after all the previous requirements in the sequence have
been served by installing necessary capacity. Any in-
stalled capacity cannot be decreased, but can only be
increased in future.

In this paper, we consider two on-line versions of the
network synthesis problem. The quality of an on-line al-
gorithm will be measured by itscompetitive ratio, which
is defined to be the worst-case ratio between the total
capacity of the on-line algorithm and the corresponding
optimal (off-line) total capacity over all instances.

Network optimization problems, such as matching,
assignment and transportation problems [12,11,15,17,18],
facility location [14], network design [2], Steiner tree
[3,7], set cover [1], traveling salesman [4–6], etc., in
an on-line setting have been actively investigated in
the literature. The reader is referred to the survey pa-
per by Kalyanasundaram and Pruhs [16] for further
information and references up to 1996.

After defining the problems formally in Section 2., we
present the main results and analysis for both versions
of the on-line network synthesis problem in Sections 3.

c© 2007 Preeminent Academic Facets Inc., Canada. Online version: http://journals.hil.unb.ca/index.php/AOR. All rights reserved.
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and 4., respectively.

2. Problem Description and Preliminaries

In this section, we formally define our problems. For
any positive integern, let N = {1, 2, . . . , n}. Given an
n×n symmetric, non-negative matrixR (with ri,i = 0
for all i ∈ N ), let us define thepotentialof site i to be
πi = maxj∈N rij , for all i ∈ N . It is easy to see that
the largest two potentials must be equal. For any non-
emptyX ⊂ N , and any non-emptyA ⊆ X andB ⊆ X,
we call the cut(X, X) an A-B cut. In particular for
any i ∈ X andj ∈ X, we call (X, X) an i-j cut. We
denote byc(X) =

∑
(i,j)∈(X,X) cij capacity of the cut

(X, X).
We will need the following important existing results

for the (off-line) NSP.
Proposition 1 [10,13]: The optimal objective function
value of the NSP, withn × n symmetric, non-negative
matrix R as input, is1

2

∑
i∈N πi.

Proposition 2 Suppose the potentialsπ = (π1, π2, . . . ,
πn) are sorted such thatπ1 = π2 ≥ · · · ≥ πn. If we can
sendπu units of flow from site1 to siteu in G for any
u ∈ N −{1, n}, then we can sendmin{πi, πj} units of
flow from sitei to sitej in G for any i, j ∈ N , i 6= j.
Proof. This follows from the well-knowntriple inequal-
ity [8,10]: For anyi, j, k ∈ N , the minimum capacity of
i-k-cut≥ min{minimum capacity ofi-j cut, minimum
capacity ofj-k cut}.
Proposition 3 Let G = [N, E, c] be an edge-
capacitated undirected network andN0 = {i1, · · · , ip}
be a subset ofN − {1}. For eachℓ ∈ {1, · · · , p}, let
F (iℓ) be the units of flow from siteiℓ to site 1. Then
we can simultaneously sendF (iℓ) units of flow from
site iℓ to site 1 for allℓ ∈ {1, · · · , p} if and only if
(i) for any 1-iℓ cut, the cut capacity is at leastF (iℓ)

for anyℓ ∈ {1, · · · , p}; and
(ii) for any 1-N0 cut, the cut capacity is at least∑p

ℓ=1 F (iℓ).
Proof. This follows from the well-known max-flow
min-cut Theorem [8].

We consider two on-line versions of the network syn-
thesis problem.
Version 1: In this version, at any point in time, a cer-

tain set{rij : (i, j) ∈ S} of requirements between
some setS of pairs of sites, and through it the set
N = {i : (i, j) ∈ S for somej} of sites are known
to us. The on-line algorithm is required to have de-
signed a networkG on site setN that meets the re-

vealed set of requirements one at a time. The next
piece of information revealed is some requirement
rxy, where if some requirement between sitesx and
y was revealed before then the new value is greater
than the previous and replaces the previous; else,rxy

is a new revealed requirement and in that case, the
new revealed set of sites isN = N ∪{x, y}. The on-
line algorithm is required to updateG to a network
G on site setN (that includes at least two more sites)
such that none of the previous edges capacities inG
are decreased and the new requirementrxy is also
satisfied.

Version 2: In this version, the entire setN of potential
sites is known a priori, but the requirements between
pairs of sites are revealed or updated one-by-one in a
sequence. At any point in time, the network designed
by the on-line algorithm contains the entire site set
N and satisfies the revealed set of requirements one
at a time. Upon revelation of a new requirement or
update of a previous revealed requirement, the on-
line algorithm must update the current network by
increasing some of the edge capacities so that the
new requirement is also satisfied.
The difference between these two versions is that

in Version 1, we can only use the currently revealed
set of sites to satisfy the requirements; in Version 2,
however, we can benefit by taking advantage of all the
sites which are given in the first place. Obviously at
each state there is more information available in Version
2 than in Version 1, and hence the competitive ratio for
Version 2 cannot exceed that for Version 1. We actually
show in this paper that the competitive ratio for Version
2 is strictly smaller than that for Version 1.

Define two parameters

αn = 2 −
2

n
;

βn = 2 −
2k∗+1

n + k∗2k∗ .

In the abovek∗ = ⌊log2 n⌋. It is easy to showβn <
αn for any fixedn.

Some values of theαn andβn are shown below.

n 3 4 5 6 · · · ∞
αn

4
3

3
2

8
5

5
3 · · · 2

βn
6
5

4
3

18
13

10
7 · · · 2

The main result of this paper is summarized in the fol-
lowing, which follows from Lemmas 5, 6, 7, and 9.
Theorem 4 For any number of sitesn,
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(1) the best possible competitive ratio isαn for Ver-
sion 1;

(2) the best possible competitive ratio isβn for Version
2 whenn ≤ 6.

An obvious open question therefore is to solve Ver-
sion 2 forn > 6. (Our algorithm for Version 2 (Algo-
rithm POTENTIAL) can actually be shown to produce
an upper bound ofβn for any n ≤ 11. But the argu-
ments are more complex and we omit the details here.
Version 2 is thus open forn > 11.)

3. A Best Possible Algorithm for Version 1

In this section, we establish the lower and upper
bounds for Version 1, respectively.

3.1. Lower Bound

Lemma 5 No on-line algorithm for Version 1 of the
network synthesis problem can have a competitive ratio
less thanαn, for any number of revealed sitesn.
Proof. Suppose we have an on-line algorithm which
has a competitive ratio less thanαn for some value of
n. Consider a problem instance where(n − 1) rij

′s
each of value 1 are revealed in the following order:
r12, r23, · · · , rn−1,n. Let cij (1 ≤ i < j ≤ n) be the
capacity assigned on each edge(i, j) by this algorithm
aftern − 1 steps. Then

k−1∑

j=1

cjk ≥ rk−1,k = 1 ∀k = 2, · · · , n. (1)

Note that the total sum of capacities assigned by
this algorithm is

∑
1≤i<j<n cij . So, by (1), we have

∑
1≤i<j<n cij =

∑n
k=2

∑k−1
j=1 cjk ≥ n − 1. The opti-

mal value isn/2 by Lemma 1. By comparing these two,

we get

∑
1≤i<j<n

cij

n/2 ≥ n−1
n/2 = αn, a contradiction.

3.2. Upper Bound

We shall now present an algorithm that achieves the
lower bound claimed above, and hence it is a best pos-
sible one for Version 1.

We introduce some notations first. Let̃N =
{1, · · · , n − 1} be the currently revealed site set

with requirement matrixR ∈ R
(n−1)×(n−1)
+ , where

rii = 0 for any i ∈ Ñ , andrij = 0 for all i, j ∈ Ñ
such that the requirement betweeni and j is not re-
vealed. Letπi = max

j∈Ñ
rij for each sitei ∈ Ñ .

Let G̃ = [Ñ , Ẽ, c̃] be the network designed by our
on-line algorithm that meets the currently revealed
requirements.

Supposerxy is the next revealed/updated require-
ment. ThenN = Ñ ∪ {x, y} is the updated set of re-
vealed sites. LetG = [N, E, c] be obtained fromG̃

by adding isolated sites{x, y} − Ñ to it. For each
i ∈ {x, y} − Ñ , setπi = 0.
Algorithm TRIANGULAR: Sort the setN ={1,· · · ,n}

of revealed sites in a non-increasing potential order,
i.e., π1 ≥ · · · ≥ πn. Without loss of generality, let
x > y. Let π′

x = max{πx, rxy} = πx + δx; and
π′

y = max{πy, rxy} = πy + δy. If y = 1 then in-
crease the edge capacitycx1 by δx, else let∆xy1

denote the set of three edges(x, y),(x, 1) and(y, 1).
For any(i, j) ∈ ∆xy1, increase the edge capacitycij

by θij in the following way:
• If π′

y < π′
1 = π1, then

θxy =
1

2
δy; (2)

θx1 = δx −
1

2
δy; (3)

θy1 =
1

2
δy. (4)

• Othewise, ifπ′
y ≥ π′

1 = π1, then

θxy = δx −
1

2
(π1 − πy) ; (5)

θx1 =
1

2
(π1 − πy) ; (6)

θy1 =
1

2
(π1 − πy) . (7)

Lemma 6 LetG′ = [N ′, E′, c′] be the current network,
andπ1 = π2 ≥ · · · ≥ πn−1 ≥ πn be the current poten-
tials. AlgorithmTRIANGULAR maintains the following
conditions at any state for an appropriate ordering of
sites in non-increasing values of potentials.
(1) For anyi ∈ N −{1}, at leastπi units of flow can

be sent fromi to 1 in G.
(2)

∑
e∈E c(e) ≤

∑
i∈N−{1} πi. Hence,

∑
e∈E c(e)

1
2

∑n
i=1 πi

≤ αn.

Proof. The result is obviously correct when there are
only two sites revealed. Suppose the result is currently
correct. Thus we have a network̃G = [Ñ, Ẽ, c̃] on
currently revealed set̃N of sites that for some site order
such thatπ1 = π2 ≥ · · · ≥ π

|Ñ |
(where theπ′s are the
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current site potentials) satisfies conditions 1-2 above.
We want to show it is still true after the processing of
the next requirement.

Let G be obtained by adding tõG isolated sites in
{x, y}−Ñ . For each sitei ∈ {x, y}−Ñ, setπi = 0 and
arrange such sites last in the ordering. For convenience,
let us assume that with this site ordering,rxy is the
next requirement revealed/updated withx > y. Denote
N = Ñ ∪ {x, y}.

Then, the new potentialsπ′
i = πi ∀i ∈ N −

{x, y}; π′
x = max{πx, rxy} = πx + δx; and

π′
y = max{πy, rxy} = πy + δy. Evidently π′

x =
max{πx, rxy} ≤ max{πy, rxy} = π′

y and δx =
max{0, rxy − πx} ≥ max{0, rxy − πy} = δy since
πx ≤ πy.

Obviously there is nothing to prove ifδx = 0 (and
thereforeδy = 0 also), since the networkG satisfies all
the requirements. So we assumeδx > 0 in the rest of
the proof.

We consider two cases.
Case 1 y = 1; then the only site inN − {1} with
changed potential is sitex with π′

x = πx + δx.
By inductive hypothesis, we can sendπx units of flow
from x to 1 in G and using the additional capacity, we
can send an additionalδx units of flow. Thus condition
1 is satisfied. Also

∑
e∈E′ c′(e) =

∑
e∈E c(e) + δx ≤∑

i∈N−{1} πi + δx =
∑

i∈N−{1} π′
i. Thus condition 2

is also satisfied.
Case 2 π′

y < π′
1 = π1; sort the sites in non-decreasing

order of new potentials and keeping site 1 as the first
site.

To prove Condition 1 of the theorem, we only need to
considerx andy since no other potentials have changed.

Forx, at leastπx units of flow can be sent fromx to 1
alongG by induction hypothesis. Using the additional
capacities assigned to edges in the set∆xy1, an extra
δx units of flow can be sent fromx to 1. Thus a total of
at leastπx + δx = π′

x units of flow is guaranteed from
x to 1 in G′.

Similarly, a total of at leastπy + δy = π′
y units of

flow is guaranteed fromy to 1 in G′.
Also,
∑

e∈E′ c′(e) =
∑

e∈E c(e) + θxy + θx1 + θy1

≤
∑

i∈N−{1} πi + δx + 1
2δy

≤
∑

i∈N−{1} πi + δx + δy

=
∑

i∈N−{1} π′
i,

Where the first inequality follows from the inductive
hypothesis and (2)-(4). Hence Condition 2 of the lemma
follows.

Case 3 y > 1 and π′
y ≥ π′

1 = π1; obtain a new site
ordering with non-decreasing values of potentials such
that y now occupies the first position.

To prove that Condition 1 is satisfied, consider any
i ∈ N − {y} and any cut(S, S) in G′ with i ∈ S and
y ∈ S.

First suppose the previously ordered site 1 is inS.
Then from the max-flow min-cut Theorem [8] and the
inductive hypothesis, the cut capacity of(S, S) is at
leastπi. If i 6= x, then the capacity of the cut inG′ is
at leastπi = π′

i. If, otherwise,i = x, then the sum of
additional capacities, assigned to the edges of the set
∆xy1 that are in cut(S, S) is δx; the total capacity of
cut (S, S) is therefore at leastπx + δx = π′

x.
Next suppose the previously ordered site 1 is inS.

Similarly the capacity of cut(S, S) is at leastπy. If
i 6= x, then the sum of additional capacities assigned to
the edges of the set∆xy1 that are in the cut is at least
(π1 − πy); the total capacity of cut(S, S) is therefore
at leastπ1 ≥ πi = π′

i. If, otherwise,i = x then the sum
of additional capacities assigned to the edges of the set
∆xy1 in the cut isδx; the total capacity of cut(S, S) is
therefore at leastπy + δx ≥ π′

x.
Using the max-flow min-cut theorem [8], it now fol-

lows that for anyi ∈ N − {y} we can sendπ′
i units of

flow from i to y in G′.
Also,
∑

e∈E′ c′(e) =
∑

e∈E c(e) + θxy + θx1 + θy1

≤
∑

i∈N−{1} πi + δx + 1
2 (π1 − πy)

≤
∑

i∈N−{1} πi + δx + (π1 − πy)

=
∑

i∈N−{y} π′
i,

Where the first inequality follows from the inductive
hypothesis and (5)-(7). Hence Condition 2 of the lemma
follows. This proves the lemma.

4. A Best Possible Algorithm for Version 2 when
n ≤ 6

In this section, we consider Version 2 of the problem
wheren is known a priori. We first establish a lower
bound for anyn. Then we present an algorithm which
matches this lower bound forn ≤ 6.

4.1. Lower Bound

Lemma 7 No on-line algorithm for Version 2 of the
network synthesis problem can have a competitive ratio
less thanβn, for any number of sitesn.
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Proof. For anyn, suppose, on the contrary, there ex-
ists an on-line algorithmA with a competitive ratio less
thanβn. Consider the following sequence ofk∗+1 unit
requirements revealed one by one. Initially, at stage 1,
algorithmA receives the first unit requirementr12 = 1
and processes it by installing necessary edge capac-
ities to meet this requirement; let1 − η be the ca-
pacity installed on edge(1, 2). Consider stagek − 1
(2 ≤ k ≤ k∗ + 1) whenk − 1 unit requirements are re-
vealed and processed by algorithmA. Let ck−1 be the
installed edge capacity vector up to stagek − 1. For
any two disjoint site subsetsX and Y of N , denote
Ck−1(X, Y ) =

∑
i∈X,j∈Y ck−1

ij . By relabeling the sites
if necessary, without loss of generality, we assume that
sitek + 1 satisfies

Ck−1({k + 1}, {1, · · · , k}) =

min
ℓ=1,··· ,n−k

Ck−1({k + ℓ}, {1, · · · , k}).
(8)

Then let the next incoming requirement berk,k+1 =
1. Note that Ck−1({k + 1}, {1, · · · , k}) < 1;
for else,

∑
1≤i<j≤n ck−1

ij ≥ n/2, which implies

(
∑

1≤i<j≤n ck−1
ij )/(k/2) ≥ n/k ≥ βn, a contradic-

tion.
We show the following fact, which implies the desired

result.

k + 1

2
βn > k +

n − 2k

n − 2
η, for k = 1, · · · , k∗ +1. (9)

Indeed, if (9) were correct, consider the two inequal-
ities corresponding tok = k∗ andk∗ + 1:

k∗ + 1

2
βn > k∗ +

n − 2k∗

n − 2
η; (10)

k∗ + 2

2
βn > k∗ + 1 +

n − 2k∗+1

n − 2
η. (11)

Note that the coefficient ofη in (10) is non-negative,
and that in (11) is negative. If the coefficient ofη in
(10) is zero, thenn = 2k∗

and βn = (2 lnn)/(1 +
lnn). But inequality (10) reduces toβn > (2k∗)/(k∗ +
1) = (2 lnn)/(1 + lnn) = βn, a contradiction. If the
coefficient ofη in (10) is positive, then multiplying (10)
and (11) by appropriate positive numbers and adding
the two inequalities, we get

βn > 2 −
2k∗+1

n + k∗2k∗ = βn,

an obvious contradiction, and therefore the lemma is
proved.

We are left only to prove (9). Consider stagek. De-
note

a0 =
k + 1

2
βn;

aℓ = ℓ + 1 − η +
n − k − 2ℓ + ℓ

n − k + ℓ − 1
Ck−ℓ({1, · · · , k − ℓ

+1}, {k − ℓ + 2, · · · , n}) +

k−ℓ∑

j=2

Ck−ℓ({1, · · · , j},

{j + 1}) for ℓ = 1, · · · , k − 1.

We prove inductively that algorithmA satisfies the
following conditions (12)-(13)

a0 > a1; (12)

aℓ ≥ aℓ+1, ℓ = 1, · · · , k − 1. (13)

Conditions (12)-(13) imply (9) by noting that

a0 = (k + 1)βn/2;

ak−1 = k − η +
n − 2k−1 − 1

n − 2
C1({1, 2}, {3, · · · , n})

≥ k − η +
n − 2k−1 − 1

n − 2
2η

= k +
n − 2k

n − 2
η.

Basis Step: For ℓ = 0,

a0 =
k + 1

2
βn >

∑

1≤i<j≤n

ck
ij

≥ ck−1
12 +

n−1∑

j=2

Ck−1({1, · · · , j}, {j + 1}) + (1 −

Ck−1(N − {k + 1}, {k + 1})

= (ck−1
12 + 1) +

k−1∑

j=2

Ck−1({1, · · · , j}, {j + 1})

+(

n−1∑

j=k

Ck−1({1, · · · , j}, {j + 1})

−Ck−1(N − {k + 1}, {k + 1}))

≥ 2 − η +

k−1∑

j=2

Ck−1({1, · · · , j}, {j + 1})

+Ck−1({1, · · · , k}, {k + 2, · · · , n})
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≥ 2 − η +

k−1∑

j=2

Ck−1({1, · · · , j}, {j + 1}) +

n − k − 1

n − k
Ck−1({1, · · · , k}, {k + 1, · · · , n})

= a1,

where the first inequality follows from the assumption
of algorithmA being less thanβn-competitive; the sec-
ond inequality is true because at least1 − Ck−1(N −
{k + 1}, {k + 1} new capacity is needed to satisfy the
requirementrk,k+1 = 1; the third inequality follows
from ck−1

12 ≥ 1 − η; the fourth inequality follows from
assumption (8).

Inductive Step: Assuming (13) were true forℓ − 1,
we want to prove it is still true forℓ.

aℓ = ℓ + 1 − η +
n − k − 2ℓ + ℓ

n − k + ℓ − 1
Ck−ℓ({1, · · · ,

k − ℓ + 1}, {k − ℓ + 2, · · · , n}) +

k−ℓ∑

j=2

Ck−ℓ({1,

· · · , j}, {j + 1})

= ℓ + 1 − η +
n − k − 2ℓ + ℓ

n − k + ℓ − 1
Ck−ℓ({1, · · · ,

k − ℓ}, {k − ℓ + 2, · · · , n}) +
k−ℓ−1∑

j=2

Ck−ℓ({1,

· · · , j}, {j + 1}) +
n − k − 2ℓ + ℓ

n − k + ℓ − 1

Ck−ℓ({k − ℓ + 1}, {k − ℓ + 2, · · · , n})

+Ck−ℓ({1, · · · , k − ℓ}, {k − ℓ + 1})

Note that

n − k − 2ℓ + ℓ

n − k + ℓ − 1
Ck−ℓ({k − ℓ + 1}, {k − ℓ + 2,

· · · , n}) + Ck−ℓ({1, · · · , k − ℓ}, {k − ℓ + 1})

=
n − k − 2ℓ + ℓ

n − k + ℓ − 1
(Ck−ℓ({k − ℓ + 1}, N −

{k − ℓ + 1})) +

(
1 −

n − k − 2ℓ + ℓ

n − k + ℓ − 1

)

Ck−ℓ({1, · · · , k − ℓ}, {k − ℓ + 1})

≥
n − k − 2ℓ + ℓ

n − k + ℓ − 1
+

(
2ℓ − 1

n − k + ℓ − 1

)

Ck−ℓ({1, · · · , k − ℓ}, {k − ℓ + 1})

≥
n − k − 2ℓ + ℓ

n − k + ℓ − 1
+

(
2ℓ − 1

n − k + ℓ − 1

)
(1 −

Ck−ℓ({1, · · · , k − ℓ}, {k − ℓ + 2, · · · , n}))

= 1 −

(
2ℓ − 1

n − k + ℓ − 1

)
Ck−ℓ({1, · · · , k − ℓ},

{k − ℓ + 2, · · · , n}),

where the first inequality follows fromCk−ℓ({k − ℓ +
1}, N −{k−ℓ+1}) ≥ 1; the second inequality follows
from Ck−ℓ({1, · · · , k − ℓ}, {k − ℓ + 1, · · · , n}) ≥ 1.

So

aℓ ≥ ℓ + 1 − η +
n − k − 2ℓ + ℓ

n − k + ℓ − 1
Ck−ℓ({1, · · · , k − ℓ},

{k − ℓ + 2, · · · , n}) +

k−ℓ−1∑

j=2

Ck−ℓ({1, · · · , j},

{j + 1}) + 1 −

(
2ℓ − 1

n − k + ℓ − 1

)
Ck−ℓ({1, · · · ,

k − ℓ}, {k − ℓ + 2, · · · , n})

= ℓ + 2 − η +
n − k − 2ℓ+1 + ℓ + 1

n − k + ℓ − 1
Ck−ℓ({1, · · · ,

k − ℓ}, {k − ℓ + 2, · · · , n})

+

k−ℓ−1∑

j=2

Ck−ℓ({1, · · · , j}, {j + 1})

≥ ℓ + 2 − η +

k−ℓ−1∑

j=2

Ck−ℓ({1, · · · , j}, {j + 1})

+
n − k − 2ℓ+1 + ℓ + 1

n − k + ℓ − 1
Ck−ℓ−1({1, · · · , k − ℓ},

{k − ℓ + 2, · · · , n})

≥ ℓ + 2 − η +

k−ℓ−1∑

j=2

Ck−ℓ({1, · · · , j}, {j + 1})

+

(
n − k − 2ℓ+1 + ℓ + 1

n − k + ℓ − 1

)(
n − k + ℓ − 1

n − k + ℓ

)

Ck−ℓ−1({1, · · · , k − ℓ}, {k − ℓ + 1, · · · , n})

≥ ℓ + 2 − η +
n − k − 2ℓ+1 + ℓ + 1

n − k + ℓ
Ck−ℓ−1({1,

· · · , k − ℓ}, {k − ℓ + 1, · · · , n})

+

k−ℓ−1∑

j=2

Ck−ℓ−1({1, · · · , j}, {j + 1})

= aℓ+1,

where the thrid inequality follows from assumption (8)
and the last inequality is true because no capacity ever
decreases.



Kabadi/Du – Algorithmic Operations Research Vol.2 (2007) 65–74 71

4.2. Upper Bound

Throughout this section, we assumen ≤ 6. We in-
troduce some notations and explain the main idea of
the algorithm first. Consider any state with a network
G = [N, E, c] with site setN = {1, · · · , n}, and edge
capacities{cij : (i, j) ∈ E}. Let π = (π1, · · · , πn) be
the site potential vector. Without loss of generality, let
the sites be sorted in nondecreasing potential order, i.e.,
π1 = π2 ≥ · · · ≥ πn. Let

η∗ =
n − 2

n − 2k∗

(
k∗ + 1

2
βn − k∗

)
=

n − 2

n + k∗2k∗ .

Let rxy (x, y ∈ N andx < y) be the next requirement
that is revealed/updated and ready for processing. Either
πx ≥ rxy > πy , in which case only the site potential
πy increases toπ′

y = rxy = πy + δy; or rxy > πx, in
which caseπx andπy both increase toπ′

x = π′
y = rxy.

All other sites potentials remain unchanged.
The processing of this new requirement is described

in the algorithm POTENTIAL below. The algorithm at
every stage maintains a networkG such that maximum
flow value between every pair of sitesi andj in N is at
leastmin{πi, πj} ≥ rij . Thus, it does not explicitly use
rxy as input, but instead usesπ′

x andπ′
y. In the following

any notation just introduced with a prime attached will
denote the corresponding meaning after requirementrij

is revealed/updated and processed; for exampleπ′ =
(π′

1, · · · , π′
n) denotes the new potential vector.

Algorithm POTENTIAL:
Input: A site setN = {1, 2, · · · , n}; a networkG =

[N, E, c] after the processing of some requirements.
The sites are sorted such thatπ1 = π2 ≥ · · · ≥
πn, whereπ is the vector of current site potentials.
Either, for somey ∈ N , πy is increased to some
π′

y = πy + δy ≤ π1 or, for some{x, y} ⊆ N , x < y,
πx andπy are both increased toπ′

x = π′
y = u. For

every other sitei ∈ N , π′
i = πi.

Output: An updated networkG = [N, E′, c′] that sat-
isfies the flow requirementmin{π′

i, π
′
j} between ev-

ery pair of sitesi, j ∈ N .
Case 1. If y = 2 (and hencex = 1, therefore bothπ1

andπ2 increase by the same amountδy), then update
the capacities as follows:

c′12 = c12 + (1 − η∗)δy ; (14)

c′kℓ = ckℓ +
η∗

n − 2
δy, k = 1, 2; ℓ = 3, · · · , n. (15)

Case 2. If y ∈ {3, · · · , k∗+1} and onlyπy is increased
to π′

y = πy + δy = u, then update the capacities as
follows:

2.1. If δy ≤ πy−1 − πy

c′y1 = cy1 +

(
1 −

2y−2(n − y + 1)

n − 2
η∗

)
δy; (16)

c′yℓ = cyℓ +
2y−2η∗

n − 2
δy, ℓ = y + 1, · · · , n. (17)

2.2. If δy > πy−1 − πy, then letδy = πy−1 − πy .
Update the edge capacities as in Case 2.1 above
usingδy instead ofδy. Setπ′

y = πy−1. Renumber
sitey asy−1 andy−1 asy. Setπ = the updated
vector of site potentials,π′

y−1 = u as the only
increased site potential and repeat the algorithm.

Case 3. If y ∈ {k∗ + 2, · · · , n} andπy is the only site
potential increased toπ′

y = πy +δy = u, then update
the capacities as follows:
3.1. If δy ≤ πk∗+1 − πy, then

c′y1 = cy1 +

(
1 −

2k∗

n − 2
η∗

)
δy. (18)

3.2. If δy > πk∗+1 − πy , then letδy = πk∗+1 − πy .
Update the edge capacities as in Case 3.1 above
usingδy instead ofδy. Setπ′

y = πk∗+1. Renumber
site y as k∗ + 1 and ℓ as ℓ + 1 for ℓ = k∗ +
1, · · · , y − 1. Setπ = the updated vector of site
potentials,π′

k∗+1 = u as the only increased site
potential and repeat the algorithm.

Case 4. If, for somex, y ∈ N , x < y, then bothπx and
πy are increased to some common valueu, then break
down this increment into the following sequence of
increments: (i) increase onlyπy to min{u, π1}; (ii)
increase onlyπx to min{u, π1}; (iii) if u > π1, then
bothπx andπy increase tou. For (i), perform Case 2
or 3 of the algorithm; for (ii), perform Case 2 or 3 of
the algorithm usingx instead ofy; for (iii), perform
Case 1 of the algorithm.

The following is easy to verify:

Proposition 8 For n ≤ 6, the updated edge capacities
by the algorithm satisfyc′ij ≥ cij , for all (i, j) ∈ E′.

For anyj ∈ {3, · · · , n} and sorted potential vector
π = (π1, · · · , πn), whereπ1 = π2 ≥ · · · ≥ πn, we
define

fj(π) =
2η∗

n − 2
(π2 − πj)

+

min{j−1,k∗+1}∑

ℓ=3

2ℓ−2η∗

n − 2
(πℓ − πj);
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g(π) = βn

(
1

2

n∑

ℓ=1

πℓ

)
−

k∗−1∑

ℓ=1

(
ℓ + 1

2
βn − ℓ −

n − 2ℓ

n − 2
η∗

)

(πℓ+1 − πℓ+2).

Lemma 9 Supposen ≤ 6. Let G = [N, E, c] be the
network produced by algorithmPOTENTIAL after pro-
cessing some requirements. Letπ1 = π2 ≥ · · · ≥ πn

be the current potentials. ThenG satisfies the following
conditions.
(1) We can sendπ2 units of flow from site2 to site1.
(2) For anyj ∈ {3, · · · , n}, we can send simultane-

ouslyπj + fj(π) units of flow from sitej to site
1, andfj(π) units of flow from sitep to site1, for
everyp ∈ {j + 1, · · · , n}.

(3) The total capacity at the current state
∑

e∈E ce ≤
g(π). Hence,

∑
e∈E ce

1
2

∑n
ℓ=1 πℓ

≤ βn.

Proof. We show inductively that Conditions 1, 2 and 3
are satisfied. Initially, when there is no requirement re-
vealed, all the site potentials are zero and these condi-
tions are obviously satisfied. Suppose they are satisfied
currently at an arbitrary stage by the current network
G = [N, E, c]. We show that they are still true after the
processing of the next requirementrxy (x < y).

Suppose the potentials beforerxy is revealed are
sorted in a non-increasing order, that is,π1 = π2 ≥
· · · ≥ πn. Note that each of the Cases 2.2, 3.2 and 4
reduces to a sequence of Cases 1, 2.1 and 3.1. Hence,
it suffices to show that the lemma is true for each of
Cases 1, 2.1, and 3.1.
Case 1. Case 1 of algorithmPOTENTIAL occurs, and
hencex = 1, y = 2.

First, for Condition 1, consider any cut(S, S) with
1 ∈ S and2 ∈ S. By the max-flow min-cut Theorem
[8] and the inductive hypothesis, the capacity of the cut
(S, S) in G is at leastπ2(= π1). By (14)-(15), the total
extra capacity added to edges of this cut is

(1 − η∗)δ2 + (n − 2)
η∗

n − 2
δ2 = δ2

Therefore at leastπ2 + δ2 = π′
2 units of flow can now

be sent from site 2 to site 1.
Second, for Condition 2, consider anyj ∈

{3, · · · , n}. Let (S, S) be a 1-j cut, that is,1 ∈ S

and j ∈ S. Suppose among the sites{j + 1, · · · , n},
m(∈ [0, n− j]) of them belong toS. By (14)-(15), the
total extra capacity added to edges of this cut is either

(1 − η∗)δ2 + (n − 2)
η∗

n − 2
δ2 = δ2, if 2 ∈ S.

or

(m + 1)
2η∗

n − 2
δ2, if 2 /∈ S.

It is easy to verify, by the definition ofη∗, that, for
any0 ≤ m ≤ n − j

(m + 1)
2η∗

n − 2
δ2 ≤ δ2.

Therefore the total extra capacity added to edges of this
cut is at least

(m + 1)
2η∗

n − 2
δ2, for anym ∈ {0, · · · , n − j}. (19)

(i) Choosingm = 0 in (19) implies that the minimum
cut capacity among all1-j cuts is at least

2η∗

n − 2
δ2 = π′

j + fj(π
′) − πj − fj(π).

where the equality follows fromπ′
ℓ = πℓ for all ℓ ∈

{3, · · · , n}, andπ′
2 = π2 + δ2.

(ii) Because of the symmetry ofj and any sitep ∈
{j +1, · · · , n}, analogously, the minimum cut capacity
among all1-p cuts is also at least

2η∗

n − 2
δ2, for anyp ∈ {j + 1, · · · , n}.

(iii) choosing m = n − j in (19) implies that the
minimum cut capacity among all cuts that separate 1
from all sites in{j + 1, · · · , n}, is at least

(n − j + 1)
2η∗

n − 2
δ2.

Now Condition 2 follows from the inductive hypoth-
esis and (i), (ii) and (iii), based on Proposition 3.

For Condition 3, by (14)-(15), the total capacity in-
creases by

∑

e∈E′

c′e −
∑

e∈E

ce = (1 − η∗)δ2 + (n − 2)
2η∗

n − 2
δ2

= (1 + η∗)δ2.

On the other handg increases by the same amount

g(π′)− g(π) = βnδ2 − (βn − 1− η∗)δ2 = (1 + η∗)δ2.
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Case 2. Case 2.1 of algorithmPOTENTIAL occurs, and
hencey ∈ {3, · · · , k∗ + 1}, andδy ≤ πy−1 − πy.

First, Condition 1 is implied directly by the inductive
hypothesis becauseπ′

2 = π2.
Second, for Condition 2, it is easy to see that this

condition follows immediately whenj ∈ {3, · · · , y−1}
because neitherπj nor fj(π) changes. So we focus on
j ∈ {y, · · · , n}.

If j = y, thenπ′
y = πy + δy andfy(π

′) = fy(π) −
2y−2η∗

n−2 δy using
∑y−1

ℓ=3 2ℓ−2 = 2y−2 − 2. In G, we can
simultaneously sendπy + fy(π) units of flow fromy
to 1 andfy(π) units of flow fromℓ to 1, for all ℓ > y.
Thus, in G, after sendingπy + fy(π′) units of flow
from y to 1 andfy(π

′) units of flow from ℓ to 1, for

all ℓ > y, we have additional residual flow of2
y−2η∗

n−2 δy

that can be sent from eachℓ ∈ {y, · · · , n} to 1. Using

extra capacity of2
y−2η∗

n−2 δy added to each of the edge
{(y, ℓ) : ℓ ∈ {y + 1, · · · , n}}, this can be converted to

an additional(n − y + 1)2y−2η∗

n−2 δy units of flow from
y to 1. Also, using extra capacity to edge(1, y) we can

send
(
1 − 2y−2(n−y+1)η∗

n−2

)
δy units of flow fromy to 1.

If j > y, then π′
j = πj and fj(π

′) = fj(π) +
2y−2η∗

n−2 δy. So we need to simultaneously send extra flow

of 2y−2η∗

n−2 δy units along each of the sites in{j, · · · , n}
to site 1. we can send the flow along the set of paths
{(p − y − 1) : p ∈ {j, · · · , n}} using the extra capaci-
ties added to the edges{(p, y) : p ∈ {1, j, · · · , n}}. By
direct verification, this is feasible forn ≤ 6 since to-
tal extra flow on edge(1, y) does not exceed the extra
capacity added to the edge(1, y):

(n−j+1)
2y−2η∗

n − 2
δy ≤

(
1 −

2y−2(n − y + 1)η∗

n − 2

)
δy.

Finally, for Condition 3, by (16)-(17), the total ca-
pacity increases by

∑

e∈E′

c′e−
∑

e∈E

ce =

(
1 −

2y−2(n − y + 1)

n − 2
η∗

)
δy

+
n∑

ℓ=y+1

2y−2η∗

n − 2
δy =

(
1 −

2y−2

n − 2
η∗

)
δy.

On the other handg increases by the same amount

g(π′) − g(π) =
βn

2
δy −

(
βn

2
− 1 +

2y−2

n − 2
η∗

)
δy

=

(
1 −

2y−2

n − 2
η∗

)
δy.

Case 3. Case 3.1 of algorithmPOTENTIAL occurs, and
hencey ∈ {k∗ + 2, · · · , n} andδy ≤ πk∗+1 − πy.

First, Conditions 1 is implied directly by the inductive
hypothesis.

Second, for Condition 2, it is easy to see that this
condition follows immediately whenj 6= y because
neitherπj nor fj(π) changes. So we focus onj = y.
Let (S, S) be a 1-y cut, that is, with1 ∈ S andy ∈ S.
Suppose among the sites{y+1, · · · , n}, m ∈ [0, n−y]
of them belongs toS. By the max-flow min-cut Theorem
[8] and the inductive hypothesis, the cut capacity of
(S, S) currently is at least

πy + (m + 1)fy(π) (20)

By (18), the algorithm increases capacities on edges
of cut (S, S) by

(
1 −

2k∗

n − 2
η∗

)
δy = δy+

(
−

2η∗

n − 2
−

k∗+1∑

ℓ=3

2ℓ−2η∗

n − 2

)
δy

= δy + (fy(π′) − fy(π)),

where the second equality follows from
∑k∗+1

ℓ=3 2ℓ−2 =
2k∗

− 2. Adding this to (20) implies that cut capacity
of (S, S) at the next stage is at least

π′
y + mfy(π) + fy(π

′) ≥ π′
y + (m + 1)fy(π

′), (21)

where the inequality follows fromfy(π) ≥ fy(π
′).

(i) Choosingm = 0 in (21) implies that the minimum
cut capacity among all1-y cuts is at leastπ′

y + fy(π′).
(ii) Choosingm = n − y in (21) implies that the

minimum cut capacity among all cuts that separate 1
from all sites in{y + 1, · · · , n}, is at leastπ′

j + (n −
y + 1)fj(π

′).
(iii) Note that fy(π′) ≤ fy(π). Therefore by the in-

ductive hypotheses, we can send at leastfy(π
′) units of

flow from p to 1, for anyp ∈ {y + 1, · · · , n}.
Now Condition 2 forj = y follows from (i), (ii) and

(iii), based on Proposition 3.
Finally, for Condition 3, by (18), the total capacity

increases by

∑

e∈E′

c′e −
∑

e∈E

ce =

(
1 −

2k∗

n − 2
η∗

)
δy =

βn

2
δy,

which is the same amount increased byg

g(π′) − g(π) =
βn

2
δy.
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