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Solving some Multistage Robust Decision Problems with HugeImplicitly
Defined Scenario Trees

Michel Minoux

University Paris 6, France

Abstract

This paper describes models and solution algorithms for solving robust multistage decision problems under a special
type of uncertainty model referred to here as parsimonious.The main interest of such a model is to provide compact
representations of potentially huge scenario trees, leading to efficient dynamic programming-based computation of optimal
strategies. Also, contrary to the case of most previously published work on similar problems, which essentially require
an independence assumption (on the occurrences of uncertain events in different time periods ) our model handles - and
properly exploits - some form of dependence over time via a concept of uncertainty budget constraints. Examples of
application are discussed including optimal inventory management and the search for robust shortest paths in directed
acyclic graphs. Computational results illustrating and validating the proposed approach are also presented.

Key words: robust optimization, robust dynamic programming, uncertainty models, multistage decision models, inventory
management.

1. Introduction

How to take the best possible decisions on how to
manage a system when information available on this
system is partial, unreliable and subject to all kinds of
uncertainty, has long been a major concern in Decision
Sciences, Automatic Control and Operations Research.
To handle such problems, a huge variety of models
and solution methods has been proposed in the past
including probabilistic models such as:
• two-stage and multistage stochastic programming

(see [5], [20]);
• chance-constrained programming (see [8]);
• stochastic dynamic programming (see e.g. [16]).

A well-known limitation of all the approaches based
on probabilistic models is that, in many contexts of
application, the probability distributions which are
assumed to be known to run the solutions algorithms,
are not available.

One way to bypass the lack of information about
probability distributions is the so-calledscenario-based
approach. A complete set of values assigned to each
of the uncertain parameters involved in the problem is
called ascenario. Scenarios can be obtained either by
analyzing past data on the behavior of the system, or
by simulating how the system works, or by resorting to

Email: Michel Minoux [Michel.Minoux@lip6.fr].

some expert’s experience and skills. It should be noted
that most of the contributions concerning scenario-
based two-stage or multistage stochastic programming
(see [5], [20]) have been focused on optimizing expected
values : extensions to handle some measures of risk
(variance, CVar), in these probabilistic models have
been proposed, essentially for the 2-stage case (see for
instance [17]) but, to the best of our knowledge, similar
proposals for the multistage case do not seem to have
been explored, up to now. In this context, the approach
described in the present paper may be viewed as a step
towards filling this gap (i.e. developing tools capable of
handling risk in the context of multistage optimization
problems).

Once a set of scenarios is available, various defini-
tions of robustness for a solution (i.e. a sequence of
decisions to be taken over a finite discretized period
of time) can be considered. In the model proposed by
Kouvelis and Yu [12] which applies to combinatorial
optimization problems with uncertainty on the objective
function coefficients only, two criteria for selecting
an optimal robust solution with respect to a given
set of scenarios are proposed: the Min-Max criterion
(choose the solution leading to the best objective
function value in the worst scenario possible); the
Min-Max regret criterion (for a given solution the
regret w.r.t. a given scenario is the difference between

c© 2009 Preeminent Academic Facets Inc., Canada. Online version: http://journals.hil.unb.ca/index.php/AOR. All rights reserved.



2 Michel Minoux– Multistage Robust Decision Problems

the solution cost for this scenario and the optimal
solution cost for this scenario; the Max-regret is the
maximum of the regret over all scenarios; we look
for the solution minimizing this value). Kouvelis and
Yu also investigate extensions of the above robustness
criteria to the case of infinite sets of scenariosdefined
by interval data. However, even when applied to well-
solved combinatorial problems (such as shortest paths,
minimum spanning tree, assignment etc . . . ), Kouvelis-
Yu’s approach most often leads to difficult (NP -hard)
optimization problems, and this eventually stimulated
many subsequent research works, in particular along the
idea of approximation.

A different type of approach investigated by Bert-
simas and Sim [3], [4], features a twofold interest
as compared with Kouvelis-Yu’s namely: it preserves
polynomial solvability of well-solved problems (such a
shortest paths, networks flows etc . . . ); and it applies
more generally to linear programming problems with
uncertainty both in the objective functionand in the
constraints. The Bertsimas-Sim approach is concerned
with rowwise uncertaintyi.e. there is an uncertainty set
associated with each row of the problem (the objective
function itself being viewed as a row). For a given
row i, this is defined by requiring that the number of
uncertain coefficients in rowi which are allowed to
deviate from their nominal (=“average“) value should
be less than a predetermined prescribed valueΓi (in
applications, the valuesΓi associated with the various
rows have to be specified by the decision-maker). A nice
feature of the above uncertainty model is that the robust
version of an uncertain linear programming problem can
be reduced to standard linear programming with just
moderate increase in size (a few additional variables
and constraints). On the other hand, a limitation of
the approach is that it does not handle uncertain
linear programs with column-wise uncertainty, and,
in particular linear programs with uncertainty on the
right handsides. Such problems were investigated by
Soyster [18], [19], but as observed by many authors,
the solutions produced by Soyster’s models tend to
be very ”conservative”. As an alternative, we have
proposed in a previous paper (see [13]) the concept
of 2-stage robust decision model in which the set of
decision variables is partitioned into two subsets: the
set of variables corresponding toimmediate or primary
decision(those to be taken prior to any realization of
uncertainty), sometimes also referred to as “here and
now” variables; and the set of variables corresponding
to subsidiary decisions(or adjustments) which can

be performed after some realization of uncertainty is
observed, sometimes called “wait and see” variables. As
a typical example of application of our 2-stage model
we mention robust PERT scheduling under uncertainty
on the task durations: a robust earliest termination date
for the whole project has to be determined, so that
it is achievable for any possible combination of task
durations out of a given uncertainty set. (This problem
turns out to be solvable in polynomial time when the
uncertainty set for the task durations is of the Bertsimas-
Sim type butnotby using Bertsimas and Sim’s approach
which is shown not to be applicable in this case).

The purpose of the present paper is to investigate
an extension of the 2-stage model tomultistagerobust
decision problems. Since such an extension is concerned
with how to take best sequences of decisions on dynamic
systems subject to uncertainty, it will be presented in
the context of dynamic programming, assuming finite
state-space and discrete-time finite horizon. Our model
will handle uncertainties, both on the state transition
functionandon the reward function.

Observe that some formally similar multistage robust
decision problems have already been considered in
the literature, in particular in [11] and [15], where
extensions to the standard MDP model to handle
uncertainty (in the form of ambiguity in the transition
functions) are discussed. However, these works rely on
the standard assumptions used in the context of Markov
Decision Processes, in particular they require perfect
knowledge of the probability measures defining the
state transition functions. As will be shown below, the
model proposed here turns out to be far less exacting
in terms of necessary input data. Moreover the analysis
carried out in [11], [15] heavily relies on an assumption,
which basically amounts to assuming independence of
the outcomes of uncertainty in different time periods.
This independence assumption is explicitly stated and
referred to as the “rectangularity assumption” in [11]
but turns out to be also implicit in [15]. In this respect,
a distinctive feature of the present work is that it is
based on an uncertainty model which naturally and
appropriately handles some specific type of dependency
via a concept of uncertainty budget constraints. Our
work also appears to be closely related to the so-called
Minimax (or Maximin) control approachin Dynamic
Programming, as described e.g. in [2]. However, the
Minimax counterpart to the standard Dynamic pro-
gramming recursion stated in the above reference (see
Chapt. 1,§1.6) again relies on the independence of
the uncertainty sets from one time instant to the next.
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From this perspective, our approach may be viewed
as an extension of the basic Minimax (or Maximin)
DP model to handle more complicated uncertainty sets
(with non independent occurrences of uncertainty over
time), implicitly defined, based on a kind of state-space
representation of uncertainty.

The paper is organized as follows. Section 2. provides
a general overview of the problem addressed and
introduces our notation. In Section 3. we describe the
general model of uncertainty against which optimal
robust strategies will have to be determined, and which
will be referred to as the (multidimensional)parsimo-
nious uncertainty model. This model is based on a
representation of the uncertainty set as the solution set of
a system of linear inequality constraints (referred to as
’uncertainty budget constraints’) and leads to compact
(implicit) state-space representations of potentially huge
scenario trees. A solution algorithm to determine an
optimal robust strategy (or: “closed-loop solution”) is
then described in Section 4.. It is based on a backwards
dynamic programming recursion, and its running time
is not proportional to the cardinality of the (implicitly
defined) set of scenarios, but to the cardinality of a
usually much smaller setarising from the definition of
the parsimonious uncertainty model, and referred to as
the uncertainty status space. Two typical applications
of our model and algorithm are described in Section
5.: one concerning optimal inventory management un-
der uncertainty, the other, some robust shortest path
problems in directed circuitless graphs. Computational
results on series of randomly generated instances of the
inventory management problem under uncertainty are
also presented and discussed.

2. Problem Statement: a robust dynamic program-
ming approach

We consider a dynamic system evolving over a
discretized finite time periodt = 0, 1, . . . , T . At each
time instantt = 1, . . . , T , the system can be in any
possible state in a discrete finite set of statesS =
{1, . . . , N}. The stateS0 of the system at timet = 0
is supposed to be known. In a classical (deterministic)
dynamic programming model, at each time instantt,
when the system is in stateS at time t, its evolution
over the(t+ 1)th time period (i.e. between timet and
time t + 1) is described by astate transition equation
providing the new stateS1 of the system at timet+ 1
as a function of:
• the state at timet;

• the decisionxt taken at the beginning of the(t+1)th

time period.

Moreover there is a reward associated with such a
transition which also depends on the stateS at time t
and on the decisionxt.

The setX(t, S) of possible decisions starting from
stateS at timet is supposed to be a known finite discrete
set.

To define a robust version of such a problem we now
consider that both the state transition function and the
reward function betweent and t + 1 depend on one
or several uncertain parametersωt taken in some given
finite uncertainty set. (A more precise definition of the
uncertainty set will be given in Section 3. below).

In view of preserving the genericity of the model,
as much as possible, we will consider that eachωt is
a q-component vector, some of the components ofωt

influencing the state transition function, and some of the
components influencing the reward function. Observe
that the set of components ofωt influencing the state
transition function and the set of components ofωt

influencing the reward function are not assumed to be
disjoint, but they are not assumed to be identical either.
The model is thus capable of representing all kinds
of situations which may be viewed as intermediates
between full dependence and full independence of the
uncertainty factors acting on the state transition function
and on the reward function.

We will denote:

S1 = F (t, S, xt, ωt) ∈ S (1)

the state reached at timet + 1 when starting from
S ∈ S at timet after taking the decisionxt ∈ X(t, S)
and for the valueωt of the uncertainty vector. The
corresponding reward will be denoted

R(t, S, xt, ωt) ∈ R. (2)

We assume that the decisionxt for period[t, t+ 1] has
to be taken prior to the occurrence (or: realization) of
an uncertainty vectorωt. Therefore it will be assumed
that the set of possible decisionsX(t, S) is defined in
such a way that for anyxt ∈ X(t, S) and anyωt in the
uncertainty set, the valueF (t, S, xt, ωt) is well defined
and leads to a feasible stateS1 ∈ S at timet+ 1.
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3. The parsimonious uncertainty model: compact
representation of huge implicitly defined scenario
trees

We now discuss the way the uncertainty setΩ is
defined in our model. A first simple way of defining
the uncertainty setΩ containing all possible uncertain
vectorsω = (ω0, ω1, . . . , ωT−1) would be to takeΩ as
a cartesian productΩ = Ω0 × Ω1 × · · · × ΩT−1.

In such a model, for anyt ∈ {0, . . . , T − 1}, any
ωt ∈ Ωt can occur, irrespective of which occurrences
of the other uncertainty parametersωt, actually arise.
This is an independence assumption which, as already
mentioned in the introduction, has been somewhat
systematically adopted so far in the literature (in [9]
and [11] it is referred to as the ”rectangularity” property
). Of course, under such an assumption, the analysis
of the problem is simplified, but the resulting models
may not be very realistic in all situations. For instance,
if for each t, someω̄t ∈ Ωt represents a worst-case
situation, the model will tend to find the best possible
solutions against the occurrence of(ω̄1, ω̄2, . . . , ω̄T )
i.e. assuming that at every stept the uncertainty
corresponding to the worst-case situation occurs. As a
result, the robust solutions proposed by the model will
tend to be very ” conservative”. By contrast, we believe
that an uncertainty model capable of representing at
least some kinds of dependence among the possible
outcomes of uncertain events in various successive time
periods would be of potential interest to a number of
applications.

Consider as an example the case of optimal daily
management of a power distribution system under
uncertainty, induced by weather conditions. A worst-
case situation with respect to the uncertainty on weather
conditions, would be to have every day in winter an
extreme-low temperature. Past records show that this
never occurs. Similarly, alternating between extreme-
low and extreme high temperature from one day to
the next during the 3 winter months is not a realistic
scenario. More generally it is clear thatany reasonable
a priori knowledge on the structure of the uncertainty
set should be taken into accountto make the model (and
the solutions produced) more realistic.

For instance, referring to our example above, over
90 winter days, assuming that at mostk (e.g.k = 15)
feature extreme-low temperatures and at mostk′ (e.g.
k′ = 15) feature extreme-high temperatures would be
certainly more realistic.

This means thatsome kind of dependenceamong

the occurrences of the variousωt vectors has to be
included in the definition of the setΩ. Referring, once
more, to our example above, if we are in the process
of constructing a scenario of uncertainty, and if, at
some staget (t = 30 say) , we know that the scenario
already includesk extreme-low temperatures, we know
that (under the uncertainty model suggested above) only
average and extreme-high temperatures will be allowed
as the subsequent values of temperature in the scenario.

The definition of the uncertainty set which we are
going to propose below in connection with our robust
dynamic programming model certainly does not pretend
to be appropriate for all kinds of applications; however
it does capture a wide variety of the time-dependence
phenomena among uncertainties which one may wish
to take into account in robust dynamic optimization
problems. The various examples discussed at the end of
the paper will illustrate this capability.

ConsideringΩ0, . . . ,ΩT−1 T finite subsets ofNq,
our proposal in to take the uncertainty setΩ as an
implicitly defined subset of the cartesian productΩ0 ×
Ω1×· · ·×ΩT−1 and, more specifically as the set of all
ω = (ω0, ω1, . . . , ωT−1) satisfying:







ωt ∈ Ωt t = 0, . . . , T − 1
T−1∑

t=0

ωt ≤ B
(3)

for some givenB = (B1, B2, . . . , Bq)
T ∈ N

q. Thus
the uncertainty set corresponds to the solution set of an
associated system of linear inequalities which will be
referred to as theuncertainty budget constraints.

An intuitive explanation of the above definition is as
follows.

Eachωt ∈ Ωt corresponds to a possible outcome, at
time t, of an uncertain process influencing the values
of some parameters in the evolution of our dynamic
system, which correspond to some components of theωt

vectors (those componentsi ∈ [1, q] such thatωt(i) 6=
0).

Considering first the case where allωt (t =
0, . . . , T − 1) are0 − 1 vectors, theith inequality (3)
which reads:

T−1∑

t=0

ωt(i) ≤ Bi (4)

essentially imposes a limitation on the number of
occurrences of the uncertainty process corresponding to
the ith component, over the whole time period[0, T ]
under consideration. In other words, we have a global
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”uncertainty budget”B divided amongq ”uncertainty
features”(B1, B2, . . . , Bq), each possible outcome of
the underlying uncertain processes influencing the prob-
lem being characterized by an ”uncertainty profile”
ωt ∈ {0, 1}q specifying which uncertainty features are
involved (those for whichωt(i) = 1) or not (those for
whichωt(i) = 0).

Indeed, our model is still slightly more general
in that the ωt vectors (”uncertainty profiles”) may
have general (nonnegative) integral components, thus
providing additional flexibility in the definition of the
uncertainty setΩ (replacing the cardinality constraints
(4) by weighted sums with integral weights).

As will be shown in§4. below, for practical applica-
bility of the model and associated solution algorithm,
the main limitation will be that the components of theωt

vectors and theB vector be sufficiently small integers,
in order that the quantity

q
∏

i=1

(Bi + 1)

remains sufficiently small (typically less than103 to
104). In section 4 below, the above quantity will turn
out to be the cardinality of theuncertainty status space.

However, even with this restriction, it is worth
pointing out that an attractive feature of the proposed
model is its capability of handling (implicitly) huge
scenario trees, much larger than those which can
be used in scenario-based stochastic programming
problems (see e.g. [5], [6]). Consider, for instance, a
12 period(T = 12) optimal inventory management
problem (such as the one discussed in Section 5.1.
below) with uncertainty on procurement costs and
on requirements: at each time periodt, we have: a
nominal valueα0

t and two extreme valueα−
t andα+

t

for the procurement cost; a nominal valued0
t and

two extreme valuesd−t and d+
t for the requirements.

We have here two uncertainty features(q = 2), one
corresponding to uncertainty on procurement costs,
the other corresponding to requirements. Assuming
independence of the two uncertain processes, we have
to consider at each time period 9 combinations of
uncertainty corresponding to the 9 possible outcomes:

(
α0

t

d0
t

) (
α0

t

d−t

) (
α0

t

d+
t

) (
α−

t

d0
t

) (
α−

t

d−t

) (
α−

t

d+
t

) (
α+

t

d0
t

)

(
α+

t

d−t

) (
α+

t

d+
t

)

.

Suppose now we want to defineΩ by allowing at most
6 deviations from nominal value for each uncertainty
feature, i.e.B1 = B2 = 6.

In that case, for eacht, we would represent the 9
combinations of uncertainty by the following vectors:

w1
t w2

t w3
t w4

t w5
t w6

t w7
t w8

t

Ωt =

{ (
0
0

) (
0
1

) (
0
1

) (
1
0

) (
1
1

) (
1
1

) (
1
0

) (
1
1

)

w9
t(

1
1

) }

.

Now, the number of distinct solutions to (3), i.e. the
total number of scenarios corresponding to the above
definition turns out to be greater than

C6
12 × 96 ≃ 491 × 106.

On the other hand, since the cardinality of the status
space is only(6 + 1) × (6 + 1) = 49 in this case,
using the dynamic programming recursion presented
in the next section, an exact optimal robust strategy
taking into account the uncertainty corresponding to
all the scenarios in the implicitly defined uncertainty
set Ω defined above, can be computedin a matter
of secondson a standard PC workstation (assuming
that the cardinality of the state space representing the
possible inventory levels is not too large, typically less
than103 to 104).

4. A dynamic programming-type recursion to find
an optimal robust strategy

We now address the question of actually computing
an optimal robust strategy for a dynamic optimization
problem given by specifying:
(a) the uncertainty setΩ implicitly defined by provid-

ing, ∀t, the list of all possibleωt ∈ Ωt together
with the ”uncertainty budget” constraint (3):

T−1∑

t=0

ωt ≤ B;

(b) the state transition functionF defined in (1);
(c) the reward functionR defined in (2).
In the same way as for the case of stochastic

multiperiod optimization problems, a solution to the
above stated problem does not correspond to some well-
defined sequence of decisions(x1, x2, . . . , xT ) leading
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to maximum reward (in the worst situation created by
uncertainty).

Indeed a solution corresponds to astrategy (also
sometimes referred to as “closed loop” solution) which
is specified by associating with each stateS, at each time
instantt, the valuext of an optimal decision to be taken
during period[t, t + 1] given the currentuncertainty
statusof stateS at timet.

Theuncertainty statusof a stateS at timet provides
the necessary and sufficient information concerning the
past occurrences of uncertainty, in view of properly
restricting the future possible scenarios to be considered
(from instantt to T ) to only those inΩ.

To do so, it is easily seen that we only have to record
the q-component vectorσ = (σ1, σ2, . . . , σq) ∈ N

q

corresponding to the fraction of the uncertainty budget
which is still available to represent the uncertainties to
be taken into account between instantst andT .

Therefore, for each stateS at each timet the total
number of possibleσ vectors (each corresponding to an
uncertainty status) will be:

K = (B1 + 1) × (B2 + 1) × · · · × (Bq + 1).

In the following, the set of all possibleσ vectors will
be denotedΣ (the uncertainty status space).

Now astrategy, i.e. a solution to our robust dynamic
optimization problem, will be defined by associating a
decisionxt ∈ X(t, S) with each stateS, at each timet
and for each uncertainty statusσ. Thus, ifϕ is a strategy,
we will denoteϕ(t, S, σ) ∈ X(t, S) the decision to be
taken under strategyϕ at timet when the system is in
stateS and for the uncertainty statusσ ∈ Σ.

An optimal robust strategyϕ∗ is a strategy such that,
for each stateS at time t and each uncertainty status
σ, ϕ∗(t, S, σ) is the decision leading to the maximum
reward over the period[t, T ] in the worst possible
scenario in the setΩσ

[t,T ] of all (ωt, ωt+1, . . . , ωT−1) ∈
Ωt × Ωt+1 × · · · × ΩT−1 such that:

T−1∑

θ=t

ωθ ≤ σ.

We denotez∗(t, S, σ) the maximum reward which can
be obtained using the optimal strategyϕ∗ when starting
from stateS at timet with the uncertainty statusσ.

We now show that thez∗ and ϕ∗ values can
be determined via the following backward dynamic
programming recursion:

z∗(t, S, σ) = Max
xt∈X(t,S)

{ψ(t, S, σ, xt)} (5)

where:

ψ(t, S, σ, xt) = Min
ωt∈Ωt

ωt≤σ

{R(t, S, xt, ωt)+ (6)

z∗(t+ 1, S1, σ − ωt)] (7)

and S1 =F (t, S, xt, ωt)

ϕ∗(t, S, σ) = argmax
xt∈X(t,S)

{ψ(t, S, σ, xt)}. (8)

We assume of course that fort = T the z∗(T, S, σ)
values are known and given (they can be interpreted as
”end of game” rewards. Of course, since the uncertain
phenomena occurring during the period[0, T ] do not
influence what possibly takes place after timeT , it is
legitimate to assume that, for allσ ∈ Σ, thez∗(T, S, σ)
values are equal to a single reference value,z∗(T, S, 0),
which is the unique ”end of game” value for stateS at
time T .
Proposition 1 The z∗(t, S, σ) and ϕ∗(t, S, σ) values
computed from the backward recursion(5)-(8), starting
with givenz∗(T, S, 0) for all S ∈ S , define the reward
and decision functions associated with an optimal
robust strategy over[0, T ]. In particular, the best
(robust) decision to be taken in the first stage, starting
with the system in stateS0 at time 0, isϕ∗(0, S0, B) ∈
X(0, S0), and the corresponding optimal worst-case
reward (against the proposed uncertainty modelω ∈ Ω)
is z∗(0, S0, B).
Proof: The result is obtained by induction, along the
same lines as for the case of Minimax (or Maximin)
Dynamic Programing (see [2]). The main difference lies
in the fact that the uncertainty sets involved at each
step of the recursion now depend (via the uncertainty
statusσ) on the various possible past occurrences of
uncertainty. �

The following result shows that the recursion (5)-(8)
is a pseudopolynomial algorithm for solving the robust
multistage decision problem.
Proposition 2 Let us denoteΩmax = Max

t=0,...,T−1
{|Ωt|}

the maximum number of possible realizations of uncer-
tain events which can occur at timet. The computational
complexity of the recursion(5)-(8) isO(T×|S |×|X |×
|Σ| × Ωmax) where|S | is the state space cardinality,
|X | the cardinality of the set of possible decisions and
|Σ| = (B1 + 1) × (B2 + 1) × · · · × (Bq + 1) is the
cardinality of the uncertainty status space.
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Proof: At each staget = 1, . . . , T , for each state
S ∈ S , for each uncertainty statusσ ∈ Σ, and
for each decisionxt, we have to compute the value
ψ(t, S, σ, xt) given by (7). Each such value is obtained
as the minimum of at mostΩmax terms. Assuming
(which is realistic for many applications) that each
term can be computed in timeO(1), the result follows.
�

It is of interest to compare the above result with
the complexity of the standard dynamic programing
algorithm when applied to a problem of a comparable
size but without uncertainty, namelyO(T ×|S |× |X |).
It is seen that the approach proposed here for handling
uncertainty increases complexity by a factor|Σ|×Ωmax

which is typically much smaller than the number of
scenarios implicitly represented by the parsimonious
uncertainty model introduced here (for the example
given at the end of Section 3., this factor is only49×9,
whereas the total number of scenarios is greater than
400 millions !).

It is also interesting to compare the above result
with the complexity of the dynamic programming-based
approach to the robust 0-1 knapsack problem proposed
in [21], which features a computational effort growing
exponentially with the cardinality of the set of scenarios.
By contrast, the complexity of our procedureonly grows
linearly with the cardinality of the uncertainty status
space, which, as already mentioned, can be considerably
smaller than the number of scenarios (again refer to
the example given at the end of Section 3. for typical
figures).

5. Some applications

We describe in this section two typical applications of
our robust dynamic programming model, one concern-
ing optimal inventory management under uncertainties
(§5.1.) the other concerning some new variants of the
robust shortest path problem (§5.2.). Computational
results on the optimal robust inventory management
problem will be presented and discussed in§5.1.3..

5.1. Robust optimal inventory management

We consider a multiperiod inventory problem for a
single product, assuming discretized time over a finite
horizon [0, T ]. At each time period [t-1,t] (t =
1, . . . , T ) the product under consideration:
• can be bought at unit priceαt ;

• can be sold at unit priceβt.
We also have to satisfy the requirements of the cus-
tomers over time. The product quantity required in the
tth time period (i.e. between the time instantst− 1 and
t) is denoteddt.

In the standard deterministic version of the problem,
all the quantitiesαt, βt anddt are supposed to be exactly
known. By contrast, we will consider an extended
version of the problem where some of (or all) the
quantitiesαt, βt, dt are subject to uncertainty. Indeed,
since the pricesβt at which the product is sold to
customers are in control of the decision-makers, it
is legitimate to assume that they are not subject to
uncertainty. Therefore we will only consider uncertainty
on thedt andαt values.

To illustrate the flexibility of our model, two different
ways of describing uncertainty on thedt andαt values
will be successively described: the first one will assume
independence of the sources of uncertainty influencing
the requirements and the prices ; the second one will
get rid of this independence assumption.

5.1.1. A first uncertainty model: the independent case
Consistent with our general model, the uncertainty

domainD for thedt values will typically be defined as
follows.

For eacht a set of possible values fordt

Dt =
{
d1

t , d
2
t , . . . , d

ν
t

}

is considered. (This set includes, but is not necessarily
limited to a nominal value and one or two extreme
values fordt). Note that, for the sake of notational
simplicity, we assume the cardinality of the setDt

equal to the same integerν for all t, but the model
would readily accommodate time-varying cardinalities.
To eachdk

t ∈ Dt we attach ap-component vectorvk
t ∈

N
p corresponding to theuncertainty profileassociated

with the occurrence of the valuedk
t of dt. Given ap-

component vectorBd ∈ N
p (uncertainty budget for

requirements) the uncertainty setD is then defined as the

set ofT -vectors of the form:d =
{

dk1

1 , d
k2

2 , . . . , d
kT

T

}

such that:
T∑

j=1

v
kj

t ≤ Bd (9)

(in the above,kj ∈ [1, ν] ∀j).
In a similar way, the uncertainty domainA for the

pricesαt would be defined by considering for eacht a
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set of possible values ofαt, namely:

At =
{

α1
t , α

2
t , . . . , α

ν′

t

}

and by associating aq-component vectorwk
t ∈ N

q

(uncertainty profile) with each possible occurrenceαk
t

of αt (again, the assumption|At| = ν′, ∀t is just for
notational simplicity). Then the uncertainty setA is the
set ofT -vectors of the form:

α =
(

αk1

1 , α
k2

2 , . . . , α
kT

T

)

satisfying
T∑

j=1

w
kj

t ≤ Bα (10)

whereBα ∈ N
q is the given ”uncertainty budget” for

prices.
To subsume, in this way of representing uncertainty,

we have at each stept, ν × ν′ combinations of values
for αt anddt and two independent sets of uncertainty
budget constraints: (9) for the requirements, involving
p-component vectorsvk

t andBd ; and (10) for the prices,
involving q-component vectorswk

t andBα.
In order to illustrate the above model and the

application of the solution procedure described in§4, we
will consider the following small numerical example. In
this example there areT = 4 time periods, the product
can be bought or sold only by integer amounts and the
maximum capacity of the inventory isc = 10 units.
(So, at each time instant, the set of possible states for
the inventory isS = {0, 1, . . . , 10}). xt (t = 1, . . . , T )
denoting the number of units purchased at the beginning
of period t, the objective is to find an optimal robust
strategy in terms of thext variables to maximize profit
(selling returns -procurement costs-stockout penalties +
end-of-game value).

At each time periodt, we assume thatdt can take only
3 values, one ”nominal value”d2

t , and two ”extreme
values” an extreme low-valued1

t < d2
t , and an extreme-

high valued3
t > d2

t (thus,ν = 3). Similarly, αt can
take either a ”nominal value”α1

t or an ”extreme-high
value”α2

t > α1
t (thusν′ = 2).

The vk
t andwk

t vectors (”uncertainty profiles”) are
just 1-dimensional (scalars) with 0-1 values:v1

t = 1,
v2

t = 0, v3
t = 1, andw1

t = 0, w2
t = 1 (thus p = 1

and q = 1). The uncertainty budget for requirements
is: Bd = 2, and for prices:Bα = 2. In other words,
in this example, the uncertainty budget constraint on
dt (resp.: onαt) simply allows at most 2 occurrences

of an extreme value fordt (resp.:αt) over the period
[0, 4] under consideration. Finally we note that, due to
uncertainty, we have to take into account the possibility
of stockout. We will therefore consider that, at each
time periodt, each missing unit of the product will
incur a penalty costπt. The following table provides
the numerical values forαt, βt, dt andπt, for t = 1 to
T = 4. Note that we have taken a constant unit penalty
costπt = 20 (big enough so that the model will tend to
produce an optimal strategy avoiding stockout as much
as possible).

t = 1 t = 2 t = 3 t = 4

α
α1

1 = 2
α2

1 = 4
α1

2 = 5
α2

2 = 6
α1

3 = 3
α2

3 = 8
α1

4 = 4
α2

4 = 6
β β1 = 4 β2 = 6 β3 = 6 β4 = 7

d
d1
1 = 2
d2
1 = 3
d3
1 = 5

d1
2 = 5
d2
2 = 6
d3
2 = 8

d1
3 = 3
d2
3 = 4
d3
3 = 6

d1
4 = 5
d2
4 = 6
d3
4 = 9

π π1 = 20 π2 = 20 π3 = 20 π4 = 20

The initial inventory level is assumed to beS0 =
0. Moreover each unit of product remaining in the
inventory at the end of the last(4th) period is supposed
to have an ”end of game” value equal to 3. So we can
start the application of the recursion (5)-(8) of§4 by
taking:

z∗(4, S, σ) = 3.S, for all σ =

(
σ1

σ2

)

∈ [0, 2]2.

A detailed account of all the calculations resulting from
the recursion (5)-(8) would take too much room, so we
only provide part of the intermediate results obtained.

Table 1 below provides the valuesz∗(0, 0, σ) and
ϕ∗(0, 0, σ) obtained at the end of the recursion for
the first stage, and for an initial inventory level 0.
ϕ∗(0, 0, σ) is the optimal decision to be taken (the
amount of the product to be bought) in the first stage for
each uncertainty status, to achieve the correspondingz∗

value.
It is seen from this table that, following the optimal

strategyϕ∗, the worst-case optimal return which can be

expected is 15 corresponding toσ =

(
Bα

Bd

)

=

(
2
2

)

.

Also the valuez∗
(
0, 0,

(
0, 0

))
= 67 indicates the

optimal solution value for the deterministic problem
with all prices and requirements equal to their nominal
values (the corresponding solution isx1 = 10, x2 = 0,
x3 = 9, x4 = 0, with an inventory level 0 at the end of
last period).
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Table 1

σ = (σ1, σ2) (0,0) (1,0) (2,0) (0,1) (1,1) (2,1) (0,2) (1,2) (2,2)
z∗(0, 0, σ) 67 47 28 58 37 17 55 35 15
ϕ∗(0, 0, σ) 10 10 10 10 10 10 10 10 10

The z∗(0, 0, σ) and ϕ∗(0, 0, σ) values as obtained from the recursion(5)-(8) on the
inventory problem.σ1 (resp.σ2) denotes the uncertainty status w.r.t. the prices (resp. the
requirements).

Indeed an uncertainty status

(
0
0

)

at time 0 cor-

responds to a problem for which no deviation from
nominal value is allowed for the prices and for the
requirements. The difference between the two values
67 and 15 can thus be interpreted as the ”price of
robustness”.

Now, suppose that after taking the decisionx1 = 10
corresponding to the optimal strategy (see Table 1) we
are informed that an extreme-high requirement value
d1 = 5 and a nominal priceα1 = 2 occurred in stage 1.
So, at the end of stage 1, the state of the inventory isS =
5, and, moreover, 1 unit of the uncertainty budget for
requirements has been consumed, therefore the optimal
decision to be taken for stage 2 is the one corresponding

to the uncertainty status

(
2
1

)

.

From Table 2, it is thus seen that the optimal decision
to be taken is

x2 = ϕ∗

(

1, 5,

(
2
1

))

= 5,

the correspondingz∗ value being

z∗
(

1, 5,

(
2
1

))

= 24.

These valuesz∗
(

1, 5,

(
2
1

))

andϕ∗

(

1, 5,

(
2
1

))

can

easily be deduced, using the recursion (5)-(8), from the
valuesz∗(2, S, σ) displayed in Table 3 below.

5.1.2. A possibly more realistic model: the dependent
case

In order to make the uncertainty model even closer
to reality, it may be desirable to take into account some
dependencies among the various sources of uncertainty
which may be observed in practice. In the context of
inventory management, it is frequently the case that
demands and prices are correlated: prices tend to rise
as a result of demand growth, and tend to fall down as
demand is reduced. We now show that our parsimonious

uncertainty model is flexible enough to take into account
such phenomena.

The idea is the following. Instead of considering
independently, at each staget, possible realizations of
the prices and possible realizations of the requirements,
we will consider a list of possible realizations of the

pair

(
αt

dt

)

which we denote

(
α1

t

d1
t

) (
α2

t

d2
t

)

· · ·

(
αν

t

dν
t

)

.

(Again, for notational simplicity, we assume that the
lists for t = 1, 2, . . . , T have the same cardinalityν).

In practice, these pairs should be chosen so as to
reflect the type of dependencies observed in reality (e.g.
αk

t will be high whendk
t is high, and low whendk

t is
low).

Associated with each pair

(
αk

t

dk
t

)

in the above list,

we will also consider ap-component integer vector
vk

t ≥ 0 (uncertainty profile), the uncertainty set defining
all the possible realizations for the sequences of pairs
(
α1

d1

)(
α2

d2

)

· · ·

(
αT

dT

)

being specified as the set of

all

(
αk1

1

dk1

1

) (
αk2

2

dk2

2

)

· · ·

(
αkT

T

dkT

T

)

such that
T∑

i=1

vki ≤ B

whereB > 0 is a givenp-component integer vector
(”uncertainty budget”).

Illustrating this on our 4-stage inventory problem, we
might consider for instance the numerical values given

in Table 5 (hereν = 4 andp = 2) andB =

(
2
2

)

. As

compared with the model considered, in§5.1.1. for the
independent case, it is seen that such a representation

essentially excludes pairs

(
αt

dt

)

whereαt would take

on an extreme-high (resp. an extreme-low) value when
dt takes an extreme-low (resp. an extreme-high) value.
This is consistent with the above-mentioned observed
correlation betweenαt anddt.

We observe that taking dependencies into account
amounts to excluding some outcomes of uncertainty
from the list of possible outcomes considered under the
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Table 2

(σ1, σ2) (0,0) (1,0) (2,0) (0,1) (1,1) (2,1) (0,2) (1,2) (2,2)
z∗(1, 5, σ) 67 46 40 56 35 24 53 34 20
ϕ∗(1, 5, σ) 1 4 5 3 4 5 3 5 5

The z∗(1, 5, σ) and ϕ∗(1, 5, σ) values as obtained from the recursion(5)-(8) on the
inventory problem.σ1 (resp.σ2) denotes the uncertainty status w.r.t. the prices (resp. the
requirements).

Table 3
PPPPPPPS

(σ1, σ2) (0,0) (1,0) (2,0) (0,1) (1,1) (2,1) (0,2) (1,2) (2,2)

0
36

(10)
10
(4)

−2
(4)

29
(10)

−5
(6)

−19
(6)

27
(10)

−7
(6)

−19
(6)

1
39
(9)

18
(3)

6
(3)

32
(9)

3
(5)

−11
(5)

30
(9)

1
(5)

−11
(5)

2
42
(8)

24
(2)

14
(2)

35
(8)

11
(4)

−3
(4)

33
(8)

9
(4)

−3
(4)

3
45
(7)

30
(2)

22
(1)

38
(7)

19
(3)

5
(3)

36
(7)

17
(3)

5
(3)

4
48
(6)

34
(2)

30
(0)

41
(6)

23
(2)

13
(2)

39
(6)

23
(2)

13
(2)

5
51
(5)

39
(1)

36
(0)

44
(5)

29
(2)

21
(1)

42
(5)

29
(2)

21
(1)

6
54
(4)

45
(1)

42
(0)

47
(4)

35
(2)

29
(0)

45
(4)

33
(2)

29
(0)

7
57
(3)

50
(1)

48
(0)

50
(3)

39
(2)

35
(0)

48
(3)

38
(1)

35
(0)

8
60
(2)

54
(0)

54
(0)

53
(2)

44
(1)

41
(0)

51
(2)

44
(1)

41
(0)

9
63
(1)

60
(0)

60
(0)

56
(1)

50
(1)

47
(0)

54
(1)

49
(1)

47
(0)

10
66
(0)

66
(0)

66
(0)

59
(0)

53
(0)

53
(0)

57
(0)

53
(0)

53
(0)

Thez∗(2, S, σ) values (and theϕ∗(2, S, σ) values in parenthesis) as obtained from the
recursion (5)-(8) on the inventory problem.σ1 (resp.σ2) denotes the uncertainty status
w.r.t. the prices (resp. the requirements).

Table 4
t=1

︷ ︸︸ ︷
t=2

︷ ︸︸ ︷
t=3

︷ ︸︸ ︷
t=4

︷ ︸︸ ︷
(

αk

t

dk

t

)

→

(
2
2

) (
2
3

) (
4
3

) (
4
5

) (
5
5

) (
5
6

) (
6
6

) (
6
8

) (
3
3

) (
3
4

) (
8
4

) (
8
6

) (
4
5

) (
4
6

) (
6
6

) (
6
9

)

vk

t →

(
0
1

) (
0
0

) (
1
0

) (
1
1

) (
0
1

) (
0
0

) (
1
0

) (
1
1

) (
0
1

) (
0
0

) (
1
0

) (
1
1

) (
0
1

) (
0
0

) (
1
0

) (
1
1

)

previous model (§5.1.1.). The resulting robust strategies
can thus only be less conservative, leading to higher
worst-case returns. This will be confirmed by the
computational experiments reported in Section 5.1.3.
below.

Also we note that there is much modeling flexibility

offered in the specification of the uncertainty sets via
the choice of thevk

t vectors (uncertainty profiles) ;
indeed the numberp of components and the values of
the components themselves may be given all kinds of
interpretations and consequently ”modulated” to fit the
needs of the application under consideration in the best
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way possible.

5.1.3. Computational experiments
We present here various computational experiments

illustrating and validating the flexibility of the proposed
approach on series of randomly generated instances of
the inventory management problem under uncertainty.

a) The independent case

The first series of experiments concerns the indepen-
dent case (§5.1.1.), the corresponding instance involving
10 period problems(T = 10) with an inventory of
maximum capacityc = 30 units and initial inventory
levelS0 = 0.

Each instance has been generated as follows. For
each time periodt = 1, . . . , T , the extreme values
dmin(t) anddmax(t) for demands,αmin(t) andαmax(t)
for procurement costs, are obtained by drawing at ran-
dom uniformly distributed independent integer valued
random variablesγ ∈ [5, 15], δ ∈ [3, 9], θ ∈ [10, 20],
η ∈ [2, 8] and setting

dmin(t) = γ ; dmax(t) = dmin(t) + δ ;

αmin(t) = θ ; αmax(t) = αmin(t) + η ;

Finally, the selling pricesβt are obtained by drawing
at random integer valued independent uniformly dis-
tributed variables in the interval[20, 30].

Two uncertainty budget constraints are considered
(q = 2), the first one corresponding to demands
and the second one to procurement costs. For any
given time periodt, the various possible combinations
(
d
α

)

of a demand value and a procurement

cost value are all pairs of integers belonging to
[dmin(t), dmax(t)] × [αmin(t), αmax(t)]. These pairs
are indexed byk = 1, . . . ,Kt (where Kt =
(dmax(t) − dmin(t) + 1) (αmax(t) − αmin(t) + 1)).

With each such pair

(
dk

t

αk
t

)

we associate the coefficients

vk
t ∈ R andwk

t ∈ R in the two uncertainty budget
constraints. The value of each of these coefficients
depends on how muchdk

t (resp.αk
t ) deviates from the

nominal valuednom(t) =

⌊
dmax(t) + dmin(t)

2

⌋

for

demands and :αnom(t) =

⌊
αmax(t) + αmin(t)

2

⌋

for

procurement costs. Their precise values are defined as:

vk
t =

∣
∣dk

t − dnom(t)
∣
∣

wk
t =

∣
∣αk

t − αnom(t)
∣
∣ .

It is seen that, in the above, occurrences of demands
(resp. of procurement costs) and their weights in the
associated budget constraint do not depend on the values
taken by procurement costs (resp. by demands). Also,

observe that, for eacht, there is a single pair

(
dk

t

αk
t

)

for

which both coefficientsvk
t andwk

t are zero, namely the
pair corresponding to nominal values, both for demands
and for procurement costs.

Table 5 displays the results obtained on a series of
12 instances (numbered P1 to P12). For each instance,

9 different values ofB =

(
Bd

Bα

)

, the right hand side

of the budget constraints are considered. Each entry in
the table provides:
• the value of the optimal robust strategy resulting

from the application of the dynamic programming
recursion (5)-(8);

• in parenthesis, the corresponding optimal decision in
the first time period (the amount of product to be
purchased in the first time period according to the
optimal strategy).
We first observe that the figures displayed in the

first column, for whichB =

(
0
0

)

, correspond to

the deterministic case, where there is no uncertainty
(demands and procurement cost taking their nominal
value at each time instant).

We also note that the figures in the last column for

which B =

(
∞
∞

)

correspond to optimal strategies

under the classical Max-Min dynamic programming
approach. Indeed, the uncertainty budget constraints
are inactive in this case, therefore at each step of the
DP recursion, the worst case situation to be considered
is independent of the past occurrences of uncertainty
(this contrasts with what occurs in our parsimonious

uncertainty model for smaller values ofB =

(
Bd

Bα

)

,

when the uncertainty budget constraints become active).
The figures shown in columns 2-8 of Table 5 corre-

spond to cases where the uncertainty budget constraints
tend to become more and more effective as theBd and
Bα values are decreased. They properly illustrate the
significance of the impact of the size of the budget set
on the quality of the resulting optimal strategies. For
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each column in Table 5 (for each value ofB =

(
Bd

Bα

)

)

the difference in maximum rewards as compared with
the figures in the first column can be interpreted as the
“price of robustness”.

Big differences are observed, in terms of maximum
profit, between the optimal deterministic solutions (first
column) and the optimal Max-Min strategies, confirm-
ing the commonly accepted idea that the latter tends to
produce fairly conservative solutions.

In this respect, an interesting feature of the new
uncertainty model proposed in the present paper is to
provide a systematic way of exploring “intermediate”
and less conservative robust strategies between these
two extremes.

b) The dependent case

The second series of test problems concerns the
case where, at each time periodt, procurement costs
and demands appear to be correlated. The intensity of
the correlation will be controlled by means of a real
parameteru ∈ [0, 1], the previously described repre-
sentation of uncertainty being modified accordingly. In
the new resulting uncertainty model for demands and
procurement costs, the valueu = 0 corresponds (for
fixed t) to totally correlated values ofdk

t andαk
t ; the

valueu = 1 corresponds to uncorrelated values, in other
words, foru = 1, we find again the uncertainty model
considered for the independent case.

For anyu ∈ [0, 1], andt = 1, . . . , T , the definition of

the set of allowed occurrences of pairs

(
dt

αt

)

is changed

as follows. Instead of allowing all the pairs

(
dt

αt

)

in

[dmin(t), dmax(t)] × [αmin(t), αmax(t)] we only allow
those pairs which satisfy the conditions:

∣
∣
∣
∣

dt − d̄t

dmax(t) − dmin(t)
−

αt − ᾱt

αmax(t) − αmin(t)

∣
∣
∣
∣
≤ u

(11)

where:

d̄t =
dmin(t) + dmax(t)

2

ᾱt =
αmin(t) + αmax(t)

2

Observe thatu = 0 in the above amounts to requiring

that the only allowed

(
dt

αt

)

pairs are those which

correspond through a linear function (more precisely,

the linear functionϕ for whichαmax(t) = ϕ (dmax(t))
and αmin(t) = ϕ (dmin(t)), and this is the case of
perfect correlation. On the other hand, foru = 1, any

pair

(
dt

αt

)

in [dmin(t), dmax(t)] × [αmin(t), αmax(t)]

satisfies (11), therefore this corresponds to the case
where there is no dependence between demands and
procurement costs.

To better understand the role of the parameteru
in controlling the amount of dependency, let us con-
sider the example (illustrated in Figure 1) where:
[dmin(t), dmax(t)] = [2, 8], [αmin(t), αmax(t)] = [5, 9],
andu = 0.2.

The points corresponding to the 11 pairs

(
d
α

)

satis-

fying (11) are shown as bold dots. If we interpret this
set of pairs in terms of a standard probabilistic model,
assuming each pair can occur with equal probability
(1/11), then the corresponding correlation coefficient
has value 0.943. More generally, there is a direct
relationship between the value ofu and the correlation
coefficientρ as shown in Table 6 below (columns 1
and 2). (The third column in Table 6 also provides
the values ofρ as a function ofu in the case of
infinitely many points uniformly distributed in a box
of R

2 of the form
[
d, d̄

]
× [α, ᾱ] with d < d̄, α <

ᾱ; interestingly this function does not depend on the
ratio

(
d̄− d

)
/ (ᾱ− α)). This confirms thatu is indeed

a relevant parameter to control the intensity of the
dependence between demands and procurement costs in
our robust dynamic programming model for inventory
management.

Table 7 displays the results obtained on some of the
instances taken from the previous series of experiments
for 3 distinct choices forB (the right handside of the
budget constraints) and 6 distinct values ofu ranging
from 0.1 to 1.

For each instance considered, the intervals of varia-
tion of demands and procurement costs are not influ-
enced by the parameteru, they are therefore the same as
for the independent case (which corresponds tou = 1).

However it is seen that, if an a priori knowledge about
possible dependence between demands and procure-
ment costs is available, it can be appropriately taken into
account by our model, possibly leading to significantly
improved optimal strategies. More precisely, Table
9 summarizes the average relative improvements (in
terms of optimal worst-case benefits) over the standard
Maximin DP model (columnu = 1) obtained for



Michel Minoux– Algorithmic Operations Research Vol.4 (2009) 1–18 13

Table 5

B →

(
0
0

) (
1
1

) (
3
3

) (
5
5

) (
8
8

) (
10
10

) (
12
12

) (
20
20

) (
∞

∞

)

P1
980
(28)

908
(29)

803
(28)

713
(27)

608
(16)

558
(16)

508
(16)

379
(16)

320
(16)

P2
1630
(30)

1560
(30)

1435
(22)

1358
(21)

1259
(16)

1206
(16)

1159
(16)

1013
(21)

956
(26)

P3
1357
(12)

1297
(12)

1177
(12)

1081
(13)

989
(14)

940
(14)

896
(14)

765
(15)

668
(15)

P4
1289
(30)

1219
(30)

1116
(29)

1029
(28)

911
(22)

850
(21)

796
(21)

660
(29)

626
(30)

P5
737
(9)

674
(9)

581
(10)

491
(10)

415
(12)

376
(12)

337
(12)

209
(12)

100
(11)

P6
1583
(12)

1527
(12)

1433
(16)

1352
(16)

1252
(20)

1188
(20)

1124
(13)

977
(13)

943
(13)

P7
1266
(29)

1217
(29)

1128
(20)

1058
(18)

965
(16)

909
(15)

858
(16)

704
(16)

630
(16)

P8
1403
(30)

1343
(30)

1229
(29)

1133
(29)

1004
(27)

934
(19)

877
(19)

701
(21)

610
(27)

P9
1142
(9)

1072
(10)

974
(18)

908
(17)

814
(18)

754
(17)

702
17)

547
(12)

478
(12)

P10
1185
(10)

1115
(10)

1007
(11)

923
(12)

817
(16)

762
(13)

716
(13)

598
(14)

523
(14)

P11
1027
(14)

957
(14)

847
(15)

744
(16)

644
(17)

592
(17)

545
(17)

396
(17)

366
(17)

P12
1244
(29)

1174
(29)

1063
(29)

968
(26)

849
(21)

787
(19)

733
(18)

579
(30)

546
(30)

Impact of the size of the uncertainty set on the values of optimal robust strategies.

Table 6

Correlation coefficientρ
Values ofu integer points continuous uniform dist-

in [2, 8] × [5, 9] ribution in a box ofR2

0 1 1
0.05 1 0.994
0.1 0.982 0.978
0.2 0.943 0.911
0.3 0.872 0.801
0.4 0.783 0.658
0.5 0.565 0.5
0.6 0.466 0.344
0.7 0.368 0.207
0.8 0.254 0.098
0.9 0.138 0.027
1 0 0

Correspondence between the values of the parameter
u and the correlation coefficientρ under the standard
probabilistic interpretation

the various values ofB and ofu. It is observed that
these improvements, while relatively modest for smaller

values ofB, can be as large as 15 % foru = 0.2, and

close to 20 % foru = 0.1 whenB =

(
12
12

)

.

Table 8

u → 0.1 0.2 0.4 0.6 0.8 1

B =

(
5
5

)

9.7 % 5.7 % 1.4 % 0.15 0 0

B =

(
8
8

)

14 % 9.8 % 3.5 0.36 0.1 0

B =

(
12
12

)

19.8 % 15.5 7.5 1.5 0.5 0

Average improvements over the Maximin DP model as
deduced from the results of Table 7.

The above results illustrate well the possible impact
of dependence among the various sources of uncertainty
in a multistage robust decision model.

5.2. Some robust shortest path models on circuitless
graphs

We consider a circuitless directed graphG = [N ,U ]
with n = |N | nodes andm = |U| arcs, in which
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8

2

5 9

d
t

α
t

6 7 8

7

6

5

3

4

Fig. 1. The 11 integer points in[5, 9]× [2, 8] satisfying condition (11) foru = 0.2. This is a case featuring a significant amount
of correlation between demands and procurement costs (highdemands tend to correspond to rather high procurement costs, low
demands to rather low procurement costs).

we distinguish a root node (a node having zero in-
degree) and a target node. We assume that the nodes
are numbered according to a topological ordering (i.e.
(i, j) ∈ U ⇒ i < j), and without loss of generality,
that the root node is indexed 1, and the target note is
indexedn.

Each arcu = (i, j) ∈ U has an associated lengthlu
which is not exactly known but which can take any value
from a given finite set of values:Lu =

{
l1u, l

2
u, . . . , l

ν
u

}

(for the sake of notational simplicity, we assume that all
Lu have equal cardinalityν, but of course the proposed
model is more general and readily extends to the case
of nonuniform cardinalities).

Associated with eachlku value inLu, we assume that
we are given ap-component integer vectorwk

u ≥ 0 rep-
resenting the ”uncertainty profile” of the corresponding
realizationlu = lku for the length of arcu. The various
components of thewk

u vectors may be interpreted for
instance as corresponding to various possible sources of
uncertainty (weather conditions, measure of congestion
of arc u on a transportation network, etc) and, for a
given realizationlku of lu in Lu, the ith component of
wk

u is 1 (or more generally a positive integer) if the
ith source of uncertainty is a factor contributing to the
outcomelu = lku, 0 otherwise. In addition to the above,

a global nonnegativep-component vectorB is given
(”uncertainty budget”), the uncertainty set for the arc
lengths being defined as the set ofl = (lu)u∈U of the

form (lk1

1 , lk2

2 , . . . , l
km
m ) where

m∑

i=1

wki

i ≤ B.

We note that such a model is sufficiently general to
handle situations for which a given realizationlu =
lku is the result of joint influences of several distinct
sources of uncertainty: the correspondingwk

u vector will
have several components equal to 1 (or, more generally,
non zero). Also we note that in most applications, the
largest among thelku values inLu (those related to the
most unfavorable situations with respect to finding the
shortest path solution) will tend to correspond to thewk

u

vectors of largest ”weight” (as measured e.g. in terms
of number of non zero components, or in terms ofL1

norm).
Also worth mentioning is another special case of

the above general model, potentially useful in ap-
plications, where there are several(p) independent
sources of uncertainty acting ondisjoint subsets of
arcs U1, U2, . . . , Up. Then, for eachu ∈ Ui, the
correspondingwk

u vectors will have all components 0
except theith component which can be non zero. In
such a case the global uncertainty budget constraint just
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Table 7

u → 0.1 0.2 0.4 0.6 0.8 1

B =

(
5
5

)
1584
(30)

1423
(30)

1376
(17)

1358
(21)

1358
(21)

1358
(21)

P2 B =

(
8
8

)
1482
(23)

1362
(30)

1300
(19)

1259
(16)

1259
(16)

1259
(16)

B =

(
12
12

)
1400
(20)

1306
(18)

1225
(21)

1161
(16)

1159
(16)

1159
(16)

B =

(
5
5

)
1473
(13)

1406
(22)

1368
(19)

1352
(16)

1352
(16)

1352
(16)

P6 B =

(
8
8

)
1412
(13)

1345
(22)

1279
(22)

1252
(20)

1252
(20)

1252
(20)

B =

(
12
12

)
1358
(18)

1301
(20)

1203
(17)

1132
(13)

1125
(13)

1124
(13)

B =

(
5
5

)
1162
(17)

1128
(22)

1071
(16)

1059
(17)

1058
(18)

1058
(18)

P7 B =

(
8
8

)
1122
(18)

1077
(17)

1000
(22)

969
(16)

966
(16)

965
(16)

B =

(
12
12

)
1082
(17)

1029
(17)

935
(16)

874
(16)

864
(16)

858
(16)

B =

(
5
5

)
986
(11)

958
(16)

910
(18)

909
(18)

908
(17)

908
(17)

P9 B =

(
8
8

)
945
(12)

902
(15)

832
(16)

816
(18)

815
(18)

814
(18)

B =

(
12
12

)
889
(15)

844
(19)

761
(16)

716
(16)

708
(16)

702
(17)

B =

(
5
5

)
1037
(13)

1017
(13)

955
(12)

923
(12)

923
(12)

923
(12)

P10 B =

(
8
8

)
985
(14)

948
(13)

883
(13)

822
(16)

820
(17)

817
(16)

B =

(
12
12

)
938
(14)

886
(14)

806
(14)

739
(14)

727
(14)

716
(13)

B =

(
5
5

)
1052
(30)

1025
(30)

980
(26)

975
(26)

968
(26)

968
(26)

P12 B =

(
8
8

)
978
(30)

948
(30)

873
(20)

857
(21)

849
(21)

849
(21)

B =

(
12
12

)
904
(19)

868
(25)

784
(27)

745
(18)

735
(18)

733
(18)

Results obtained for various values of the parameteru controlling the intensity of the dependence
between demands and procurement costs.

amounts to imposing one uncertainty budget constraint
for each subset of arcs separately.

Once defined the uncertainty set on the arc lengths as
explained above, the problem consists in determining
a best possible (robust) strategy for choosing paths in
the graph from each nodei to the terminal noden in
such a way that the worst possible lengths of these
paths (over the set of all possible eventual realizations
of uncertainty) is minimized. This problem is easily
recognized as a special case of the general model

presented in Sections 2. to 4. above ; indeed, identifying
the nodes of the circuitless graphG with the states of
a dynamic system, this corresponds to the case where
there is no uncertainty on the state transition function
(uncertainty only influences the ”return” function).
From this, we deduce that the robust shortest path
problem can be solved by the following recursion in
which the nodes of the graph are examined according
to a reverse topological ordering, starting by assigning
shortest path values equal to 0, to noden
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(whatever its uncertainty status) and then assigning
shortest path values to nodesn− 1, n− 2, . . . etc., for
each possible uncertainty statusσ ≤ B.

z∗(n, σ) = 0, for all σ ≤ B (12)

and then, fori = n− 1, n− 2, . . . , 1 :

z∗(i, σ) = Min
(i,j)∈ω+(i)







Max
k=1···ν

s.t.
wk

ij≤σ

{
lkij + z∗(j, σ − wk

ij)
}







.

(13)

ϕ∗(i, σ) = argmin
(i,j)∈ω+(i)







Max
k=1···ν

s.t.
wk

j ≤σ

{
lkij + z∗(j, σ − wk

ij)
}







.

(14)

At each step of the recursion,ϕ∗(i, σ) denotes
the best arc to take to leave nodei, given that the
corresponding uncertainty status of nodei is σ (due
to the observed realizations of uncertainty on the path
from node 1 toi).

Let us illustrate the recursion (12)-(14) on the simple
example graph shown on Figure 2 below (note that
the nodes are numbered according to a topological

order). We takeB =

(
1
1

)

. Therefore, there are

4 possible distinct values forσ in this example:
(

0
0

) (
1
0

) (
0
1

) (
1
1

)

.

The application of recursion (12)-(14) then provides
the z∗(i, σ) values and correspondingϕ∗(i, σ) values
displayed in Table 9.

It is seen that, under the given uncertainty model, the
optimal strategy leads to the decision of leaving node
1 via arc (1,3). Now, in node 3, the decision to take
depends on which realization of uncertainty is actually
observed while traversing arc (1,3). If the nominal
length 8 was observed, we are in node 3 with uncertainty

status

(
1
1

)

and the optimal decision which should be

taken then is to use arc (3,4). If the extreme-high value

11 was observed, we are at node 3 with status

(
1
0

)

and then we should leave node 3 using arc (3,7). In the
former case the path followed(1 → 3 → 4 → 5 → 7)
has worst-case length 28 ; in the latter case the path

followed (1 → 3 → 7) has worst case length 26. The

figurez∗
(

1,

(
1
1

))

= 28 shown in Table 5 corresponds

to the worst case between the two alternatives (since,
when starting at node 1 we do not know in advance,
which length will actually be realized on arc (1,3)).

This example thus illustrates the fact that the solution
produced by recursion (12)-(14) is not a well-defined
path between origin and destination in the graph, but
a set of optimal paths defining astrategy(closed-loop
solution).

It also illustrates the fact that the robust shortest
path model investigated here appears to be significantly
different from the one proposed in [3], since in the latter
case, an “open-loop” solution is looked for instead of a
’closed-loop’ solution.

According to such a strategy the optimal path to be
followed depends on the information about uncertainty
collected during the graph traversal process itself.

6. Conclusions

A class of multistage robust decision problems has
been investigated in connection with a special type of
uncertainty model referred to here as theparsimonious
uncertainty model. To the best of our knowledge, this
is the first time such a way of modeling uncertainty is
proposed in the context of robust dynamic programming
problems. In particular, it has been shown that a
key interest of such a model is to provide com-
pact representations of potentially huge scenario trees,
leading to an efficient (pseudopolynomial) dynamic-
programming-based algorithm for computing optimal
strategies (“closed-loop” solutions). From the point-of-
view of applications, the uncertainty model proposed
here has been shown to offer modelling flexibility
in various ways: (a) it is capable of representing,
in any given time period, dependence among several
parameters influenced by uncertainty (refer to the
example of prices and requirements as discussed in
§5.1.2.); (b) it is designed to take into account, via
the uncertainty budget constraints, dependence among
uncertain events occurring indifferent time periods; (c)
by varying the components of the right hand side of
the uncertainty budget constraints, and by exploiting
the intermediate results of the dynamic programming
recursion, it can be used to generate a variety of more or
less conservative solutions featuring various robustness
levels.
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Fig. 2. A 7-node graph to illustrate the robust shortest pathcomputation. On each arc there are 3 possible values of the length

(l1u, l2u, l3u) corresponding to the uncertainty profilesw1

u =

(
0
0

)

w2

u =

(
1
0

)

w3

u =

(
0
1

)

. The uncertainty budget isB =

(
1
1

)

.

Table 9

z∗

(

i,

(
0
0

))

z∗

(

i,

(
1
0

))

z∗

(

i,

(
0
1

))

z∗

(

i,

(
1
1

))

i = 7 0 (-) 0 (-) 0 (-) 0 (-)
i = 6 7 (6,7) 8 (6,7) 9 (6,7) 9 (6,7)
i = 5 6 (5,7) 7 (5,7) 9 (5,7) 9 (5,7)
i = 4 11 (4,5) 14 (4,5) 17 (4,5) 18 (4,5)
i = 3 12 (3,4) 15 (3,7) 18 (3,4) 20 (3,4)
i = 2 16 (2,5) 19 (2,6) 21 (2,6) 22 (2,6)
i = 1 19 (1,2) 22 (1,2) 26 (1,3) 28 (1,3)

The optimal decision rules obtained for the example in Figure 1. For each
pair (i, σ) the valuez∗(i, σ) is displayed, followed by the arc corresponding
to ϕ∗(i, σ).
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As an additional interesting aspect of our model, we
mention the fact thatit is by no means exacting in
terms of input data. For instance it does not require
from the decision maker a precise knowledge of a
huge number of (possibly multidimensional) probability
distributions (such information is rarely at hand when
dealing with applications involving uncertainty). On
the contrary, it only requires much coarser and sparser
information on the uncertain parameters, typically:
maximum and minimum observable value, maximum
number of occurrences of extreme (worst-case) values
over the period of study. Clearly, assuming availability
of such information appears to be much more realistic
in many situations. For all the above reasons, the variety
of applications which might be addressed via the model
and solution approach proposed here appears to be
potentially huge and this will be the subject of future
research work.
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