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Abstract

Consider a project which consists in a set of operations to beperformed, assuming the processing time of each
operation is at most one time period. In this project, precedence and incompatibility constraints between operations have
to be satisfied. The goal is to assign a time period to each operation while minimizing the duration of the whole project
and while taking into account all the constraints. Based on the mixed graph coloring model and on an efficient and quick
tabu search algorithm for the usual graph coloring problem,we propose a tabu search algorithm as well as a variable
neighborhood search heuristic for the considered scheduling problem. We formulate an integer linear program (useful
for the CPLEX solver) as well as a greedy procedure for comparison considerations. Numerical results are reported on
instances with up to 500 operations.

Key words: Project Scheduling, Local Search, Mixed Graph Coloring.

1. Introduction

In this paper, we consider a specific problem(P ) where
a set of operations have to be performed. Each operation
has a duration of at most one time period (which can be
a day, half a day, etc.). For each operationj, we know
the list of all the operations that have to be performed
beforej (these are calledpredecessor operations), and
the list of all the operations that cannot be performed
within the same time period asj is (these are called
incompatible operations). The goal is to assign a time
period to each operation, while minimizing the total du-
ration of the project, and satisfying the incompatibility
and precedence constraints. Notice that such a prob-
lem can be seen as a project management problem or a
scheduling problem. For a general project management
book with applications to planning and scheduling, the
reader is referred to [17]. A review on scheduling mod-
els and algorithms is given in [21]. Finally, the reader
interested in project scheduling is referred to [5].
One of the goals of this paper is to adapt relevant in-
gredients from the graph coloring literature to problem
(P ). We will see that assigning a time period to an op-
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Email: Bernard Ries [bernard.ries@dauphine.fr], Nicolas
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eration in problem(P ) is equivalent to give a color to
a vertex in the mixed graph coloring problem, which is
an extension of the famous graph coloring problem. A
straightforward idea is therefore to derive appropriate
graph coloring approaches to tackle problem(P ).
The paper is organized as follows. We formally present
the considered problem(P ) in Section 2., as well as
graph models relevant for(P ). In Section 3., we pro-
pose a tabu search method for problem(P ), derived
from an existing graph coloring heuristic. In Section 4.,
using the proposed tabu search as intensification pro-
cedure, we propose a variable neighborhood search for
(P ). Results are reported and discussed in Section 5.,
where we also present an integer linear model and a
greedy heuristic for comparison purposes. We end up
the paper with a conclusion and possible extensions in
Section 6..

2. Problem (P ) and Graph Coloring Models

In this section, we formulate the considered problem
(P ), as well as graph models which are appropriate to
represent(P ). We describe and discuss the well-known
graph coloring problem (GCP ), and the mixed graph
coloring problem (MGCP ). We see that problem(P )
is NP-hard, because of its similarities with theMGCP ,

c© 2010 Preeminent Academic Facets Inc., Canada. Online version: http://journals.hil.unb.ca/index.php/AOR. All rights reserved.
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which is NP-hard too.

Consider a project which consists in a setV of n oper-
ations to be performed. Each operation has a duration
of at most one time period. For each operationj, we
are given a setQ(j) ⊂ V of incompatible operations.
If j′ ∈ Q(j), it means that there is an incompatibil-
ity between operationsj andj′, i.e., it is not possible
to perform both operationsj and j′ within the same
time period. It is obvious thatj′ ∈ Q(j) if and only if
j ∈ Q(j′). An incompatibility constraint, denoted by
[j; j′], represents for example that the same resource
(machines or manpower) is associated with operations
j andj′, which means that it is not possible to perform
j and j′ simultaneously. For each operationj, we are
also given a setR(j) ⊂ V of predecessor operations.
If j′ ∈ R(j), it means that operationj′ has to be
completely performed beforej starts. Such aprece-
denceconstraint is denoted by(j′; j). Note thatR(j)
only contains theimmediate predecessorsof j, and not
all the predecessorsof j. Suppose for example that
V = {a, b, c}. If for instancea has to be performed
beforeb, andb has to be performed beforec, then we
setR(a) = ∅, R(b) = {a} andR(c) = {b}, but not
R(c) = {a, b}. In other words,a is not an immediate
predecessor ofc. The goal is to assign a time periodt
to each operationj while minimizing the total duration
of the project, and satisfying the incompatibility and
precedence constraints.

One can tackle problem(P ) as follows. Let(P (k)) be
the problem of searching for a feasible solution usingk

time periods. Such a solution can be generated by using
a functionper : V −→ {1, . . . , k}. The valueper(j)
represents the time period assigned to operationj. In
order to represent a solutions usingk time periods, we
associate with each time periodt ∈ {1, . . . , k}, a set
Ct that contains the set of operations which are per-
formed during time periodt. Thens may be denoted
by s = (C1, . . . , Ck). Problem(P ) consists in finding
a feasible solutions using k time periods with the
smallest value ofk. Starting withk = n, we can tackle
problem (P ) by solving a series of problems(P (k))
with decreasing values ofk, and we stop the process
when it is not possible to find a feasible solution with
k time periods.

The GCP is a very famous problem which can be
described as follows. Given a graphG = (V,E) with
vertex setV and edge setE, and given an integerk, a

k-coloring of G is a functioncol : V −→ {1, . . . , k}.
The valuecol(x) is called thecolor of x. Vertices hav-
ing a same color define acolor class. If two adjacent
verticesx andy (i.e., two verticesx andy which are
linked by an edge) have the same color, then vertices
x andy are calledincompatible vertices. A k-coloring
without incompatible vertices is said to belegal. The
GCP consists in determining the smallest integerk

(called thechromatic numberof G and denoted by
χ(G)) such that there exists a legalk-coloring ofG. It
is well known that theGCP is NP-hard [11]. Given a
fixed integerk, one can consider the optimization prob-
lem, calledGCP (k), which aims to determine a legal
k-coloring ofG. Starting withk = |V |, an upper bound
on the chromatic number ofG can be determined by
solving a series ofGCP (k)s with decreasing values
of k until no legalk-coloring can be obtained. Many
heuristics have been proposed to solve theGCP (k).
For a recent survey, the reader is referred to [9]. Cur-
rently, no known exact solution method is able to solve
all instances with up to 100 vertices [14]. For larger in-
stances, upper bounds on the chromatic number can be
obtained by using heuristic algorithms. The best color-
ing algorithms are proposed in [3,8,10,15,16,18,20,22].

A mixed graphG = (V,E,A) is a graph with vertex
set V , edge setE, and arc setA. By definition, an
edge is not oriented and an arc is an oriented edge.
An edge between verticesx andy is denoted by[x; y],
whereas an arc fromx to y is denoted by(x; y). The
MGCP has not been paid much attention in the lit-
erature. As for theGCP , the goal is to assign a color
to every vertex while using a minimum number of col-
ors and satisfying the incompatibility constraints (i.e.,
two adjacent vertices must get different colors). But,
in addition, for every arc(x; y), we have to respect
the precedence constraintcol(x) < col(y). Notice that
for a solution to exist, the mixed graphG must not
contain any circuit. There currently exists no general
heuristic for theMGCP . For more information on
the MGCP concerning optimal coloring of specific
classes of mixed graphs and computational complexity
results, the reader is referred to [6,7,13,23–27]. For
specific scheduling applications of the mixed graph
coloring problem, the reader is referred to [1,28]. From
now on, we say that there is aconflictbetween vertices
x and y if one of the following condition is true: (1)
y ∈ Q(x) and col(x) = col(y); (2) y ∈ R(x) and
col(x) ≤ col(y). In both cases,x andy areconflicting
vertices. In case (1), the conflict occurs on edge[x; y],
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and in case (2), it occurs on arc(x; y).

We can now obviously notice the similarities between
problems(P ) and theMGCP . From the input data
of problem (P ), we can construct a mixed graph
G = (V,E,A) as follows. We associate a vertexj ∈ V

with each operationj, an edge[j; j′] ∈ E with each
j′ ∈ Q(j) (but not more than one edge between two
vertices), and an arc(j′′; j) ∈ A with eachj′′ ∈ R(j).
In addition, we can associate a colort with each time
periodt. ColoringG with k colors while trying to mini-
mize the number of conflicts is equivalent to assigning a
time periodt ∈ {1, . . . , k} to each operation while try-
ing to minimize the number of violations of incompati-
bility and precedence constraints. Because theGCP is
NP-hard [11], theMGCP is NP-hard too and thus we
can deduce that(P ) is also NP-hard. Therefore, the use
of heuristics instead of exact methods is appropriate to
tackle(P ). From now on, we will indifferently use the
scheduling terminology (e.g., operations, time periods)
and the graph terminology (e.g., vertices, colors).

Before designing any heuristic for problem(P (k)),
we propose the following technique to reduce the
set of possible colors (time periods) for each vertex
(operation). Apath consists of a set of adjacent arcs
(j1; j2), (j2; j3), . . . , (jp−2; jp−1), (jp−1; jp) such that
ji1 6= ji2 if i1 6= i2. For example(a; b), (b; c) is a path
but not (a; b), (c; b). Suppose we would like to color
the mixed graphG consisting of a path(a; b), (b; c).
Working with k = 4 colors and starting with an empty
solution (no vertex is colored), if we first give color 4
to vertexa, it is then impossible to find a legal color for
verticesb andc, because more than four colors would be
needed. Thus, color 4 can never be considered for vertex
a in such a case. More generally, we propose to reduce
the solution space as follows. Thelengthof a pathM
fromx to y is the number of arcs inM . LetInRank(j)
be the number of vertices belonging to a longest path
ending at vertexj, andOutRank(j) be the number of
vertices belonging to a longest path starting at vertex
j. If we havek colors available, we can then associate
a setFC(j) = {InRank(j), InRank(j)+ 1, . . . , k−
OutRank(j)+1} of feasible colorswith each vertexj.
Note that the considered values ofk must of course be
larger than the length of a longest path inG. In the above
example, we haveFC(a) = {1, 2}, FC(b) = {2, 3}
andFC(c) = {3, 4}.

In the next two sections, we propose three heuristics

and we adapt them to tackle problem(P ) by solving a
series of(P (k)) problems.

3. Presentation of Tabu-(P )

In this section, we mainly describe an existing tabu
search heuristic for theGCP , namely Partialcol [3],
and we adapt it to tackle problem(P (k)). The resulting
heuristic is called Tabu-(P (k)).

3.1. Tabu Search

A basic version of tabu search can be described as fol-
lows. Let f be an objective function which has to be
minimized over the solution spaceS. At each step, a
neighbor solutions′ is generated from the current solu-
tion s by performing a specific modification ons, called
a move. All solutions obtained froms by performing
a move are calledneighborsolutions ofs. The set of
all the neighbor solutions ofs is denotedN(s). First,
tabu search needs an initial solutions0 ∈ S as input.
Then, the algorithm generates a sequence of solutions
s1, s2, . . . in the search spaceS such thatsr+1 ∈ N(sr).
When a move is performed fromsr to sr+1, the in-
verse of that move is stored in atabu list L. During
the following t iterations, wheret is the tabu tenure
(also calledtabu list length), a move staystabu and
cannot be used (with some exceptions) to generate a
neighbor solution. The solutionsr+1 is computed as
sr+1 = arg min

s∈N ′(sr)
f(s), whereN ′(s) is a subset of

N(s) containing all solutionss′ which can be obtained
from s either by performing a move that is not inL
(i.e., not tabu) or such thatf(s′) < f(s∗), wheres∗ is
the best solution encountered along the search so far.
The process is stopped for example when an optimal
solution is found (when it is known), or when a fixed
number of iterations have been performed. Many vari-
ants and extensions of this basic algorithm can be found
for example in [12].

3.2. Partialcol

Partialcol is an efficient, simple and robust tabu search
for theGCP (k) [3]. Thus it is not surprising that it is
used as an intensification procedure in some of the best
coloring algorithms (e.g., [18,22]). Because tabu search
is the key ingredient of the best methods forGCP (k)

[9], it seems straightforward to propose a tabu search
method for problem(P (k)). In Partialcol [3], the au-
thors consider the set ofpartial legalk-coloringswhich
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are defined as legalk-colorings of a subset of vertices
of G. Such colorings can be represented by a partition
of the vertex set intok+1 subsetsC1, . . . , Ck+1, where
C1, . . . , Ck arek disjoint and legal color classes, and
Ck+1 is the set of non colored vertices. The objective
is to minimize the number of vertices inCk+1, i.e.,
the number of non colored vertices. A neighbor solu-
tion s′ can be obtained from the current solutions by
moving a vertexx from Ck+1 to a color classCt (with
t ∈ {1, . . . , k}), and by moving toCk+1 each vertex
in Ct that is adjacent tox. When such a move is per-
formed, it is then tabu to movex back toCk+1 during
UNIFORM(0, 9) + 0.6 · nc iterations, wherenc is the
number of vertices inCk+1 of s, andUNIFORM(a; b)
is a function generating an integer number in the set
{a, a+1, . . . , b−1, b} (assuminga < b). Notice that: (1)
more sophisticated ways of managing the tabu tenures
are also proposed in [3]; (2) a variable neighborhood
search already exists for theGCP [2], which is almost
as efficient as Partialcol, but it needs more time to be
competitive and it is much more complicated, we will
thus not focus on such a method.

3.3. Tabu-(P (k))

In order to derive Tabu-(P (k)) from Partialcol, we
mainly have to define the search space, the neighbor-
hood structure (i.e. the nature of a move), the objective
function to minimize, and the way to manage the tabu
tenures.

Search space. In Partialcol, the search space is the
set of partial but legalk-colorings ofV , and the ob-
jective function to minimize is the number of non
colored vertices. Thus, any solutions can be denoted
by s = {C1, . . . , Ck+1}, whereC1, . . . , Ck arek dis-
joint color classes without conflicts, andCk+1 is the
set of non colored vertices. Similarly to Partialcol, in
Tabu-(P (k)), the search space is the set of partial but
legal solutions of(P (k)), and the objective function
f to minimize is the number of operations without an
associated time period. Formally, any solutions can
be denoted bys = {C1, . . . , Ck+1}, whereCt (with
t ∈ {1, . . . , k}) is the set of operations performed at
time periodt (without the occurrence of any conflict),
and|Ck+1| has to be minimized (all the vertices with-
out a time period are inCk+1).
Note however that any solutions of the above pro-
posed solution space cannot necessarily be com-
pleted into a legal solution for the whole graph.

a b c

de

f

1

2

3

34

Fig. 1. Partial solution without any conflict which cannot be
completed into a legal4-coloring.

Working with k = 4 colors, suppose for exam-
ple that graphG = (V,E,A) contains a path
(a; b), (b; c), as well as a set of pairwise adjacent ver-
tices {a, d, e, f}, as illustrated in Figure 1. Thus we
have FC(a) = {1, 2}, FC(b) = {2, 3}, FC(c) =
{3, 4}, FC(d) = FC(e) = FC(f) = {1, 2, 3, 4}. In
such a situation, partial solutions = {C1 = {e}, C2 =
{a}, C3 = {c, d}, C4 = {f}, C5 = {b}} does not
contain any conflicting vertex inCt, for 0 < t < 5,
but it cannot be completed into a legal solution of the
whole graph, because it is impossible to find a feasible
solution withper(a) = 2 andper(c) = 3.

Neighborhood structure. In Partialcol, a move con-
sists in giving a color to an uncolored vertex. If it
generates conflicting vertices, these vertices will then
be uncolored at the end of the move. In Tabu-(P (k)), a
move consists in assigning a time period to an operation
without an associated time period. If it creates conflict-
ing operations, we remove their associated time periods
(i.e., we put such conflicting vertices intoCk+1).

Objective functions. In Partialcol, when we color a
vertex, we put the created conflicting vertices inCk+1.
Thus, we try to minimize|Ck+1|. In problem(P (k)),
the objective functionf to minimize is also|Ck+1|.
Note that if |Ck+1| = 0, it means that a feasible solu-
tion has been found withk periods, and we can restart
the process withk − 1 periods, and so on until no fea-
sible solution is found. Then, the provided number of
periods will be the last number for which a feasible so-
lution has been found.
Let s be the current solution. Notice thatf may give
the same value to several candidate neighbor solutions
of s, i.e., several ties are encountered. At each iteration,
in order to better discriminate the choice of a neighbor
solution, we propose to use another objective function
g instead off (thus,g is only used to evaluate candi-
date neighbor solutions). More precisely, a conflict can
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be due to an incompatibility constraint violation or to a
precedence constraint violation. We observed that it is
better to give different weights to these two types of con-
flicts. Given a partial solutions = {C1, . . . , Ck+1}, an
operationj ∈ Ck+1 and a time periodt ∈ {1, . . . , k},
we set

A(j, t) = {j′ ∈ V | ∃ edge[j; j′] such thatper(j′) = t)}

B(j, t) = {j′ ∈ V | {∃ arc (j; j′) such thatt ≥ per(j′)}

OR {∃ arc (j′; j) such thatper(j′) ≥ t}}

In other words,A(j, t) is the set of incompatible opera-
tions which are put inCk+1 if we associate time period
t with operationj, andB(j, t) is the set of operations,
involved in precedence constraint violations, which are
put inCk+1 if we associate time periodt with operation
j. At each step of Tabu-(P (k)), we perform the move
which minimizesg(j, t) = α · |A(j, t)| + β · |B(j, t)|,
where α and β are parameters. Preliminary experi-
ments showed thatα = 4 andβ = 1 is a reasonable
parameter setting. With such an objective functiong,
it is very quick to evaluate a neighbor solution. In or-
der to generate a neighbor solutions′ from the current
solutions, suppose for example that we movej from
Ck+1 to Ct (with t ∈ {1, . . . , k}), but we have to move
j1 from Ct to Ck+1 because of an incompatibility con-
straint violation, andj2 andj3 from Ct′ to Ck+1 (with
t′ ∈ {1, . . . , k}) because of precedence constraint vio-
lations. It is then easy to evaluate the value of such a
move based on a weighted number of vertices which
are put inCk+1. In the above case, the evaluation is
g(j, t) = α · 1 + β · 2.

Tabu tenures. Similarly to Partialcol, when we assign
a time period to an operationj, it is then tabu to remove
this associated time period fromj during a certain
number of iterations. At each iteration, we determine
the best (according to functiong) neighbors′ of the
current solutions (ties are broken randomly) such that
eithers′ is a non-tabu solution, orf(s′) < f∗, where
f∗ is the value of the best solutions∗ encountered
so far during the search. If operationj is removed
from Ck+1 when switching from the current solution
s to the neighbor solutions′, as proposed in [3] and
[8], it is forbidden to putj back into Ck+1 during
tab(j) = UNIFORM(0; 9) + 0.6 · nc iterations, where
nc is the number of conflicts in the current solutions.
Note that we tested more refined ways of managing the
tabu tenures, which did not lead to better results. Thus,
we decided to keeptab(j) as above.

Algorithm 1. Tabu-(P (k))

Input: set of operations, incompatibility and prece-
dence constraints;

Initialization
(1) generate an initial solutions (randomly or by

putting all the operations inCk+1);
(2) sets∗ = s andf∗ = f(s);
(3) setIter = 0 (iteration counter);

While a stopping condition is not met, do:
(1) update the iteration counter: setIter = Iter + 1;
(2) generate the setD of all non tabu candidate neigh-

bor solutions obtained froms by assigning a time
period toj ∈ Ck+1, ∀j (exception:D can con-
tain tabu solutions if such solutions have values
smaller thanf∗);

(3) set s′ as the solution ofD minimizing function
g (break ties randomly); suppose we generates′

from s by assigning a time period to operationj;
(4) update the best solution: iff(s′) < f∗, setf∗ =

f(s′) ands∗ = s′;
(5) update the tabu status: do not putj in Ck+1 until

iterationIter + tab(j);
(6) update the current solution: sets = s′;

Output: solutions∗ with valuef∗;

We have now all the ingredients to formulate Tabu-
(P (k)) in Algorithm 1.

4. Presentation of VNS-(P )

In this section, we describe a basic version of the usual
variable neighborhood search (VNS) and we adapt
it to problem (P (k)). The resulting method is called
VNS-(P (k)), and uses Tabu-(P (k)) as intensification
procedure.

A basic version of VNS [19] can be described as fol-
lows. LetN (i) (i = 1; . . . ; imax) denote a finite set of
neighborhoods, whereN (i)(s) is the set of solutions in
the ith neighborhood ofs. Most local search methods
use only one type of neighborhood, i.e.,imax = 1. The
basic VNS, which is described in Algorithm 2, tries to
avoid being trapped in local minima with the help of
more than one neighborhood.
For the considered problem(P (k)), based on prelim-
inary experiments, we propose the following: (1) use
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Algorithm 2. Variable Neighborhood Search

Input: neighborhood structuresN (i) (i =
imin, . . . , imax);

Initialization: generate an initial solutions and set
i = imin;

While a stopping condition is not met, do:
(1) Shaking. Generate a solutions′ in the ith neigh-

borhood ofs, i.e. s′ ∈ N (i)(s).
(2) Local search. Apply some local search method

during I iterations withs′ as initial solution; let
s′′ be the so obtained local optimum.

(3) Move or not. If s′′ is better than the incumbent
s, move there (i.e., sets = s′′), and continue the
search withN (imin) (i.e., seti = imin); otherwise
seti = max{imin; (i mod imax) + 1}.

Output: best encountered solution during the search.

imin = 2 and imax = 5; (2) in step (1) of the main
loop, generates′ as the best solution among 10 ran-
domly chosen solutions inN (i)(s); (3) the used local
search is Tabu-(P (k)) with I = 100, 000.

Therefore, we now mainly have to design different
neighborhood structures. We need additional terminol-
ogy. Recall that aconflictoccurs between two adjacent
verticesx andy if an incompatibility or a precedence
constraint is violated. In such a case,x andy arecon-
flicting vertices. We propose to extend the definition of
a conflict as follows. Fori ≥ 2, we say that ani-conflict
occurs between verticesx andy if at least one of the
following condition is true: (1) there exists a path of
lengthi from x to y such thatcol(x) + i > col(y); (2)
there exists a path of lengthi from y to x such that
col(y) + i > col(x). In such a case, verticesx andy
arei-conflicting vertices.

In the neighborhood structureN (1), which is already
used in Tabu-(P (k)), if we perform a move consisting
in giving a color to a vertexx, we remove the colors
of all conflicting vertices, which are necessarily in the
set of adjacent vertices tox. For i ≥ 2, we define the
neighborhood structureN (i)(s) of a current solutions
as the set of solutions which can be obtained froms by
giving a color to a vertexx, while removing the color
of all conflicting andr-conflicting vertices, with2 ≤
r ≤ i. NeighborhoodN (3)(s) is illustrated in Figure 2.
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Fig. 2. (i) A partial legal solutions. (ii) A neighbor solutions′

in N
(3)(s) obtained by assigning time period1 to operation

a.

5. Obtained results

In this section, we first propose a method which will be
compared to our heuristics. Then we describe the way
we generated instances. Finally, we present and discuss
the obtained results.

5.1. Considered Methods for Numerical Comparisons

We propose now an integer linear program as well as a
greedy algorithm.

The integer linear model associated with theMGCP

is the following. LetG = (V,E,A) be a mixed graph
with V = {v1, . . . , vn}, E being the edge set andA be-
ing the arc set. LetC = {1, . . . , k} be the set of avail-
able colors. Let us define the following variables. For
all i ∈ {1, . . . , n} andj ∈ {1, . . . , k}, we setxij = 1
if vertex vi gets colorj andxij = 0 otherwise. For all
j ∈ {1, . . . , k}, we setzj = 1 if at least one vertex
gets colorj and zj = 0 otherwise. The mixed graph
coloring problem can be defined as follows. The objec-

tive function to minimize is
k∑

i=1

zi, and the constraints

to satisfy are:
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Table 1

Graph |V | k∗ d d̂ Greedy Tabu VNS
DSJC250.1 250 8 0.1 0.001 9 (5) 8 (5) 8 (5)

0.002 9 (5) 8 (5) 8 (5)
0.003 9 (5) 8 (5) 8 (5)
0.005 9 (5) 8 (5) 8 (5)
0.01 9 (5) 8 (5) 8 (5)
0.05 13 (5) 13 (5) 13 (5)
0.1 30 (5) 30 (5) 30 (5)

DSJC250.5 250 28 0.5 0.001 34 (5) 29 (5) 29 (5)
0.002 35 (5) 29 (4) 29 (3)
0.003 35 (5) 30 (5) 29 (2)
0.005 36 (5) 30 (1) 31 (4)
0.01 39 (5) 35 (5) 38 (1)

DSJC250.9 250 72 0.9 0.001 84 (5) 72 (2) 72 (4)
0.002 84 (5) 73 (1) 73 (3)
0.003 87 (5) 74 (4) 74 (3)
0.005 89 (5) 78 (5) 82 (3)
0.01 95 (5) 91 (2) 97 (1)

DSJR500.1 500 12 0.03 0.001 12 (5) 12 (5) 12 (5)
0.002 12 (5) 12 (5) 12 (5)
0.003 12 (5) 12 (5) 12 (5)
0.005 12 (5) 12 (5) 12 (5)
0.01 12 (5) 12 (5) 12 (5)
0.1 19 (5) 19 (5) 19 (5)

DSJR500.1c 500 85 0.97 0.001 103 (5) 95 (1) 98 (2)
0.002 113 (5) 109 (2) 109 (1)
0.003 132 (5) 127 (2) 135 (1)
0.005 183 (5) 187 (1) 186 (1)
0.01 279 (5) 285 (3) 285 (4)

DSJR500.5 500 122 0.47 0.001 127 (5) 126 (3) 127 (3)
0.002 130 (5) 127 (2) 129 (4)
0.003 132 (5) 127 (2) 129 (4)
0.005 137 (5) 132 (5) 138 (1)
0.01 146 (5) 149 (1) 148 (2)

Results of the heuristics on the DSJC and DSJR graphs

xi1j + xi2j ≤ 1∀[vi1 ; vi2 ] ∈ E,

∀j ∈ {1, . . . , k} (1)
k∑

j=1

xij = 1∀vi ∈ V (2)

xij ≤ zj ∀vi ∈ V, ∀j ∈ {1, . . . , k} (3)

xi1j1 + xi2j2 ≤ 1 ∀(vi1 ; vi2) ∈ A,

∀j1 ≥ j2, j1, j2 ∈ {1, . . . , k} (4)

xij , zj ∈ {0, 1} ∀vi ∈ V, ∀j ∈ {1, . . . , k} (5)

Constraints (1) impose that two vertices linked with an
edge must get different colors; constraints (2) impose
that each vertex must get exactly one color; constraints
(3) are linking constraints; constraints (4) forbid to
give a larger color to the start vertex of an arc than to
the end vertex of an arc; constraints (5) impose integer
values for variablesxij andzj.

However, even if we use the CPLEX 10.2 MIP Solver
(during one hour on the computer mentioned in section
5.), it can only manage very small and instances (up to
50 vertices), which are very easy to tackle with a local

search heuristic. This confirms that the use of heuris-
tics is mandatory and thus no further comparison will
be made with exact methods. Note that the same holds
for the graph coloring problem: the best exact methods
are able to tackle instances with up to 100 vertices,
for which a tabu search procedure is able to find the
optimal solution in a few seconds.

On the considered instances (with up to 500 vertices),
we propose to compare Tabu-(P (k)) and VNS-(P (k))
with a simpler baseline heuristic, which will be a greedy
heuristic, denoted Greedy-(P (k)), derived from Dsatur.
Dsatur [4] is a state-of-the-art greedy heuristic for the
GCP . First, thedegreeof a vertexx is the number of
adjacent vertices tox and thesaturation degreeof a
vertexx is the number of different colors that are used
by the vertices adjacent tox. Let Z be a set of ver-
tices which is initialized toV . At each step and while
Z 6= ∅, Dsatur colors one vertex inZ as follows: (1)
select a vertexx ∈ Z with the largest saturation degree
(break ties with the largest degree, and then randomly);
(2) assign the smallest color tox without creating any
conflict, and removex from Z.
From Dsatur, it is rather easy to derive a greedy heuris-
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Table 2

Graph |V | χ(G) d d̂ Greedy Tabu VNS
le45015c 450 15 0.16 0.001 23 (5) 16 (4) 16 (5)

0.002 23 (5) 17 (4) 17 (2)
0.003 23 (5) 17 (5) 18 (4)
0.005 24 (5) 18 (5) 18 (2)
0.01 25 (5) 21 (5) 22 (4)

le45015d 450 15 0.17 0.001 23 (5) 16 (4) 17 (5)
0.002 23 (5) 17 (5) 17 (5)
0.003 23 (5) 17 (1) 18 (5)
0.005 24 (5) 18 (5) 18 (2)
0.01 25 (5) 20 (1) 22 (1)

le45025c 450 25 0.17 0.001 28 (5) 27 (5) 27 (5)
0.002 28 (5) 27 (5) 27 (5)
0.003 28 (5) 27 (2) 27 (4)
0.005 29 (5) 28 (5) 27 (1)
0.01 30 (5) 29 (5) 29 (4)

le45025d 450 25 0.17 0.001 28 (5) 27 (5) 27 (5)
0.002 28 (5) 27 (4) 27 (5)
0.003 28 (5) 28 (5) 27 (2)
0.005 29 (5) 28 (5) 28 (5)
0.01 30 (5) 29 (5) 29 (4)

flat300 20 0 300 20 0.47 0.001 38 (5) 21 (1) 22 (5)
0.002 38 (5) 23 (2) 23 (2)
0.003 39 (5) 25 (2) 26 (3)
0.005 40 (5) 27 (3) 27 (1)
0.01 42 (5) 32 (1) 40 (3)

flat300 26 0 300 26 0.48 0.001 39 (5) 27 (5) 27 (3)
0.002 39 (5) 28 (3) 28 (1)
0.003 40 (5) 31 (5) 30 (5)
0.005 41 (5) 34 (4) 35 (1)
0.01 42 (5) 38 (5) 42 (2)

flat300 28 0 300 28 0.48 0.001 39 (5) 32 (5) 30 (1)
0.002 39 (5) 33 (5) 33 (5)
0.003 39 (5) 33 (1) 33 (5)
0.005 40 (5) 35 (5) 35 (2)
0.01 44 (5) 40 (1) 45 (1)

Results of the heuristics on the Leighton and flat graphs

Table 3

Tabu VNS Ties
All the 68 instances smallerk 21 7 40

larger success rate 11 7 22
13 instances withd̂ = 0.001 smallerk 4 1 8

larger success rate 1 2 5
13 instances withd̂ = 0.002 smallerk 1 0 12

larger success rate 4 2 6
13 instances withd̂ = 0.003 smallerk 5 3 5

larger success rate 1 2 2
13 instances withd̂ = 0.005 smallerk 4 2 7

larger success rate 4 0 3
13 instances withd̂ = 0.01 smallerk 7 1 5

larger success rate 1 1 3
33 instances withd close to 0.1 smallerk 5 2 26

larger success rate 4 3 19
20 instances withd close to 0.5 smallerk 8 3 9

larger success rate 5 1 3
10 instances withd close to 0.9 smallerk 4 1 5

larger success rate 2 3 0

Detailed comparison between Tabu-(P (k)) and VNS-(P (k))
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tic for problem(P (k)), using onlyk colors. We change
the above step (2) as follows: we assign the smallest
color of FC(x) to x without creating any conflict. If
no such color exists, we removex from Z and we put
x in Ck+1, which is the set of non colored vertices.
The quality of a so obtained solution can be measured
by |Ck+1|. If |Ck+1| = 0, the associated solution is
feasible. Otherwise, we only have a partial but legal
solution. With such a method, the obtained results were
not convincing at all. Thus, we propose the following
improvement. In the above step (1), before considering
the saturation degrees, we select vertexx ∈ Z accord-
ing to the largestOutRank (ties are broken randomly).
Thus, we start to color the vertices belonging to the
longest paths of the considered graph.

In order to have a fair comparison, we use the same
stopping condition for all the methods, which is a time
limit of T = 60 minutes. As Greedy-(P (k)) needs much
less than 60 minutes to generate a solution, it will be
restarted during 60 minutes, and the provided solution
will be the best solution encountered during that time.

5.2. Generation of the Instances

In order to generate random mixed graphs from a non
oriented graphG = (V,E), we process as follows. An
edge[x; y] is transformed into an arc with a probability
equal tod̂, and if it is the case, it will be transformed
into an arc(x; y) or an arc(y;x) with an equal prob-
ability. Note that since we do not allow circuits in a
mixed graph (otherwise there is no feasible solution),
we only perform a transformation of an edge into an
arc if the resulting arc does not create any circuit. If it
does create a circuit, we then check the reverse orienta-
tion. If both orientations create circuits, the considered
edge will not be transformed into an arc.

We consider a set of 13 non oriented graphs from the
most challenging ones (see [10]) of the DIMACS Chal-
lenge (see ftp://dimacs.rutgers.edu/pub/challenge/graph/).
The orientation densitŷd is defined as the proportion of
oriented edges. Each of the 13 below mentioned graph is
considered witĥd ∈ {0.001, 0.002, 0.003, 0.005, 0.01},
which results in 65 instances. In addition, for graphs
DSJC250.1 and DSJR500.1, other values in{0.05, 0.1}
were also considered to better measure the augmen-
tation of the number of required colors to color the
graph. We consider four types of graphs:
• The DSJCn.10 · d instances are random graphs with

n vertices a densityd, which means that each pair of
vertices has a probability ofd to form an edge. We
choosen = 250 andd ∈ {0.1, 0.5, 0.9}.

• The DSJRn.z instances are geometric random graphs
with n vertices, which are constructed by randomly
choosingn points in the unit square and two vertices
are connected if they are distant by less thanz. Graphs
with an added end letter ’c’ are the complementary
graphs. We choosen = 500 andz ∈ {1, 5}.

• The flatn χ 0 instances are structured graphs withn

vertices and a chromatic numberχ. The end number
’0’ means that all vertices are adjacent to the same
number of vertices. We choosen = 300 and χ ∈
{20, 26, 28}.

• The len χx instances are graphs withn vertices and
a chromatic numberχ equal to the size of a largest
clique (i.e., the largest number of pairwise adjacent
vertices). The end letter ’x’ stands for different graphs
with similar settings. We choosen = 450 andχ ∈
{15, 25}.

As such graphs have very different structures, sizes and
densities, we believe that if the proposed heuristics per-
form well on such instances, it will also be the case for
other types of instances.

5.3. Presentation of the Results

Our algorithms were implemented in C++ and run on a
computer with the following properties: Processor Intel
Core2 Duo Processor E6700 (2.66GHz, 4MB Cache,
1066MHz FSB), RAM 2GB DDR2 667 ECC Dual
Channel Memory (2x1GB).

The results are presented in Tables 2 for the random
DSJC and DSJR graphs, and in Table 3 for the struc-
tured Leighton and flat graphs. The five first columns
respectively indicate the following information: the
name of the graph, the number|V | of vertices, the
smallest number of colorsk∗ for which a legalk∗-
coloring was found by a heuristic or the chromatic
numberχ(G) if it is known, the densityd, and the ori-
entation densitŷd. The last three columns respectively
indicate the smallest number of colors for which a legal
coloring was found by Greedy-(P (k)), Tabu-(P (k)),
and VNS-(P (k)), with the number of successes among
five runs (i.e. using five different seeds) in brackets. As
expected, largerd andd̂ values lead to a larger number
of used colors.

We can observe on the one hand that Tabu-(P (k)) and
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VNS-(P (k)) are better than Greedy-(P (k)), which is not
surprising: a local search is in general better than a con-
structive heuristic with restarts. On the other hand, Tabu-
(P (k)) outperforms VNS-(P (k)), which is not straight-
forward to understand: it actually means that the ingre-
dients added to Tabu-(P (k)) to derive VNS-(P (k)) de-
teriorates its behavior. More precisely, when performing
and evaluating a move, i.e. when trying to color a ver-
tex x, it is better to only focus on the vertices adjacent
to x rather than to also consider more distant vertices.
Therefore, the latter strategy does not help to guide the
search and also needs extra computation.
It can be interesting to perform a more accurate com-
parison between Tabu-(P (k)) and VNS-(P (k)), accord-
ing to several criterion: the nature of the graph (ran-
dom or structured), the densityd and the orientation
density d̂. This can be done based on the informa-
tion provided in Table 4, which was built from Ta-
bles 2 and 3. The overall performance is first given:
among the 68 considered instances, Tabu-(P (k)) found a
smaller legalk-coloring 21 times, VNS-(P (k)) 7 times,
and both methods obtained the same value ofk 40
times. For these latter 40 instances, Tabu-(P (k)) had a
better success rate (among five runs) 11 times, VNS-
(P (k)) 7 times, and both methods obtained the same
success rate value 22 times. The same kind of infor-
mation is then given for the instances with a fixedd̂
value (with d̂ ∈ {0.001, 0.002, 0.005, 0.01}), then for
the instances withd close to 0.1 (i.e. the four Leighton
graphs, DSJC250.1, and DSJR500.1), the instances with
d close to 0.5 (i.e. the three flat instances, DSJC250.5,
and DSJR500.5), and finally the instances withd close
to 0.9 (i.e. instances DSJC250.9 and DSJR500.1c). We
can generally see that the largerd or d̂ are (i.e. the more
complex the instance is), the better is Tabu-(P (k)) when
compared to VNS-(P (k)).

6. Conclusion

In this paper, we tackle a project scheduling problem
(P ) for which incompatibilities between operations
and precedence constraints are considered. The goal is
to assign a time period to each operation while mini-
mizing the duration, i.e. the number of time periods, of
the project.

We showed that problem(P ) can be represented by
the mixed graph coloring problem, which is NP-hard.
We propose three heuristics to tackle problem(P ): a
greedy procedure, a tabu search as well as a variable

neighborhood search.

Among the future work that can be done in that field,
we mention two main avenues of research. In the first
one, more sophisticated heuristics might be developed
to tackle problem(P ). For example, one can derive ef-
ficient population based coloring heuristics in order to
obtain better heuristics for(P ). In the second research
direction, one might design extensions of problem(P ),
such as the consideration of a specific duration for each
operation, as well as various types of costs.
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