Résumés
Abstract
The rapid rise of artificial intelligence (AI), exemplified by ChatGPT, has transformed education. However, few studies have examined the factors influencing its adoption in higher education, especially among Mathematics student teachers. This study investigates factors that influence the behavioural intentions of Mathematics student teachers regarding using ChatGPT. Guided by the Unified Theory of Acceptance and Use of Technology (UTAUT) model, data were collected through a questionnaire of 24 items across six factors on a 5-point Likert scale. Using multiple linear regression analysis with RStudio, the findings reveal that Intrinsic Motivation, Performance Expectancy, Social Influence, and Perceived Trust positively affect behavioural intentions to adopt ChatGPT. The study emphasizes implications for developers and educators to enhance AI integration in education, thereby supporting personalized and engaging learning experiences.
Keywords:
- artificial intelligence,
- behavioural intention,
- ChatGPT,
- Mathematics student teacher
Résumé
L’essor rapide de l’intelligence artificielle (IA), illustré par ChatGPT, a transformé l’éducation. Cependant, peu d’études ont examiné les facteurs influençant son adoption dans l’enseignement supérieur, en particulier parmi les stagiaires en mathématiques. Cette étude examine les facteurs qui influencent les intentions comportementales des stagiaires en mathématiques concernant l’utilisation de ChatGPT. Guidés par le modèle de la théorie unifiée de l’acceptation et de l’utilisation des technologies (UTAUT), les données ont été collectées au moyen d’un questionnaire de 24 éléments portant sur six facteurs sur une échelle de Likert à 5 points. À l’aide d’une analyse de régression linéaire multiple avec RStudio, les résultats révèlent que la motivation intrinsèque, les attentes en matière de performance, l’influence sociale et la confiance perçue affectent positivement les intentions comportementales d’adopter ChatGPT. L’étude met l’accent sur les implications pour les personnes développeuses et enseignantes d’améliorer l’intégration de l’IA dans l’éducation, soutenant ainsi des expériences d’apprentissage personnalisées et engageantes.
Mots-clés :
- ChatGPT,
- intelligence artificielle,
- intentions comportementales,
- stagiaires en mathématiques
Veuillez télécharger l’article en PDF pour le lire.
Télécharger
Parties annexes
Biographical notes
Tang Minh Dung, PhD, earned his doctorate in Mathematics - Informatics from Université Grenoble Alpes in France. He is a lecturer in the Department of Mathematics and Informatics at Ho Chi Minh City University of Education in Vietnam. His research focuses on teacher education and technology-enhanced mathematics education. Email: dungtm@hcmue.edu.vn ORCID: https://orcid.org/0000-0001 5401-1395
Vo Khoi Nguyen is a senior mathematics education student at the Department of Mathematics and Informatics, Ho Chi Minh City University of Education in Vietnam. His research focuses on harmonic analysis and teacher education. Email: 4701101107@student.hcmue.edu.vn ORCID: https://orcid.org/0009-0009-3738-6967
Ðoàn Cao Minh Trí is a senior mathematics education student at the Department of Mathematics and Informatics, Ho Chi Minh City University of Education in Vietnam. His research focuses on representation theory, number theory, and mathematics teaching methodology. Email: minhtridoancao06@gmail.com ORCID: https://orcid.org/0009-0001-7783-1393
Phú Lúóng Chí Quõc is a senior mathematics education student at the Department of Mathematics and Informatics, Ho Chi Minh University of Education in Vietnam. His research focuses on technology-enhanced mathematics education. Email: chiquocphuluong26012002@gmail.com ORCID: https://orcid.org/0009-0009-4151-954X
Bui Hoang Dieu Ban is a senior mathematics education student at the Department of Mathematics and Informatics, Ho Chi Minh University of Education in Vietnam. Her research focuses on technology-enhanced mathematics education and mathematics teaching methodology. Email: buihoangdieuban12012003@gmail.com ORCID: https://orcid.org/0009-0008-1696-1195
Bibliography
- Agyei, D. D., & Voogt, J. (2011). ICT use in the teaching of mathematics: Implications for professional development of pre-service teachers in Ghana. Education and Information Technologies, 16, 423–439. https://doi.org/10.1007/s10639-010-9141-9
- Ajzen, I. (2020). The theory of planned behavior: Frequently asked questions. Human Behavior and Emerging Technologies, 2(4), 314–324. https://doi.org/10.1002/hbe2.195
- Albion, P., Jamieson-Proctor, R., & Finger, G. (2010). Auditing the TPACK confidence of Australian pre-service teachers: The TPACK confidence survey (TCS). In D. Gibson & B. Dodge (Eds.), Society for Information Technology & Teacher Education International Conference (pp. 3772–3779). Association for the Advancement of Computing in Education (AACE). https://www.learntechlib.org/primary/p/33969/
- Alshammari, S. H., & Alshammari, M. H. (2024). Factors affecting the adoption and use of ChatGPT in higher education. International Journal of Information and Communication Technology Education, 20(1), 1–16. https://doi.org/10.4018/IJICTE.339557
- Angeli, C., & Valanides, N. (2009). Epistemological and methodological issues for the conceptualization, development, and assessment of ICT–TPCK: Advances in technological pedagogical content knowledge (TPCK). Computers & Education, 52(1), 154–168. https://doi.org/10.1016/j.compedu.2008.07.006
- Bernabei, M., Colabianchi, S., Falegnami, A., & Costantino, F. (2023). Students’ use of large language models in engineering education: A case study on technology acceptance, perceptions, efficacy, and detection chances. Computers & Education: Artificial Intelligence, 5, 100172. https://doi.org/10.1016/j.caeai.2023.100172
- Cheng, Y., & Jiang, H. (2020). How do AI-driven chatbots impact user experience? Examining gratifications, perceived privacy risk, satisfaction, loyalty, and continued use. Journal of Broadcasting & Electronic Media, 64(4), 592–614. https://doi.org/10.1080/08838151.2020.1834296
- Cristobal, E., Flavián, C., & Guinalíu, M. (2007). Perceived e‐service quality (PeSQ): Measurement validation and effects on consumer satisfaction and web site loyalty. Managing Service Quality: An International Journal, 17(3), 317–340. https://doi.org/10.1108/09604520710744326
- Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace. Journal of Applied Social Psychology, 22(14), 1111–1132. https://doi.org/10.1111/j.1559-1816.1992.tb00945.x
- De Cosmo, L. M., Piper, L., & Di Vittorio, A. (2021). The role of attitude toward chatbots and privacy concern on the relationship between attitude toward mobile advertising and behavioral intent to use chatbots. Italian Journal of Marketing, 2021(1–2), 83–102. https://doi.org/10.1007/s43039-021-00020-1
- Drent, M., & Meelissen, M. (2008). Which factors obstruct or stimulate teacher educators to use ICT innovatively? Computers & Education, 51(1), 187–199. https://doi.org/10.1016/j.compedu.2007.05.001
- Duong, C. D., Vu, T. N., & Ngo, T. V. N. (2023). Applying a modified technology acceptance model to explain higher education students’ usage of ChatGPT: A serial multiple mediation model with knowledge sharing as a moderator. International Journal of Management Education, 21(3), 100883. https://doi.org/10.1016/j.ijme.2023.100883
- Egara, F. O., & Mosimege, M. (2024). Exploring the integration of artificial intelligence-based ChatGPT into Mathematics instruction: Perceptions, challenges, and implications for educators. Education Sciences, 14(7), 742. https://doi.org/10.3390/educsci14070742
- Enochsson, A.-B. (2009). ICT in initial teacher training. Organisation for Economic Co-operation and Development. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=5dcec359fa38aa677c4beabf85b7257284ee6b18
- Firat, E. A., & Köksal, M. S. (2019). Effects of instruction supported by web 2.0 tools on prospective teachers’ biotechnology literacy. Computers & Education, 135, 61–74. https://doi.org/10.1016/j.compedu.2019.02.018
- Fishbein, M., & Ajzen, I. (1977). Belief, attitude, intention, and behavior: An introduction to theory and research. Contemporary Sociology, 6, 244. https://api.semanticscholar.org/CorpusID:144301400
- Foroughi, B., Senali, M. G., Iranmanesh, M., Khanfar, A., Ghobakhloo, M., Annamalai, N., & Naghmeh-Abbaspour, B. (2023). Determinants of intention to use ChatGPT for educational purposes: Findings from PLS-SEM and fsQCA. International Journal of Human–Computer Interaction, 40, 4501–4520. https://doi.org/10.1080/10447318.2023.2226495
- Frost, J. (2019). Regression analysis: An intuitive guide for using and interpreting linear models. Statistics by Jim Publishing.
- Getenet, S. (2024). Pre-service teachers and ChatGPT in multistrategy problem-solving: Implications for mathematics teaching in primary schools. International Electronic Journal of Mathematics Education, 19(1), em0766. https://doi.org/10.29333/iejme/14141
- Green, S. B. (1991). How many subjects does it take to do a regression analysis. Multivariate Behavioral Research, 26(3), 499–510. https://doi.org/10.1207/s15327906mbr2603_7
- Hair, J. F., Black, B., Babin, B., & Anderson, R. E. (2018). Multivariate data analysis (8th ed.). Cengage.
- Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing. In R. R. Sinkovics & P. N. Ghauri (Eds.), New challenges to international marketing (Vol. 20, pp. 277–319). Emerald Group Publishing Limited. https://doi.org/10.1108/S1474-7979(2009)0000020014
- Hoang, T., & Chu Nguyen, M. N. (2008). Phan tich du lieu nghien cuu voi SPSS 2008 (tap 1) [Research data analysis with SPSS 2008 (Volume 1)]. Hong Duc Publisher.
- Hsu, H. T., & Lin, C. C. (2021). Extending the technology acceptance model of college learners’ mobile‐assisted language learning by incorporating psychological constructs. British Journal of Educational Technology, 53(2), 286–306. https://doi.org/10.1111/bjet.13165
- James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An introduction to statistical learning: with applications in R (2nd ed.). Springer.
- Jo, H. (2023). Understanding AI tool engagement: A study of ChatGPT usage and word-of-mouth among university students and office workers. Telematics and Informatics, 85, 102067. https://doi.org/10.1016/j.tele.2023.102067
- Kabudi, T. M. (2022, May). Artificial intelligence for quality education: Successes and challenges for AI in meeting SDG4. In Y. Zheng, P. Abbott, & J. A. Robles-Flores (Eds.), International conference on social implications of computers in developing countries (pp. 347–362). Springer. https://doi.org/10.1007/978-3-031-19429-0_21
- Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31–36. https://doi.org/10.1007/BF02291575
- Kale, U. (2018). Technology valued? Observation and review activities to enhance future teachers’ utility value toward technology integration. Computers & Education, 117, 160–174. https://doi.org/10.1016/j.compedu.2017.10.007
- Keengwe, J., & Bhargava, M. (2013). Mobile learning and integration of mobile technologies in education. Education and Information Technologies, 19, 737–746. https://doi.org/10.1007/s10639-013-9250-3
- Lai, C. Y., Cheung, K. Y., & Chan, C. S. (2023). Exploring the role of intrinsic motivation in ChatGPT adoption to support active learning: An extension of the technology acceptance model. Computers & Education: Artificial Intelligence, 5, 100178. https://doi.org/10.1016/j.caeai.2023.100178
- Li, C., & Yanagisawa, H. (2021). Intrinsic motivation in virtual assistant interaction for fostering spontaneous interactions. Plos One, 16(4), e0250326. https://doi.org/10.1371/journal.pone.0250326
- Lindeman, R. H., Merenda, P. F., & Gold, R. Z. (1980). Introduction to bivariate and multivariate analysis. Scott, Foresman and Company. https://doi.org/10.2307/2287559
- Lo, C. K. (2023). What is the impact of ChatGPT on education? A rapid review of the literature. Education Sciences, 13(4), 410. https://doi.org/10.3390/educsci13040410
- Ma, X., & Huo, Y. (2023). Are users willing to embrace ChatGPT? Exploring the factors on the acceptance of chatbots from the perspective of AIDUA framework. Technology in Society, 75, 102362. https://doi.org/10.1016/j.techsoc.2023.102362
- Marshall, G., & Cox, M. J. (2008). Research methods: Their design, applicability and reliability. In J. Voogt & G. Knezed (Eds.), International handbook of information technology in primary and secondary education (pp. 983–1002). Springer. https://doi.org/10.1007/978-0-387-73315-9_62
- Menon, D., & Shilpa, K. (2023). “Chatting with ChatGPT”: Analyzing the factors influencing users’ intention to Use the Open AI’s ChatGPT using the UTAUT model. Heliyon, 9(11), e20962. https://doi.org/10.1016/j.heliyon.2023.e20962
- Montenegro-Rueda, M., Fernández-Cerero, J., Fernández-Batanero, J. M., & López-Meneses, E. (2023). Impact of the implementation of ChatGPT in education: A systematic review. Computers, 12(8), 153. https://doi.org/10.3390/computers12080153
- Nikolopoulou, K., Gialamas, V., & Lavidas, K. (2021). Habit, hedonic motivation, performance expectancy and technological pedagogical knowledge affect teachers’ intention to use mobile internet. Computers and Education Open, 2, 100041. https://doi.org/10.1016/j.caeo.2021.100041
- Nguyen, D. T. (2014). Giao trinh phuong phap nghien cuu khoa hoc trong kinh doanh [Textbook on Scientific Research Methods in Business]. Finance Publishing.
- Pham, V. L. P., Vu, D. A., Hoang, N. M., Do, X. L., & Luu, A. T. (2024). ChatGPT as a math questioner? Evaluating ChatGPT on generating pre-university math questions. In J. Hong, J. W. Park, & A. Przybylek (Eds.), Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing (pp. 65–73). Association for Computing Machinery. https://doi.org/10.1145/3605098.363603
- Pituch, K. A., & Stevens, J. P. (2015). Applied multivariate statistics for the social sciences (6th ed.). Routledge.
- Rahim, N. I. M., Iahad, N. A., Yusof, A. F., & Al-Sharafi, M. A. (2022). AI-based chatbots adoption model for higher-education institutions: A hybrid PLS-SEM-neural network modelling approach. Sustainability, 14(19), 12726. https://doi.org/10.3390/su141912726
- Singh, N., Sinha, N., & Liébana-Cabanillas, F. J. (2020). Determining factors in the adoption and recommendation of mobile wallet services in India: Analysis of the effect of innovativeness, stress to use and social influence. International Journal of Information Management, 50, 191–205. https://doi.org/10.1016/j.ijinfomgt.2019.05.022
- Strzelecki, A. (2023). Students’ acceptance of ChatGPT in higher education: An extended unified theory of acceptance and use of technology. Innovative Higher Education, 49, 223–245. https://doi.org/10.1007/s10755-023-09686-1
- Sullivan, M., Kelly, A., & McLaughlan, P. (2023). ChatGPT in higher education: Considerations for academic integrity and student learning. Journal of Applied Learning & Teaching, 6(1), 1–10. https://doi.org/10.37074/jalt.2023.6.1.17
- Szymkowiak, A., Melović, B., Dabić, M., Jeganathan, K., & Kundi, G. S. (2021). Information technology and Gen Z: The role of teachers, the internet, and technology in the education of young people. Technology in Society, 65, 101565. https://doi.org/10.1016/j.techsoc.2021.101565
- Talan, T., & Kalınkara, Y. (2023). The role of artificial intelligence in higher education: ChatGPT assessment for anatomy course. Uluslararası Yönetim Bilişim Sistemleri ve Bilgisayar Bilimleri Dergisi [International Journal of Management Information Systems and Computer Science], 7(1), 33–40. https://doi.org/10.33461/uybisbbd.1244777
- Teo, T., & Milutinovic, V. (2015). Modelling the intention to use technology for teaching mathematics among pre-service teachers in Serbia. Australasian Journal of Educational Technology, 31(4), 363–380. https://doi.org/10.14742/ajet.1668
- Terblanche, N., & Kidd, M. (2022). Adoption factors and moderating effects of age and gender that influence the intention to use a non-directive reflective coaching chatbot. Sage Open, 12(2). https://doi.org/10.1177/21582440221096136
- Tian, W., Ge, J., Zhao, Y., & Zheng, X. (2024). AI Chatbots in Chinese higher education: adoption, perception, and influence among graduate students—an integrated analysis utilizing UTAUT and ECM models. Frontiers in Psychology, 15, 1–16. https://doi.org/10.3389/fpsyg.2024.1268549
- Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478. https://doi.org/10.2307/30036540
- Voogt, J., Fisser, P., Pareja Roblin, N., Tondeur, J., & van Braak, J. (2012). Technological pedagogical content knowledge–a review of the literature. Journal of Computer Assisted Learning, 29(2), 109–121. https://doi.org/10.1111/j.1365-2729.2012.00487.x
- Wardat, Y., Tashtoush, M. A., AlAli, R., & Jarrah, A. M. (2023). ChatGPT: A revolutionary tool for teaching and learning mathematics. Eurasia Journal of Mathematics, Science and Technology Education, 19(7), em2286. https://doi.org/10.29333/ejmste/13272
- Young, D. S. (2017). Handbook of regression methods. Chapman and Hall/CRC. https://doi.org/10.1201/9781315154701