Neoproterozoic Mafic–Ultramafic Intrusions in the Bird River Greenstone Belt:
Tectonic Setting and Economic Significance

Volume 39, numéro 4, 2012
URI: https://id.erudit.org/iderudit/geocan39_4fs07

Citer ce document
GAC–MAC 2013: Field Guide Summary

Neoarchean Mafic–Ultramafic Intrusions in the Bird River Greenstone Belt: Tectonic Setting and Economic Significance

GAC–MAC Winnipeg 2013, post-meeting field trip

H.P. Gilbert¹, J.S. Scoates², R.F.J. Scoates³, X.M. Yang¹, C.A. Mealin⁴, M.G. Houlé⁵, and C.R. Galeschuk⁶

¹Manitoba Geological Survey
360-1395 Ellice Avenue
Winnipeg, MB, Canada, R3G 3P2
E-mail: paul.gilbert@gov.mb.ca

²Department of Earth, Ocean and Atmospheric Sciences
University of British Columbia
6339 Stores Road
Vancouver, BC, Canada, V6T 1Z4

³2502 Holyrood Drive
Nanaimo, BC, Canada, V9S 4K9

⁴Ontario Geological Survey
Willet Green Miller Centre, Level B7
933 Ramsey Lake Road
Sudbury, ON, Canada, P3E 6B5

⁵Geological Survey of Canada
Earth Sciences Sector
490 rue de la Couronne
Québec, QC, Canada, G1K 9A9

⁶Mustang Minerals Corp.
P.O. Box 670
S18 - 24 Aberdeen Avenue
Pinawa, MB, Canada, R0E 1L0

FIELD TRIP OBJECTIVES
The Neoarchean Bird River greenstone belt in southeastern Manitoba contains a variety of mafic to ultramafic intrusions that host significant Ni-Cu-(PGE) and chromite mineralization. This excursion will focus on magmatic stratigraphy, chromitite layering and associated mineralization in the Neoarchean Bird River Sill and Mayville intrusion (Figs. 1, 2), located within the main part and northern arm, respectively, of the Bird River greenstone belt. In addition to the surface exposures, drillcore will be examined from the Ni-Cu-(PGE) M2 deposit and the PGE-reef style mineralization in the Mayville intrusion, as well as the Ni-Cu-(PGE) orebodies at the former Maskwa-Dumbarton Mine within the Bird River Sill.

This field excursion in the Bird River greenstone belt provides a unique opportunity to examine and compare two contemporaneous (ca. 2.745 Ga) Neoarchean mafic to ultramafic intrusions that are separated by an approximately 20 km wide granitoid terrane containing some relatively older (Mesoarchean) intrusive phases. The trip complements the GAC–MAC 2013 Special Session entitled Magmatic Ni-Cu-PGE-Cr Deposits: Ore-Forming Processes with Implications for Exploration.

OTHER INFORMATION
The 3-day trip is based at the Wilderness Edge conference centre at Pinawa (100 km east-northeast of Winnipeg). It will depart from Winnipeg directly after technical sessions on May 24 and return on the evening of May 27. A moderate level of physical activity is involved (at least 1-3 km daily) and sturdy footwear and raingear are recommended. Parts of the Mayville intrusion may not be accessible because of high water levels, in which case an alternative itinerary will be run.

Figure 1. Typical exposure of the ore zone at the M2 site in the Mayville intrusion.

Figure 2. Medium-grained to very coarse grained leucogabbro (Mayville intrusion).