
Tous droits réservés © Les Presses de l'Université de Montréal, 1993 Ce document est protégé par la loi sur le droit d’auteur. L’utilisation des
services d’Érudit (y compris la reproduction) est assujettie à sa politique
d’utilisation que vous pouvez consulter en ligne.
https://apropos.erudit.org/fr/usagers/politique-dutilisation/

Cet article est diffusé et préservé par Érudit.
Érudit est un consortium interuniversitaire sans but lucratif composé de
l’Université de Montréal, l’Université Laval et l’Université du Québec à
Montréal. Il a pour mission la promotion et la valorisation de la recherche.
https://www.erudit.org/fr/

Document généré le 23 jan. 2026 10:50

Géographie physique et Quaternaire

La modélisation fractale et la variabilité spatiale des
phénomènes naturels
Die fraktale Modellierung und räumliche Veränderlichkeit der
Naturphänomene
André Robert et André G. Roy

Volume 47, numéro 1, 1993

URI : https://id.erudit.org/iderudit/032928ar
DOI : https://doi.org/10.7202/032928ar

Aller au sommaire du numéro

Éditeur(s)
Les Presses de l'Université de Montréal

ISSN
0705-7199 (imprimé)
1492-143X (numérique)

Découvrir la revue

Citer cet article
Robert, A. & Roy, A. G. (1993). La modélisation fractale et la variabilité spatiale
des phénomènes naturels. Géographie physique et Quaternaire, 47(1), 3–19.
https://doi.org/10.7202/032928ar

Résumé de l'article
Le modèle fractal a suscité beaucoup d'intérêt récemment en sciences
naturelles. Cette théorie de Benoit Mandelbrot s'avère particulièrement
pertinente en géographie, puisque le modèle fractal traite de la variabilité
spatiale des phénomènes naturels, de l'échelle d'observation de ces
phénomènes et des propriétés géométriques résultantes. La première partie de
cette revue consiste en une description du modèle fractal et des méthodes qui
peuvent être utilisées pour estimer la dimension de Hausdorff et de l'intérêt
immédiat des fractales en sciences naturelles. La deuxième partie traite, de
façon générale, de l'application des fractales à la variabilité spatiale de divers
phénomènes (pédologie, réseaux hydrographiques, turbulence, etc.). Une
imbrication de différents niveaux de variation est généralement observée et un
des intérêts du modèle provient de la variation de la dimension fractionnaire
avec l'étendue d'échelles considérée. La troisième partie est consacrée à
l'analyse des surfaces topographiques, de la microéchelle (quelques
millimètres) à l'échelle des bassins-versants. Différents types d'utilisation du
modèle fractal pour l'analyse des surfaces topographiques sont présentés. Plus
particulièrement, il s'agit de l'utilisation des surfaces fractales comme surface
initiale pour l'étude des processus géomorphologiques, de même que
l'utilisation de la dimension fractionnaire pour caractériser la rugosité des
surfaces topographiques (pour des études hydrauliques ou hydrologiques).
Cette revue se termine en considérant brièvement les conséquences en
géographie physique et en géomorphologie des découvertes récentes de la
théorie du chaos. L'outil fractal est privilégié dans l'étude du comportement
des systèmes dynamiques.

https://apropos.erudit.org/fr/usagers/politique-dutilisation/
https://www.erudit.org/fr/
https://www.erudit.org/fr/
https://www.erudit.org/fr/revues/gpq/
https://id.erudit.org/iderudit/032928ar
https://doi.org/10.7202/032928ar
https://www.erudit.org/fr/revues/gpq/1993-v47-n1-gpq1902/
https://www.erudit.org/fr/revues/gpq/


Géographie physique et Quaternaire, 1993, vol. 47, n" 1, p. 3-19, 14 fig., 4 tabl. 

LA MODÉLISATION FRACTALE 
ET LA VARIABILITÉ SPATIALE 
DES PHÉNOMÈNES NATURELS 
André ROBERT et André G. ROY1 Department of Geography, York University, 4700 Keele Street, North York, Ontario 
M3J 1P3 et Département de géographie, Université de Montréal, CP. 6128, succursale « A », Montréal, Québec H3C 3J7. 

RÉSUMÉ Le modèle fractal a suscité 
beaucoup d'intérêt récemment en sciences 
naturelles. Cette théorie de Benoit 
Mandelbrot s'avère particulièrement perti­
nente en géographie, puisque le modèle 
fractal traite de la variabilité spatiale des 
phénomènes naturels, de l'échelle d'obser­
vation de ces phénomènes et des propriétés 
géométriques résultantes. La première par­
tie de cette revue consiste en une description 
du modèle fractal et des méthodes qui 
peuvent être utilisées pour estimer la dimen­
sion de Hausdorff et de l'intérêt immédiat 
des fractales en sciences naturelles. La 
deuxième partie traite, de façon générale, de 
l'application des fractales à la variabilité spa­
tiale de divers phénomènes (pédologie, 
réseaux hydrographiques, turbulence, etc.). 
Une imbrication de différents niveaux de 
variation est généralement observée et un 
des intérêts du modèle provient de la varia­
tion de la dimension fractionnaire avec 
l'étendue d'échelles considérée. La troi­
sième partie est consacrée à l'analyse des 
surfaces topographiques, de la micro­
échelle (quelques millimètres) à l'échelle des 
bassins-versants. Différents types d'utilisa­
tion du modèle fractal pour l'analyse des sur­
faces topographiques sont présentés. Plus 
particulièrement, il s'agit de l'utilisation des 
surfaces fractales comme surface initiale 
pour l'étude des processus géomorphologi­
ques, de même que l'utilisation de la dimen­
sion fractionnaire pour caractériser la rugo­
sité des surfaces topographiques (pour des 
études hydrauliques ou hydrologiques). 
Cette revue se termine en considérant briè­
vement les conséquences en géographie 
physique et en géomorphologie des décou­
vertes récentes de la théorie du chaos. 
L'outil fractal est privilégié dans l'étude du 
comportement des systèmes dynamiques. 

ABSTRACT Fractal ideas have generated 
a lot of interest recently in natural sciences. 
Mandelbrot's theory is particularly relevant to 
physical geographers since it deals in part 
with the spatial variability of natural phenom­
ena, scales of observation, and resultant 
geometric properties. The first part of this 
review consists in a description of the fractal 
model and the methods that can be used to 
determine the fractal (Hausdorff) dimension, 
as well as a description of the immediate 
interests of fractals in natural sciences. The 
second part deals with the application of 
fractals to the spatial variability of different 
phenomena (e.g. pedology, drainage net­
works, turbulence, etc.). Nested levels of 
variation are generally observed and one 
basic interest of fractals is related to the fact 
that the fractal dimension varies with the 
range of scales considered. A third section is 
concerned with the analysis of topographic 
surfaces, from the microscale (e.g. a few mil­
limetres) to the scale of drainage basins. 
Different ways of using fractal concepts for 
the analysis of topographic surfaces are pre­
sented. More specifically, these are the use 
of fractal surfaces as a null hypothesis and 
initial surface for the study of geomorphic 
processes, and the use of the fractal dimen­
sion for the characterization of surface 
roughness (for hydraulic and hydrologie 
studies). Finally, this review considers briefly 
the significance of chaos theory in physical 
geography and geomorphology. Fractal con­
cepts are clearly predominant in the study of 
dynamic systems behaviour. 

ZUSAMMENFASSUNG Die fraktale Model-
lierung und raumliche Veranderlichkeit der 
Naturphânomene. In den Naturwissen-
schaften hat das Fraktalmodell jungst viel 
Interesse hervorgerufen. Dièse Théorie von 
Benoit Mandelbrot erweist sich als beson-
ders sachdienlich in der Géographie, da das 
Fraktalmodell von der râumlichen Verander­
lichkeit der Naturphânomene, dem Beo-
bachtungsmafistab dieser Phânomene und 
den hieraus folgenden geometrischen 
Eigenschaften handelt. Der erste Teil dieser 
Ubersicht besteht aus einer Beschreibung 
des Fraktalmodells und der Methoden, die 
man benutzen kann, um die Hausdorff-
Dimension zu bestimmen sowie dem unmit-
telbaren Nutzen der Fraktaien in den Natur-
wissenschaften. Der zweite Teil handelt in 
allgemeiner Weise von der Anwendung der 
Fraktaien auf die raumliche Veranderlichkeit 
verschiedener Phânomene (z.B. Bodenfor-
schung, Gewàssernetze, Turbulenz u.s.w.). 
Im allgemeinen kann man eine 
Dachziegellagerung verschiedener Varia-
tionsebenen beobachten, und einer der 
Vorteile des Modells besteht in der Variation 
der Bruchdimension entsprechend dem 
Umfang der berùcksichtigten MaBstâbe. Der 
dritte Teil ist der Analyse der topographis-
chen Oberflàchen gewidmet, vom Mikro-
maBstab (einige Millimeter) bis zum 
MaBstab der Abhangsbecken. Es werden 
verschiedene Verwendungstypen des Frak­
talmodells fur die Analyse der topographis-
chen Oberflàchen vorgestellt. Im besonde-
ren geht es um die Verwendung der Fraktal-
oberflàchen als Ausgangsoberflàche fur das 
Studium der geomorphologischen Prozesse, 
wie auch die Verwendung der Fraktal-
dimension, um die Rauhheit der topograph-
ischen Oberflàchen zu bestimmen ( fur 
hydraulische Oder hydrologische Studien). 
Diese Ubersicht betrachtet schlieBlich kurz 
die Folgen der neuen Entdeckungen der 
Chaos-Theorie fur die physische Géo­
graphie und die Géomorphologie. 
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4 A. ROBERT et A. G. ROY 

INTRODUCTION 

Durant la dernière décennie, la théorie des fractales a pro­
voqué un vif intérêt et suscité de très nombreux travaux dans 
diverses disciplines scientifiques. Les articles de vulgarisa­
tion, d'intérêt plus général, où l'accent est davantage mis sur 
la fascination visuelle et esthétique ont consacré la popularité 
des fractales (voir, par exemple, Batty, 1985; Peitgen et 
Richter, 1986; Peitgen et Saupe, 1988). Bien qu'elle ait des 
antécédents dans les travaux des mathématiciens du début 
du siècle, la théorie des fractales de Mandelbrot a été 
élaborée de façon formelle au cours des années 1960 et 
1970. Elle a connu une diffusion fulgurante à la suite de la 
parution de trois ouvrages (Mandelbrot, 1975a, 1977, 1982), 
dont le dernier, The Fractal Geometry of Nature, consacre en 
quelque sorte deux décennies de travaux rédigés sur les frac­
tales et leur importance pour décrire et expliquer les proprié­
tés géométriques des phénomènes naturels. 

Les fractales rendent possible la description mathéma­
tique de l'irrégularité et de la complexité des formes natu­
relles. La géométrie euclidienne classique repose sur des 
formes géométriques parfaites (le cercle, le carré, le rec­
tangle, etc.) mais en même temps abstraites par rapport aux 
formes réelles que traitent les sciences de la nature. Par 
exemple, peut-on dire comme Robert Pirsig dans son fameux 
roman Traité du zen et de l'entretien de la motocyclette que 
le paysage du Dakota est aussi plat que la géométrie d'Eu-
clide? Ou encore peut-on décrire un sapin par un simple cône 
ou un terrain fraîchement labouré par des ondulations régu­
lières? Comment décrit-on mathématiquement un nuage ou 
un jet turbulent? La géométrie classique nous force à rame­
ner les objets naturels à des formes simples à manipuler 
mathématiquement. En l'absence d'outils mieux adaptés, ce 
carcan rigide a dominé notre approche de la nature depuis 
l'Antiquité, sans toutefois en permettre une description adé­
quate. L'attrait des fractales est de fournir un instrument 
mathématique capable de saisir la complexité géométrique 
des objets et d'ainsi briser les limites imposées par la géomé­
trie euclidienne. 

La géographie physique constitue l'un des domaines les 
plus appropriés à l'application de la théorie de Benoit 
Mandelbrot. En effet, cette théorie traite essentiellement de 
l'échelle d'observation et de ses effets sur les propriétés 
métriques des phénomènes. Elle permet de modéliser la 
variabilité spatiale et de saisir la complexité des phénomènes 
naturels. Burrough (1984) souligne l'intérêt que présentent 
les fractales en géographie et dans les sciences de la nature 
en général. Il a démontré que les fractales peuvent constituer 
un outil efficace, nouveau, et stimulant pour l'étude des phé­
nomènes géophysiques tout en illustrant clairement les 
limites du modèle. Certaines différences fondamentales 
apparaissent cependant entre les données réelles et les fonc­
tions stochastiques issues de la théorie des fractales 
(Burrough, 1983a, b). Depuis, de très nombreuses études ont 
été publiées afin de clarifier et d'étayer les idées préconisées 
par Burrough (1981, 1984, 1985). Plus récemment, une 
revue du sujet préparée par Goodchiid et Mark (1987) a iden­
tifié différents aspects de la géographie pour lesquels les 
fractales constituent un changement important dans la pen­

sée. L'article de Goodchiid et Mark (1987) met l'accent sur la 
notion d'autosimilarité statistique et les modèles d'organisa­
tion spatiale, limitant ainsi l'intérêt des fractales à des champs 
géographiques spécifiques et peut-être trop restreints. Nous 
croyons cependant que la théorie des fractales est essen­
tielle à l'étude de la géographie physique (et des sciences 
naturelles en général). Ces aspects ne sont pas traités à fond 
par Goodchiid et Mark (1987). Finalement, le développement 
rapide de la théorie et de ses applications en sciences de la 
Terre (voir Culling, 1987a, b, 1988a, b, 1989; Roy et al., 1987; 
Robert, 1988a; Elliot, 1989; Jones et al., 1989; Turcotte, 
1989) illustrent clairement l'importance accrue de la modéli­
sation fractale en géographie physique. Cette éclosion de 
l'utilisation des fractales en géographie physique exige que 
l'on fasse le point sur le sujet. 

L'article se divise en quatre parties. La première consiste 
en une brève description du modèle fractal et de ses proprié­
tés fondamentales. Elle traite de l'estimation de la dimension 
fractale selon diverses méthodes et dévoile l'intérêt immédiat 
des fractales pour l'étude des phénomènes géophysiques. 
La deuxième partie porte, surtout, sur la variabilité spatiale 
des phénomènes naturels. L'analyse fractale de divers phé­
nomènes (pédologiques, karstiques, hydrauliques, hydrolo­
giques) met en évidence leur variabilité en fonction de 
l'échelle. Dans ce contexte, l'imbrication de plusieurs 
échelles de variation est importante puisqu'elle pourrait être 
révélatrice des processus sous-jacents aux phénomènes. 
Les objets et processus naturels apparaissent souvent 
comme ayant des propriétés statistiques dites « multifracta-
les». En troisième lieu, le champ d'analyse de la géographie 
physique auquel les fractales ont le plus contribué consiste 
probablement en l'étude des surfaces topographiques. La 
modélisation fractale à toutes les échelles des paysages, et 
particulièrement de la topographie, y est aussi décrite et 
expliquée. Deux approches distinctes sur l'utilisation des 
fractales dans l'étude des surfaces naturelles sont présen­
tées: celle de Goodchiid et Mark (1987) qui préconisent le 
recours aux surfaces fractales comme hypothèse nulle ou 
surface initiale pour l'étude des processus géomorphologi­
ques, et celle proposée par Culling (1986b, 1987a, 1988, 
1989) sur les surfaces fractales comme résultantes de la 
théorie de la diffusion de l'évolution des paysages. 
Finalement, une brève présentation des liens entre la théorie 
du chaos, les fractales et la géographie physique clôt l'article. 

DESCRIPTION DU MODÈLE FRACTAL 

Avant de considérer certaines propriétés mathématiques 
du modèle fractal, illustrons à l'aide d'un exemple simple en 
quoi les fractales s'avèrent d'un intérêt particulier en géomor­
phologie. La figure 1 représente un profil topographique 
hypothétique obtenu à trois échelles différentes. On note 
immédiatement qu'il est impossible de déterminer l'échelle 
d'observation du profil à partir du degré d'irrégularité de la 
surface. L'allure générale du profil demeure la même en dépit 
du fait que l'échelle est considérablement modifiée. Cette 
propriété est appelée autosimilarité ou autoaffinité (ces con­
cepts seront définis de façon plus détaillée plus loin dans 
cette section). De plus, un indice mathématique peut être uti­
lisé pour décrire les propriétés géométriques de ce profil, 
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LA MODELISATION FRACTALE 5 

D = 1 

FIGURE 1. Illustration, à l'aide d'un exemple géomorphologique, 
des concepts de base de la géométrie fractale (d'après Gravel, 
1988). 

Illustration of the basic concepts of fractal geometry using a geomor-
phological example (after Gravel. 1988). 

c'est-à-dire principalement son degré d'irrégularité constant 
observé à toutes les échelles spatiales et les liens statis­
tiques existant entre les mesures successives (qui dans ce 
cas-ci sont des mesures d'altitudes). Cet indice consiste en 
la dimension fractale ou fractionnaire du profil et sera 
également défini en détail dans les sections qui suivent. 
L'autosimilarité et la dimension fractionnaire peuvent s'appli­
quer à divers types de courbes, soit des courbes fermées 
dans le plan (e.g. courbes de niveau, tracé des littoraux), des 
séries statistiques unidimensionnelles représentant des phé­
nomènes naturels (séries climatologiques, pédologiques, 
etc.) et des surfaces topographiques naturelles. 

Certains concepts de base reliés au modèle fractal 
peuvent être décrits à l'aide de l'exemple illustré à la figure 2, 
où r représente un rapport de similarité et N le nombre de par­
ties déduites de l'ensemble. La figure 2 montre aussi les rap­
ports entre les notions de dimension euclidienne et d'autosi-
milarité d'une part, et les valeurs de N et de r (rapport de 
similarité) d'autre part. On peut généraliser ce concept pour 

H 1 1 

D = 2 

N = 3 

r = 1/3 = 1/N 

Nr1 =1 

N = 9 

r = 1/3 = 1/N 1 / 2 

Nr2 = 1 

D = 3 

y s s 
/ ^ / 

*s*^> 

y N = 27 

r = 1 / 3 = 1/N 
N r 3 = 1 

1/3 

GÉNÉRALISATION 

N r D = 1 ou N = r D 

log N 
ET D = 

l og (1 / r ) 

FIGURE 2. Interprétation de la notion de dimension et de l'autosi­
milarité (d'après Voss, 1988). 

Interpretation of the concept of dimension and autosimilahty (after 
Voss, 1988). 

définir la dimension fractionnaire (D) d'une entité géomé­
trique à partir de N et de r. La courbe de Koch est maintenant 
l'exemple classique de l'application de ce concept (fig. 3). 
Cette courbe est un exemple idéal d'un objet fractal. Chaque 
portion de la courbe de Koch représente une image réduite 
de l'ensemble, d'où une similarité géométrique à toutes les 
échelles d'observation. Cette propriété d'un objet représente 
l'autosimilarité stricte, c'est-à-dire l'imbrication successive de 
formes géométriques identiques, sauf en ce qui a trait à leur 
taille. En conséquence, on ne peut déterminer l'échelle de 
l'objet à partir de son allure géométrique. De plus, cette ligne 
(fig. 3) a une longueur indéterminée puisque cette dernière 
augmente avec l'augmentation de chaque degré de résolu­
tion par un facteur de 4/3. Dans cet exemple, la valeur de 
1,2618 représente la dimension fractionnaire ou dimension 
de Hausdorff (D) du tracé. Un exemple additionnel est pré­
senté à la figure 3, où un carré est utilisé pour produire l'irré­
gularité (dans ce cas, D = 1,465). L'idée de dimension frac­
tionnaire revient à Hausdorff (1919) et Besicovitch (1929) et 
la théorie mathématique sur les mesures et dimensions de 
Hausdorff se trouve dans Rogers (1970), Adler (1981), 
Falconer (1985), ainsi que Culling (1986b). 

Une des propriétés bien connues des formes fractales 
consiste en la relation entre la longueur d'une ligne (L) et 
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6 A. ROBERT et A. G. ROY 

(a) D = log 4 / l o g 3 = 1,2618 FIGURE 3. Courbe de Koch: 
exemple classique de courbe frac-
taie (voir Burrough, 1983a). 

Example of the ideal fractal curve 
(Koch); see Burrough (1983a). 

(b) D = log 5 / l o g 3 = 1,4650 

(i) METHODE DE RICHARDSON 

» » 

(ii) METHODE DE LA GRILLE 

( 
/ N 

Ï 
S 

C1 

O I/ 

N: Nombre d'unités 
r utilisées le 
long du tracé 

N a r -D 

L (Longueur du 
tracé) = N . r 

L oc M-D 

N(r) a r D 

N(r): Nombre de 
carrés touchés 
par le tracé 

FIGURE 4. Méthodes empiriques d'estimation de la dimension 
fractionnaire (d'après Voss, 1988). 

Empirical methods of estimating fractal dimensions (after Voss, 
1988). 

l'unité de mesure utilisée (r). Par exemple, pour une ligne 
fractale, 

kr1 
(1) 

où k est une constante (Richardson, 1961; Mandelbrot, 
1967), ce qui implique l'augmentation de la longueur de la 
ligne mesurée avec la diminution de l'unité de mesure utilisée 
(fig. 4). L'équation (1) s'applique évidemment aux courbes 
fractales illustrées à la figure 3, mais également à des 
courbes représentant divers phénomènes naturels tels qu'il­
lustrés par Mandelbrot (1967) pour le tracé des lignes de 
rivage. La valeur de D estimée à partir de l'équation (1 ) repré­
sente donc la dimension fractionnaire du tracé considéré. 
Plus la valeur de D est élevée, plus le tracé considéré est irré­
gulier et plus la longueur estimée augmente rapidement avec 
une diminution du degré de résolution (r). Cette méthode a 
été employée, par exemple, pour estimer la dimension frac­
tale des contours de particules sédimentaires (Orford et 
Whalley, 1983; Whalley et Orford, 1982, 1989; Hayward et 

al., 1989), ainsi que pour les courbes de niveau par 
Goodchild (1982), Roy et al. (1987) et Culling et Datko 
(1987). Il s'agit d'une méthode simple à appliquer pour esti­
mer les dimensions fractionnaires de courbes fermées dans 
un plan ou de segments de ces courbes (Mandelbrot, 1975b; 
Burrough, 1984; Mark, 1984; Snow, 1989). Un exemple d'ap­
plication est présenté à la figure 5. Le tracé considéré est ici 
celui d'un segment de la rivière Don (Angleterre) tel que 
relevé originellement sur un feuillet topographique à l'échelle 
de 1 /25 000. La longueur estimée du tracé de la rivière dimi­
nue dans ce cas-ci de 6,3 à 5 km lorsque l'unité de mesure 
(r) utilisée pour estimer cette longueur augmente de 50 à 
approximativement 300 m. En utilisant l'équation (1), la 
valeur estimée de la dimension fractionnaire pour cette partie 
du tracé de la rivière est de 1,16. Une méthode similaire à la 
relation de Richardson (équation 1) est également présentée 
à la figure 4. Le principe consiste ici à superposer une grille 
régulière sur la ligne à l'étude et à compter le nombre de car­
rés intersectés par la ligne à l'étude. Ces méthodes sont 
également présentées et expliquées en détail par Longley et 
Batty (1989a, b). 

Le concept des fractales peut être étendu aux surfaces et 
aux volumes. Une surface fractale autosimilaire et isotropi­
que présente une dimension comprise entre 2 et 3. Une 
courbe de niveau dans le plan horizontal et le profil d'une sec­
tion verticale d'une surface fractale sont autosimilaires et ont 
une dimension fractionnaire inférieure de 1 à celle de la sur­
face. On trouve de nombreuses simulations de surfaces frac­
tales dans la littérature (voir Mandelbrot, 1975b, 1982; 
Goodchild, 1980; Adler, 1981; Culling, 1986a; Goodchild et 
Mark, 1987). La dimension dans le plan horizontal peut être 
estimée à partir du diagramme de Richardson (équation 1 ) en 
utilisant la courbe de niveau topographique associée à une 
certaine altitude (Culling, 1988a), alors que la dimension 
d'une section verticale peut être estimée à partir de la varia­
tion de l'altitude le long d'un transect et de la théorie des pro­
cessus browniens fractionnaires (Mandelbrot, 1965, 1975b; 
Mandelbrot et Van Ness, 1968). 

En termes plus généraux, les propriétés fractales d'une 
série unidimensionnelle de valeurs sont généralement 
décrites et estimées par le semi-variogramme. Par exemple, 
Burrough (1983a, b) et Culling (1986a) ont employé cette 
méthode pour l'analyse fractale des séries spatiales des pro-
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FIGURE 5. Application de la 
méthode de Richardson à un tra­
cé de rivière (Don River, 
Royaume-Uni) 

Application of Richardson's 
method for the estimation of the 
length of a river segment (Don 
River, United Kingdom). o . 8 0 -
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priétés pédologiques, ainsi que Mark et Aronson (1983), 
Ahnert (1984), Culling (1986b), et Culling et Datko (1987) 
pour les propriétés fractales des surfaces naturelles. La 
marche aléatoire (ou mouvement brownien) est souvent uti­
lisée pour illustrer comment les propriétés fractales d'une 
série de points peuvent être estimées à partir du semi-
variogramme. La marche aléatoire, désignée ici BH(t), est un 
exemple de processus stochastique non stationnaire et auto­
similaire. De façon plus spécifique, BH(t) a la propriété que, 
pour chaque e>0, la séquence des valeurs de BH (t + e) -
BH(t) soit une séquence de valeurs aléatoires et indépen­
dantes, distribuées normalement, avec une moyenne de zéro 
et une variance égale à e. Les processus qui possèdent cette 
propriété (augmentation de la variance avec une augmenta­
tion de la distance entre les observations) sont définis comme 
étant non stationnaires. Le mouvement brownien est autosi­
milaire en ce sens que pour toute valeur de u > 0 et toute 
valeur de s, B H (t + s) - B „ (t) a exactement la même distribu­
tion de probabilité que [BH(t + su) - B„(t)] / uH (Mandelbrot 
et Van Ness, 1968), où H est un paramètre d'échelle qui est 
égal à 0,5. Pour être plus précis, le terme autoaffinité devrait 
être ici employé plutôt qu'autosimilarité (Voss, 1988). 
L'autoaffinité diffère de l'autosimilarité en ce sens que les 
coordonnées des axes horizontal et vertical diffèrent et que 
ces deux axes ne sont pas interchangeables. L'autosimilarité 
s'applique, par exemple, aux courbes de niveau et au tracé 
d'une rivière ou d'un littoral (fig. 3, 4 et 5), alors que l'autoaf­
finité se rapporte aux propriétés statistiques des séries unidi-
mensionnelles. Les profils topographiques possédant les 
propriétés fractales sont ainsi caractérisés par l'autoaffinité. 

Un corollaire important de l'autoaffinité en ce qui a trait au 
mouvement brownien (ou marche aléatoire) est que 

E[B„(t + S) + BH(t)]2 = C „ S 2 H (2) 

où E représente la valeur attendue, CH est une constante 
égale à 1 et H = 0,5 (Mandelbrot et Wallis, 1969b). En variant 
le paramètre H de l'équation (2) de la valeur standard de 0,5 
à n'importe quelle valeur comprise entre 0 et 1, on obtient 
selon Mandelbrot toute une famille de processus stochas­
tiques appelés mouvements browniens fractionnaires (fBm). 
Ces processus couvrent une étendue de variations spatiales 

(ou temporelles) allant des courbes très lisses aux courbes 
très irrégulières. Le processus fBm est défini pour 0 < H < 1 
et l'exposant de l'équation (2) peut donc varier entre 0 et 2. 
Ces mouvements browniens fractionnaires (fBm) possèdent 
également la propriété d'autoaffinité, l'autoaffinité ayant le 
même sens que celui décrit précédemment pour la marche 
aléatoire (Mandelbrot, 1965, 1985; Mandelbrot et Van Ness, 
1968). 

De plus, la séquence des valeurs de z„ qui représentent 
les différences entre les valeurs successives de BH(t) pour le 
mouvement brownien fractionnaire 

Z1= B„(t+1) - BH(t) (3) 

où t est un entier, est appelée bruit gaussien fractionnaire 
(fGn). À l'opposé de la marche aléatoire, les valeurs succes­
sives de z, pour le mouvement brownien fractionnaire ne sont 
pas indépendantes les unes des autres et l'autocorrélation à 
une distance h nous est donnée par 

P (h) = 0.5[(h + 1)2H - 2h2H + (h-1)2M] (4) 

(pour h2*1 et 0 < H < 1; Mandelbrot et Wallis 1969b). 
Différentes séries de fGn possédant les propriétés statis­
tiques définies par les équations 3 et 4 sont illustrées à la 
figure 6. À partir de l'équation (4), on remarque que pour 
H>0,5, un processus fGn a une autocorrélation positive, 
indiquant une persistance des valeurs positives ou négatives 
de z,. Pour H<0,5, l'autocorrélation est négative, indiquant 
que des valeurs positives et négatives de z, tendent à alter­
ner. Lorsque H=0,5, l'autocorrélation est nulle (tel que défini 
précédemment pour le mouvement brownien) et il s'agit d'un 
bruit blanc. En résumé, le mouvement brownien standard est 
caractérisé par une valeur de H égale à 0,5 ce qui implique 
une séquence de valeurs successives de B„(t+I) - BH(t) 
aléatoires et indépendantes. À l'opposé, le mouvement brow­
nien fractionnaire (fBm) est caractérisé par un exposant H 
variant entre 0 et 1 ; les différences entre les valeurs succes­
sives des séries correspondant au mouvement brownien 
fractionnaire sont autocorrélées et cette corrélation dépend 
de la distance h séparant les observations et du paramètre H 
(équation 4). 
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FIGURE 6. Simulations de différents processus fGn et dimensions 
qui leur sont associées (valeurs centrées-réduites; d'après Robert, 
1988a). 

Simulations of different fGn processes and associated fractal dimen­
sions (zero mean and unit variance to facilitate comparisons; after 
Robert, 1988a). 

Orey (1970) a montré que Ia dimension fractionnaire des 
séries fractales est égale à 2-H. En supposant que l'on traite 
de surfaces fractales autoaffines et isotropiques, le semi-
variogramme représente donc un moyen simple d'estimer la 
dimension fractionnaire d'une série spatiale empirique Z(x.) 
puisque 

2 y (h) = CH h2H (5) 

et que 

N-h 

2 7 (h) - 1/(N-h) S [Z(X1+ h) - Z(X1)]
2 (6) 

i = 1 

(où N-h représente le nombre de paires d'observations sépa­
rées par la distance h). La fonction 7(h) est appelée semi-
variogramme et sa valeur estimée (7 (h)) procure l'informa­
tion de base nécessaire à la description et l'explication de la 
variation spatiale d'un phénomène naturel (Oliver et Webster, 

/ 
/ 

/ 
/ 

log h 

FIGURE 7. Illustration schématique des semi-variogrammes 
associés à différents processus fractals (voir Burrough, 1983a). 

Schematic illustration of semi-variograms corresponding to fractal 
processes of different dimensions (see Burrough, 1983a). 

1986; McBratney et Webster, 1986). Par conséquent, la 
semi-variance à divers pas d'échantillonnage h est estimée 
à partir de l'équation (6) et le paramètre H (et D puisque 
D = 2 - H) est ensuite estimé selon l'équation (5) (à partir 
d'une régression linéaire entre log 7 (h) et log h). Des semi-
variogrammes correspondant à des processus fractals de 
dimensions variées sont illustrés à la figure 7. Les processus 
caractérisés par une forte valeur de D présentent donc un 
faible taux d'augmentation de la semi-variance avec la dis­
tance (fig. 7) et les fréquences élevées dominent les fluctua­
tions. À l'opposé, les processus caractérisés par une faible 
valeur de D présentent un semi-variogramme avec une forte 
pente, où les fréquences d'oscillations plus faibles dominent 
la série. 

Les deux méthodes décrites en détail ci-dessus (c'est-à-
dire le diagramme de Richardson et le semi-variogramme) 
constituent sans aucun doute les méthodes les plus 
employées pour estimer la dimension fractale d'un phéno­
mène naturel. Il en existe toutefois d'autres décrites par 
Burrough (1984) (par méthodes d'estimation basées sur la 
relation périmètre-superficie, le spectrum de puissance et 
l'entropie) et utilisées, notamment, par Lovejoy (1982), 
Lovejoy et Mandelbrot (1985), Culling (1987), Brown et 
Scholz (1985) ainsi que Fox (1989). Un des problèmes 
méthodologiques susceptibles de se poser est la variabilité 
des résultats obtenus lorsque la dimension fractionnaire d'un 
phénomène est estimée selon différentes méthodes (voir 
Bradbury et Reicheit (1983) et Bradbury et al. (1984)). Les 
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comparaisons d'un certain nombre de méthodes présentées 
par Roy et al. (1987), ainsi que celles de Culling et Datko 
(1987) laissent croire qu'il n'y a pas de variation systématique 
de la dimension fractionnaire estimée en fonction de la 
méthode utilisée. À titre d'exemple, les résultats présentés au 
tableau I sur l'application de différentes méthodes à un 
modèle numérique d'altitudes (MNA) pour la région fronta­
lière entre le Québec et le New Hampshire montrent que les 
mesures individuelles peuvent varier considérablement, mais 
que les dimensions moyennes estimées selon les diverses 
méthodes ne diffèrent pas de façon significative. Toutefois, 
l'étude récente et détaillée de Klinkenberg et Goodchild 
(1992) laisse croire que la méthode de Richardson 
(équation 1) sous-estime les dimensions fractionnaires des 
surfaces topographiques et n'est pas suffisamment robuste 
pour permettre de distinguer clairement des surfaces possé­
dant des degrés d'irrégularité variés. 

VARIABILITÉ DES PHÉNOMÈNES NATURELS 

Les processus browniens fractionnaires ont été originelle­
ment élaborés comme modèle statistique du phénomène de 
Hurst (Hurst, 1951) que l'on observe dans les séries météo­
rologiques et hydrologiques (Mandelbrot, 1965; Mandelbrot 
et Wallis, 1968, 1969a, b). L'effet de Hurst consiste en une 
forme de persistance, c'est-à-dire une autocorrélation posi­
tive qui se manifeste parfois au-delà de la longueur des séries 
disponibles. L'application des modèles browniens fraction­
naires aux séries temporelles hydrologiques a aussi été dis­
cutée de façon détaillée par Klemes (1974), McLeod et Hipel 
(1978) et Kirkby (1987). Un comportement statistique corres­
pondant au modèle fractal est parfois défini comme étant un 
phénomène de Hurst (e.g. Culling, 1986b). 

Il existe de nombreux domaines des sciences naturelles 
pertinents à la géographie physique et pour lesquels les frac-
taies sont d'un intérêt certain. Parmi ceux-ci, les propriétés 
fractales et la structure de la variabilité spatiale des phéno­
mènes pédologiques ont particulièrement attiré l'attention 
(Burrough, 1983a, b, c; Armstrong, 1986; Culling, 1986a). 
Dans une étude détaillée et innovatrice, Burrough (1983a, b) 
a tiré des conclusions importantes sur la structure d'autocor­
rélation spatiale des propriétés pédologiques et sur l'utilité 
des fonctions fractales pour modéliser la variation spatiale de 
ces propriétés. Il y est clairement démontré que les données 
pédologiques sont fractales, en ce sens qu'un changement 
de l'échelle d'observation {Le, pour un pas d'échantillonnage 
plus petit) introduit une variabilité ou une complexité addition­
nelle. Culling (1986a) a particulièrement insisté sur la struc­
ture fractale de la variation fine ou détaillée du pH. La dimen­
sion de Hausdorff a également été présentée par Burrough 
comme une mesure de l'importance relative des variations 
pédologiques de courtes et de longues étendues. À ce pro­
pos, tous les résultats des études mentionnées précédem­
ment dans le domaine pédologique montrent que les varia­
tions de courtes étendues sont dominantes (D étant 
généralement supérieur à 1,5), et les différences positives et 
négatives entre les observations successives tendent à alter­
ner (Culling, 1986a). Il y a antipersistance du comportement 
de la variable mesurée. 

TABLEAU I 

Dimensions fractionnaires estimées selon différentes méthodes pour 
le modèle numérique d'altitudes (MNA) de la région de Moose Bog, 

New Hampshire (d'après Gravel, 1988 et Roy et al., 7987;. 

Variogramme de surface 

Variogrammes-profils E-O 
n = 9 

Variogrammes-profils N-S 
n = 7 

Courbes de niveau (extraites) 
n = 47 

Courbes de niveau numérisées 
(à partir du feuillet 1 /24 000; N = 13) 

D 

2,16 

1,13 

1,17 

1,09 

1,17 

Dmln 

— 

1,06 

1,09 

1,01 

1,06 

Dm„ 

— 

1,19 

1,28 

1,28 

1,33 

n est le nombre de profils ou courbes de niveau utilisés 

Malgré ces résultats, il existe toutefois des différences fon­
damentales entre le modèle fractal type et la variabilité spa­
tiale des données pédologiques. Alors que le modèle fractal 
indique une augmentation de la semi-variance avec une aug­
mentation de la distance entre les points d'échantillonnage 
(voir fig. 7), les données pédologiques sont souvent caracté­
risées par des semi-variogrammes où une valeur maximale 
de y (h) est observée à une certaine distance h. De plus, le 
semi-variogramme des données pédologiques présente 
généralement des zones assez restreintes et distinctes où le 
modèle fractal peut s'appliquer. Ces bandes fractales sont 
parfois séparées par des zones de transition plus ou moins 
marquées. Il s'agit en fait d'imbrication de différents niveaux 
de variation représentant des processus pédologiques super­
posés et indépendants, chacun de ces processus agissant à 
des échelles caractéristiques (Burrough, 1987). Ces proprié­
tés fréquemment rencontrées en milieu naturel (ainsi que la 
forme générale du semi-variogramme correspondant) sont 
illustrées à la figure 8. La valeur de c (fig. 8) représente la 
semi-variance maximale observée (ce qui est également la 
variance de la série) et hm„ constitue l'étendue du semi-
variogramme, c'est-à-dire la distance maximale à laquelle le 
modèle fractal s'applique. Un exemple tiré de la littérature est 
également présenté à la figure 9. Cet exemple provient d'une 
étude détaillée de la microtopographie du lit des cours d'eau 
à fond de graviers. Dans cet exemple, la semi-variance maxi­
male observée est de l'ordre de 8 cm2 et l'étendue du proces­
sus (h™*), soit la distance maximale à laquelle le modèle frac­
tal s'applique est approximativement 75 cm (Robert, 1988b). 
Cet exemple sur la rugosité de surface dans les cours d'eau 
naturels sera également repris en détail dans la prochaine 
section. L'imbrication de différents niveaux de variation et la 
présence de bandes fractales étroites semblent être davan­
tage la norme que l'exception en modélisation fractale des 
phénomènes naturels (voir Orford et Whailey, 1983; Mark et 
Aronson, 1984; Culling et Datko, 1987; Robert, 1988b). 

Les fortes valeurs de dimension fractionnaire généra­
lement observées pour les données pédologiques ont 
des conséquences pratiques, surtout en ce qui concerne 
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FIGURE 8. Représentation schématique du semi-variogramme 
caractéristique associé à divers phénomènes naturels. 

Schematic illustration of characteristic semi-variograms correspond­
ing to various natural phenomena. 

l'échantillonnage. Des valeurs élevées de dimension fraction­
naire impliquent une grande variabilité spatiale ainsi qu'un 
degré de complexité constant, malgré une diminution du 
degré de résolution. Par conséquent, la mesure sur le terrain 
de variables à des échelles préalablement déterminées, l'uti­
lisation de valeurs moyennes et l'emploi de différentes tech­
niques d'interpolation doivent être remises en question par 
suite de l'analyse fractale des données pédologiques. De fait, 
dans une surface extrêmement complexe (D de l'ordre de 
2,9), l'interpolation devient virtuellement impossible tant elle 
est désorganisée et antipersistante. Pour Culling (1986a, 
1988b), le modèle fractal propose une vision alternative du 
monde réel, vision fondée sur une conception plus fine de la 
réalité et sur la notion d'irrégularité. Culling (1986a) avance 
également la notion selon laquelle la plupart des processus 
en géomorphologie prennent place à l'intérieur de bandes 
fractales étroites et de dimension fractionnaire généralement 
élevée. 

L'analyse fractale de la variabilité des phénomènes natu­
rels s'étend également aux propriétés géométriques des 
réseaux hydrographiques et aux phénomènes de turbulence. 
L'analyse fractale des réseaux de drainage a connu récem­
ment un essor considérable (Gupta et Waymire, 1989; La 
Barbera et Rosso, 1989; Tarboton et al., 1989; Thornes, 
1990; Rosso ef al., 1991; Stark, 1991; Montgomery et 
Dietrich, 1992). Par exemple, La Barbera et Rosso (1989) 
montrent que les propriétés géométriques des réseaux de 
drainage des bassins-versants sont adéquatement représen­
tées par le modèle fractal dont la dimension varie entre 1,5 
et 2 (valeur moyenne de 1,7). Ces dimensions fractionnaires 
sont déterminées à partir des rapports de bifurcation (Le. rap­
port du nombre de segments d'un certain ordre divisé par le 
nombre de segments de l'ordre supérieur) et du rapport des 
longueurs des segments d'ordres successifs. Ces propriétés 
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FIGURE 9. Exemple d'un semi-variogramme caractéristique de la 
rugosité de surface dans les rivières à lits graveleux (d'après Robert, 
1988b). 

Example of the characteristic semi-variogram used to model the sur­
face roughness properties in gravel-bed rivers (after Robert, 1988b). 

renvoient directement aux travaux antérieurs de Horion 
(1945) et Strahler (1957) sur les lois de la composition des 
réseaux hydrographiques. Un autre aspect relié à la structure 
fractale des bassins hydrographiques concerne la longueur 
estimée des cours d'eau et l'interprétation fractale de la rela­
tion entre la longueur du cours d'eau principal (L) et la super­
ficie de drainage (A) (Mesa et Gupta, 1987; Hjelfelt, 1988; La 
Barbera et Rosso, 1989; Robert et Roy, 1990). Il existe pré­
sentement deux interprétations possibles de l'exposant dans 
la relation de Hack (1957) où 

L a Ab (7) 

Plus précisément, l'interprétation allométrique de la relation 
{i.e., changement de forme avec l'augmentation de la taille; 
Church et Mark, 1980) est remise en question. Mandelbrot 
(1982) avance que les longueurs des cours d'eau sont carac­
térisées par une dimension fractionnaire puisque la longueur 
estimée est fonction de l'échelle d'observation (voir fig. 5). 
Plus précisément, il montre que la valeur de b = 0,6 
(équation 7) obtenue par Hack (1957) résulte du fait que la 
dimension fractionnaire des cours d'eau principaux est égale 
à 1,2 et que l'exposant b de la relation entre la longueur des 
cours d'eau principaux et la superficie de drainage est égal 
à D/2. Les travaux de Robert et Roy (1990) montrent toutefois 
que l'interprétation de la valeur de b varie en fonction de 
l'échelle de la carte utilisée et que l'interprétation fractale de 
b (équation 7) est valable, tout au moins à certaines échelles. 

Finalement, un autre domaine particulièrement négligé en 
géographie physique a trait à la modélisation fractale de la 
turbulence. Par suite des travaux originaux de Mandelbrot 
(1974, 1975c) sur les phénomènes de turbulence, la modé­
lisation fractale de ces phénomènes a suscité relativement 
peu d'intérêt jusqu'aux travaux récents de Sreenivasan 
(1986,1991 ), Sreenivasan et Meneveau (1986), Sreenivasan 
ef al. (1989) et Ait-Kheddache et Rajala (1987). Un exemple 
de leurs travaux est illustré à la figure 10 où un « jet » est intro­
duit dans une écoulement turbulent. Le contour de ce jet est 
irrégulier et se caractérise par une dimension fractionnaire de 
1,36 (celle-ci étant obtenue par la méthode de la grille et du 
diagramme présenté au bas de la fig. 10). Une des princi­
pales conclusions de ces travaux est que plusieurs aspects 
des écoulements turbulents, caractérisés par une superposi-
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tion de mouvements à différentes longueurs d'ondes, ont un 
comportement fractal et que leurs dimensions fractionnaires 
peuvent être mesurées. Sreenivasan et Meneveau (1986) 
mentionnent également que la turbulence représente peut-
être une collection d'un certain nombre d'entités fractales et 
que cette notion peut être conciliée avec la vision moderne 
de la turbulence comme un ensemble de mouvements semi-
organisés (Sreenivasan et Meneveau, 1986, p. 382). 
L'autosimilarité possible de certaines structures turbulentes 
et la signature statistique (et possiblement fractale) des fluc­
tuations de vélocité dans le champ tridimensionnel pourraient 
certainement se révéler des aspects à explorer davantage. 
L'interprétation des processus à partir de la signature fractale 
et de la valeur de D estimée n'est toutefois pas évidente 
puisque la signature fractale ne traduit pas nécessairement 
un processus particulier. Ce point sera abordé plus en détail 
en discussion. 

ANALYSE DES SURFACES TOPOGRAPHIQUES 

En géographie physique, l'utilisation la plus intensive de la 
théorie des fractales consiste en l'analyse des surfaces topo­
graphiques, de la micro-échelle (sur quelques centimètres; 
voir Armstrong, 1986; Whalley et Orford, 1989) à l'échelle de 
la planète (Mandelbrot, 1982). Ces études procurent une 

FIGURE 10. Contour d'un «jet» dans un écoulement turbulent et 
diagramme de Richardson correspondant (d'après Sreenivasan, 
1991). 

Contour of a jet in a turbulent flow and corresponding Richardson's 
plot (after Sreenivasan, 1991). 

vision détaillée et relativement nouvelle des surfaces topo­
graphiques, tant du point de vue de la modélisation descrip­
tive (Pentland, 1984) que de l'intégration théorique des pro­
cessus ou mécanismes d'évolution des paysages. 

Des propriétés d'ensemble du paysage (en termes de 
signature statistique et d'autocorrélation des différences d'al­
titudes ou pentes locales) se dégagent très bien des nom­
breuses études des surfaces topographiques. En premier 
lieu, les études détaillées de Mark et Aronson (1984), Culling 
et Datko (1987), Roy et al. (1987), et Culling (1988a) 
montrent que les surfaces topographiques se caractérisent 
par deux bandes fractales. Pour des distances relativement 
faibles (intervalle d'échantillonnage généralement de l'ordre 
de 50 m; voir Culling, 1988a), les valeurs de D généralement 
obtenues varient entre 2,1 et 2,3. Ces valeurs sont considé­
rées comme étant les plus représentatives des surfaces natu­
relles et elles correspondent probablement à la texture de la 
surface des versants. À des échelles spatiales plus grandes, 
on rapporte souvent un changement marqué de la pente du 
semi-variogramme ou du diagramme de Richardson 
(équations 5 et 1), ce qui entraîne une augmentation signifi­
cative de la dimension de Hausdorff (D variant entre 2,4 et 
2,6; voir fig. 8 pour les propriétés caractéristiques du semi-
variogramme des surfaces topographiques). Les sites du sud 
de l'Angleterre analysés par Culling et Datko (1987) et Culling 
(1988a) sont interprétés par les auteurs comme étant des 
surfaces browniennes fractionnaires où un mécanisme 
d'évolution des paysages de type davisien est dominant le 
long des versants. Ces surfaces fractales sont également 
superposées sur une seconde structure fractale du paysage, 
de dimension plus élevée et qui est associée au réseau de 
drainage. 

Un deuxième point fondamental a également été relevé 
par Goodchild (1982) et Roy et al. (1987). Il s'agit en fait de 
la variation de la complexité des surfaces selon l'altitude 
(variation systématique de la dimension fractale avec l'alti­
tude). Roy et al. (1987) et Gravel (1988) ont fait ressortir les 
liens entre la complexité (ou l'irrégularité) des surfaces, l'al­
titude et la nature des sédiments (tabl. II). En effet, ils ont noté 
que la portion du modèle numérique d'altitudes où les dépôts 
glaciaires sont dominants (fond de vallée) présente une 
dimension fractionnaire supérieure aux fenêtres correspon­
dant à un sommet et à une surface d'érosion fluviale, tout au 
moins en ce qui a trait au variogramme de surface et aux pro­
fils E-O. La modélisation fractale s'avère ainsi un instrument 
efficace et précis pour décrire et comparer les propriétés 
d'ensemble de différentes surfaces topographiques (Elliot, 
1989) et une étude plus approfondie devrait être entreprise 
sur les signatures fractales de terrains caractéristiques (tels 
que les paysages fluvial, morainique, éolien, structural). 

Plusieurs études ont également été effectuées à micro­
échelle, soit à des échelles spatiales inférieures au mètre 
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(voir Brown et Scholz, 1985; Armstrong, 1986; Robert, 
1988a, 1988b, 1991). Ces études (tabl. Ill) ont permis de 
démontrer clairement qu'à micro-échelle, les surfaces topo­
graphiques sont très irrégulières et caractérisées par des 
valeurs de D allant de 2,5 à 2,9 (Armstrong, 1986; Robert, 
1988a, b; Elliot, 1989). La seule exception semble être l'étude 
de Andrle et Abrahams (1989). Ils rapportent des valeurs très 
faibles (de l'ordre de 2,10 pour des surfaces ou 1,10 pour des 
profils longitudinaux ou transects). Andrle et Abrahams 
(1989) ont toutefois utilisé le diagramme de Richardson pour 
estimer la dimension fractale de séries unidimensionnelles 
d'altitudes d'une surface topographique. Cette méthode 
(équation 1) est généralement employée pour estimer la 
dimension de Hausdorff de courbes fermées dans un plan 
(telle une courbe de niveau), alors que les fonctions fractales 
stochastiques et le semi-variogramme sont utilisés pour esti­
mer la dimension de Hausdorff des séries de points où la 

TABLEAU II 

Dimensions fractionnaires moyennes estimées selon différentes 
méthodes pour les trois sous-surfaces extraites du MNA complet 
(région de Moose Bog, New Hampshire; d'après Gravel (1988) 

et Roy et al, 1987). 

Variogramme de surface 

Variogramme-profils E-O 

Variogramme-profils N-S 

Courbes de niveau 
extraites 

Sommet 

2,10 

1,10 
(n=8) 
1,13 
(8) 

1,08 
(13) 

Fluviale 

2,13 

1,11 
(8) 

1,17 
(8) 

1.07 

(9) 

Glaciaire 

2,21 

1,28 
(8) 

1,15 
(8) 

1,10 
(21) 

Les nombres entre parenthèses indiquent le nombre de mesures uti­
lisées pour déterminer la moyenne 

variabilité n'existe que dans une dimension (Burrough, 1984; 
Culling, 1986a). Les implications méthodologiques à ce 
niveau ne sont pas claires, mais les travaux de Mandelbrot 
(1975b) et Culling et Datko (1987) laissent croire que la 
méthode employée par Andrle et Abrahams (1989) est inap­
propriée (Roy et Robert, 1990). Une étude détaillée de ce 
type de problème méthodologique et de l'équivalence des dif­
férents algorithmes disponibles pour estimer D devrait 
également être entreprise. Dans un continuum topogra­
phique, les résultats obtenus montrent que la dimension frac­
tale des surfaces varie systématiquement avec l'échelle. 
D'une façon générale, on prévoit qu'elle soit très élevée à 
micro-échelle (D > 2,6), faible à l'échelle des versants 
(D — 2,1) et plus élevée à l'échelle de la structure hydrogra­
phique (D ̂  2,6 - 2,7). L'imbrication et la transition entre ces 
dimensions sont encore mal connues et doivent faire l'objet 
d'une étude particulière en fonction des types de paysages 
(Roy et Robert, 1990). 

En plus de l'irrégularité prononcée de la micro­
topographie (en raison des valeurs de D élevées générale­
ment observées), les études récentes ont mis en valeur deux 
types d'application des fractales en sciences de la Terre. 
Elliot (1989), par exemple, a considéré la dimension fractale 
comme indice de rugosité des surfaces permettant de déter­
miner l'âge relatif des surfaces d'érosion glaciaires, en 
Norvège. Les propriétés mathématiques de la dimension de 
Hausdorff en font, selon Culling (1986a), l'indice de rugosité 
des surfaces le plus informatif. Ces propriétés descriptives de 
l'indice D ont également permis à Robert (1988b, 1991) de 
caractériser deux échelles de rugosité associées aux lits de 
graviers des cours d'eau alluviaux : la rugosité à l'échelle du 
grain et une seconde, plus irrégulière, correspondant aux 
petites structures sédimentaires. Dans l'exemple présenté 
précédemment à la figure 9, ces deux échelles corres­
pondent respectivement à des distances inférieures à 15 cm 
d'une part, et comprises entre 15 et 75 cm d'autre part. Ces 

TABLEAU III 

Analyse fractale et microtopographie des différents types de surfaces naturelles 

Auteur 
Échelle 
spatiale 

(mm) 

Étendue des 
dimensions 

Méthode d'estimation Milieu 

Robert (1988a, b) 

Brown et Scholz 

Armstrong (1986) 

Elliot (1989) 

Gravel (1988) 

Andrle et Abrahams (1989) 

5-125 
70-700 

1-10 
10-100 

20-100 
(approximatif) 

1-250 
100-900 

100-400 

100-550 

75-1000 

1,52-1,72 
1,70-1,91 

1,19-1,52 
1,18-1,68 

1,53-1,91 

1,60-1,86 
1,27-1,64 

1,25-1.96 
1,47-1,89 
1,58-1,89 
1,16-1,22 

1,06-1,20 

Variogramme-profils 

Analyse spectrale 

Variogramme-profils 

Variogramme-profils 

Variogramme-profils 

Diagramme de Richardson 

Lit de rivières 

Surface de roche 

Surface de sol 

Till 

Terre agricole 

Talus-éboulis 

^ ^ v i r a n h i â n/iij A7H\ 1QQT 



LA MODÉLISATION FRACTALE 13 

deux échelles de rugosité sont caractérisées par des dimen­
sions fractionnaires supérieures à 1,5 (telles qu'estimées 
selon l'équation 5) et sont imbriquées dans un profil longitu­
dinal. La rugosité de la surface dans les lits de graviers est 
hautement irrégulière et difficile à caractériser étant donné la 
variabilité dans la taille, la forme et l'orientation des cailloux. 
Cette modélisation descriptive de la configuration du lit per­
met également d'inférer certaines propriétés significatives de 
la rugosité hydraulique et du transport des sédiments. En 
effet, il apparaît raisonnable de penser que chacune des 
échelles de rugosité du lit, telles qu'identifiées par le modèle 
fractal, est également associée à un type particulier de résis­
tance et de contrainte de cisaillement sur le lit (Robert, 1988a, 
b). La rugosité introduite par les structures sédimentaires à 
petite échelle augmente la résistance à l'écoulement et la 
force de cisaillement totale, alors qu'une partie seulement de 
cette force serait disponible pour le transport des cailloux sur 
le fond du lit. Ces exemples illustrent bien le potentiel des 
fonctions fractales pour modéliser la micro-topographie ainsi 
que l'utilisation adéquate et puissante de D comme indice de 
rugosité. Cet indice permet ainsi la distinction et la comparai­
son précise entre les échelles de rugosité et les différents 
types de surfaces topographiques. 

FRACTALES, SYSTÈMES DYNAMIQUES 
ET CHAOS 

Les fractales sont intimement liées aux découvertes 
récentes sur le comportement des systèmes dynamiques, 
c'est-à-dire des systèmes qui évoluent dans le temps. Un des 
objectifs des sciences naturelles est de prévoir l'état futur 
d'un système à partir de la connaissance de son état initial 
et d'équations déterministes qui régissent son comportement 
dans le temps. Le fait que des équations déterministes soient 
utilisées porte à croire que l'on peut à coup sûr donner l'état 
du système pour n'importe quel temps à venir. Cependant, 
certains systèmes comme la circulation de l'atmosphère ou 
l'écoulement d'un fluide turbulent sont irréductibles à une 
telle approche, en ce sens qu'ils demeurent imprévisibles à 
plus ou moins long terme. Il est aujourd'hui reconnu que 
même des systèmes déterministes simples sont aussi sujet 
à des comportements imprévisibles, voire erratiques. 

Prenons un exemple simple qui a été traité par Lorentz 
(1964) et May (1976), soit l'équation quadratique ou logis­
tique que l'on retrouve en biologie des populations. Cette 
équation prévoit la population (X) au temps (t + 1) à partir de 
la connaissance de la population au temps t et d'un para­
mètre r. L'équation s'écrit comme suit 

X„ , - r X, (1 - X.) (8) 

ou 

0 < r < co (9) 

et 

O ^ X s M . (10) 

Donc, connaissant X0 soit l'état initial du système et fixant le 
paramètre r, on peut trouver par itération la valeur de X pour 
n'importe quel temps futur. Le tableau IV présente des 
séquences temporelles de X pour différentes conditions intia-

les et pour un r de 2. De telles séquences temporelles sont 
appelées orbite. Dans tous les cas la valeur de X se stabilise 
et atteint un point fixe (0,500). Ce point de convergence, 
aussi nommé attracteur est constant quelle que soit la valeur 
initiale du système, donc le système converge vers un état 
unique et il est stationnaire. On peut représenter le compor­
tement du système ou son orbite en utilisant une approche 
graphique telle qu'illustrée à la figure 11. Dans ce graphe, la 
courbe correspond à la fonction quadratique et la droite, à la 
ligne où les valeurs de X1 et X,., sont égales. Pour décrire la 
trajectoire suivie d'une itération à l'autre il s'agit de partir avec 
un X0 sur l'axe X1 et de projeter verticalement cette valeur sur 
la courbe. La rencontre entre la verticale et la courbe donne 

TABLEAU IV 

Orbites de l'équation quadratique pour r = 2,0 et différentes valeurs 
initiales de X 

Itération Valeurs de X 

0 

1 

2 

3 

4 

5 

6 

7 

0,100 

0,180 

0,295 

0,416 

0,486 

0,500 

0,500 

0,500 

0,200 

0,320 

0,435 

0,492 

0,500 

0,500 

0,500 

0,500 

0,400 

0,480 

0,499 

0,500 

0,500 

0,500 

0,500 

0,500 

0,500 

0,500 

0,500 

0,500 

0,500 

0,500 

0,500 

0,500 

0.0 0,2 0,4 0,6 0,8 1.0 
Xt 

FIGURE 11. Illustration de la méthode graphique appliquée à 
l'équation quadratique. La courbe représente X1., = 2 X,(1 - X1) et la 
valeur initiale est X0 = 0,1. 

Illustration of the graphie method for the quadratic equation. In this 
case, the curve represents X,., = 2X1(I-X1) and the initial value is 
X0 = 0.1. 
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la nouvelle valeur après la première itération. Pour obtenir la 
seconde itération, il s'agit de retourner cette nouvelle valeur 
dans l'équation, ce qui revient à la projeter sur la droite pour 
ensuite la retourner vers la courbe et ainsi de suite pour les 
prochaines itérations. À la figure 11, on remarque que la tra­
jectoire converge vers un point fixe. Dans cet exemple, on 
peut sans erreur prévoir l'état stationnaire du système à long 
terme. Lorsque X0 est égal à 0 ou 1, la solution est 0, alors 
que pour les autres valeurs initiales la solution est donnée par 
1 - 1 /r. Ceci est valable pour 1 < r < 3. Qu'arrive-t-il lorsque 
r augmente? La figure 12 montre les séquences temporelles 
de systèmes avec différentes valeurs de r et une même 
valeur initiale ( X 0 = 0,40). À première vue,, on constate 
immédiatement une variabilité croissante dans le comporte­
ment du système en fonction de r. Aussi, le nombre de points 
fixes augmente et le système tend à osciller périodiquement 
entre les points fixes. Pour r = 4,0, on observe un com­

portement irrégulier. L'effet de r comme paramètre de con­
trôle a largement été étudié et on connaît les bornes où le 
système change de comportement (pour une revue, voir 
Goodings, 1991b). De fait, à partir de r = 3,0, le nombre de 
points fixes passent à deux; à r = 3,45, il double et passe à 
quatre. Le nombre double ensuite rapidement avec de petits 
changements dans la valeur de r et on observe un compor­
tement irrégulier à partir de r = 3,57. De plus, si on utilise des 
valeurs initales très rapprochées pour une valeur élevée de 
r comme par exemple r = 4,0, on note que les orbites diver­
gent à partir d'un certain nombre d'itérations (fig. 13). Cette 
dépendance sensitive aux conditions initiales du système est 
la propriété fondamentale d'un comportement que l'on quali­
fie de chaotique (voir Ruelle, 1991). Techniquement, si la 
divergence est exponentielle avec le temps, le taux auquel la 
divergence s'effectue permet de quantifier le chaos dans une 
série. Ainsi, lorsqu'il devient impossible de prévoir le compor-

1.04 

T r 
10 20 

I t e r a t i o n 
i r 

I t e r a t i o n 

I t e r a t i o n 

FIGURE 12. Orbites de l'équation quadratique X,„ = r X1(I -X 1 ) 
pour une valeur initiale de X0 = 0.4 et différentes valeurs de r. A. r 
= 2,0; B. r = 3,4; C. r = 3,50; D. r - 3,58; E. r = 4.0. 

Orbits for the quadratic equation X1., = rX,(1 - X1) for an initial value 
eX0 = 0.4 and different r values. A. r = 2.0; B. r = 3.4; Cr = 3.50; 
D. r = 3.58; E. r = 4.0. 
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LA MODELISATION FRACTALE 15 

tement à long terme du système ou l'effet de changements 
extrêmement faibles dans les valeurs initiales, on entre dans 
le chaos déterministe. 

Quelle est l'importance des résultats obtenus à partir de 
l'équation quadratique et que peut-on en tirer en ce qui con­
cerne les systèmes naturels? D'abor, il faut dire qu'est née 

1.0H 

0.8-

0,6-

T 
10 20 

I t é r a t i o n 

Xo = 0 , 4 0 0 0 0 2 

Xo = 0 , 4 0 0 0 0 1 

30 

1,OH 

0.5-

GO 

<*> 

Q) 
i _ 
-̂  
C 
Q) 

Q) 
O 
C 
Q) 
i_ 

^Q) 

0,0-

0,5-

Q 

-1.0 ~i r 
10 t 20 

I t é r a t i o n 

30 

FIGURE 13. Orbites de l'équation quadratique X1., = 4 X 1 ( I -X 1 ) 
pour deux valeurs de X0 très rapprochées. 

Orbits for the quadratic equation X1., = 4 X,(1 -X1) for two closed 
values of X0. 

de l'équation quadratique une famille extrêmement riche de 
fonctions qui ont permis d'élaborer des ensembles fascinants 
(pour une revue, voir Peitgen et Saupe, 1988) qui produisent 
des images d'une complexité encore jamais soupçonnée. 
Mais au-delà de cette fascination qu'en est-il? Malgré sa sim­
plicité, l'équation quadratique est une illustration éloquente 
du chaos déterministe. Elle permet, justement par sa simpli­
cité, une exploration relativement facile de la transition vers 
le chaos ou la turbulence dans un système et de comprendre 
ainsi ce qui peut se manifester dans un système régi par une 
équation déterministe. La cascade du doublement du nombre 
de points fixes est une route vers le chaos que l'on retrouve 
dans d'autres systèmes (Goodings, 1991b). De plus, tous les 
systèmes déterministes décrits par des équations non 
linéaires sont sujets à un comportement chaotique. L'étude 
de l'équation quadratique permet de comprendre intuitive­
ment ce qui se passe dans des systèmes complexes comme 
les fluides en mouvement. Ainsi, la transition vers le chaos 
peut s'appliquer au mouvement d'un fluide passant de lami­
naire à turbulent. La turbulence est vue comme un compor­
tement chaotique issu des équations non linéaires qui la gou­
vernent (Ruelle et Takens, 1971 ; Tritton, 1989; Ruelle, 1991 ). 

Les fractales interviennent dans l'étude des systèmes 
dynamiques pour décrire leur comportement. Étant un outil 
qui permet de saisir mathématiquement la complexité des 
trajectoires, les fractales sont tout indiquées pour distinguer 
quantitativement les orbites ou l'évolution dans le temps des 
systèmes. Les itérations successives des systèmes chao­
tiques peuvent se traduire par des propriétés fractales. Dans 
un système chaotique, la trajectoire peut tendre vers un ou 
plusieurs attracteurs que l'on qualifie d'étranges (Lorentz, 
1963; Grassberger et Procaccia, 1983). L'analyse de ces 
attracteurs est possible par les fractales. 

En quoi ces découvertes sont-elles importantes pour les 
sciences de la Terre? Plusieurs auteurs ont déjà signalé des 
avenues nouvelles qui découlent du chaos déterministe et de 
l'étude des systèmes dynamiques (Culling, 1987b; Huggett, 
1988; Malanson étal., 1990; Middleton, 1990, 1991). Dans 
les domaines du climat (Nicolis et Nicolis, 1984, 1987; 
Lorentz, 1984; Grassberger, 1986) ou de la dynamique de la 
croûte et du manteau de la Terre (Kellog et Turcotte, 1990; 
Turcotte, 1989), des progrès importants sont imputables à 
l'avènement de la théorie du chaos. Le climat est reconnu 
pour son irrégularité et son imprévisibilité et a d'ailleurs figuré 
de façon importante dans les découvertes sur le chaos 
(Lorentz, 1963). En géomorphologie, par contre, les applica­
tions s'avèrent plus difficiles. Ceci s'explique en partie par 
l'absence d'un corpus théorique soutenu et essentiellement 
mathématique des systèmes géomorphologiques. Cette 
lacune rend impossible l'exploration des équations qui 
décrivent les systèmes géomorphologiques puisque la des­
cription quantitative des systèmes semble un prérequis à 
l'étude dynamique. Puisque les applications proprement géo­
morphologiques se font encore peu nombreuses, une bonne 
partie de ce qui est paru sur le sujet tente de montrer le poten­
tiel de ce champ d'étude tout en dégageant les répercussions 
conceptuelles importantes qu'occasionnent ces découvertes. 
On reconnaît que la dépendance sensitive du comportement 
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d'un système aux conditions initiales est cruciale. En géomor­
phologie, le concept d'équifinalité domine depuis que la théo­
rie générale des systèmes soutient l'élaboration des con­
cepts dynamiques (Chorley, 1962). L'équifinalité signifie que 
les conditions initiales n'affectent pas l'état final du système. 
Eu égard à ce que nous savons des systèmes dynamiques, 
cette vision est très limitante et ne correspond qu'à une por­
tion (probablement la moins intéressante) des comporte­
ments possibles (Culling, 1987b) ou à des systèmes 
linéaires. Il serait avantageux de remplacer le concept d'équi­
finalité par une caractérisation des systèmes utilisant leur sta­
bilité potentielle. La dépendance sensitive aux conditions ini­
tiales signifie aussi que même une légère imprécision dans 
la détermination de l'état initial du système peut entraîner une 
différence importante dans la prévision à long terme de son 
comportement. 

Puisque les mécanismes de transport en géomorphologie 
sont régis par des équations de mouvement non linéaires, 
l'étude des processus devrait bénéficier des connaissances 
sur les systèmes chaotiques. Les mécanismes donnant nais­
sance à la turbulence en particulier joueront un rôle crucial 
dans notre compréhension du système fluvial. Étant donné la 
présence quasi certaine de comportements irréguliers dans 
les mécanismes de transport, on devrait observer des traces 
d'instabilité à différentes échelles du paysage. 

Des applications récentes viennent confirmer l'intérêt de 
la théorie du chaos pour la géomorphologie. Phillips (1992) 
a traité de la réponse des terres humides aux fluctuations du 
niveau marin. L'auteur postule la présence d'un comporte­
ment chaotique dans les systèmes géomorphologiques et 
tente de déterminer dans quelle mesure il est présent. La 
méthode préconisée est semi-quantitative. Ceci a permis de 
contourner la difficulté inhérente à l'absence d'une descrip­
tion mathématique adéquate du système. Le point de départ 
de l'analyse est une matrice des liens entre les composantes 
du système (fig. 14). La méthode repose sur un système 
d'équations basées sur les relations entre les composantes 
du système. Les effets de rétroaction causés par la végéta­
tion (fig. 14) sont particulièrement importants dans le contrôle 
du système. Ainsi, l'auteur montre que si la rétroaction est 
positive le système est généralement chaotique et que, par 
contre, si elle est négative, le système est instable et poten­
tiellement chaotique. L'analyse graphique analogue à celle 
présentée a la figure 11 peut aussi être mise à profit comme 
le font Arlinghaus et al. (sous presse). Les auteurs montrent 

qu'une différence minime dans la relation souvent asymétri­
que entre la production de sol et l'épaisseur du sol conduisent 
à des comportements différents du système. Ainsi, une quan­
tification exacte de la courbe est requise afin de décrire le 
comportement du système avec justesse. La méthode d'ajus­
tement de la courbe aux données s'avère donc critique. 

L'analyse des séries temporelles recèle un potentiel 
énorme pour la mise en évidence du comportement des sys­
tèmes (Goodings, 1991a). En l'absence d'une théorie mathé­
matique, les fluctuations dans le temps de l'état d'un système 
permettent une analyse du degré de stabilité. Cette approche 
s'avère particulièrement prometteuse pour les sciences de la 
Terre puisqu'elle permet de mettre en évidence la présence 
de comportement chaotique de faible dimension. Des tech­
niques de corrélation sont particulièrement utiles pour l'ana­
lyse des séries. Des travaux en dynamique des fluides sur la 
convection montrent un comportement décrit par une dimen­
sion relativement faible (Malraison et al., 1983). Il faut cepen­
dant utiliser ces techniques avec prudence (Ruelle, 1990; 
Goodings, 1991a). 

DISCUSSION ET CONCLUSIONS 

Grâce à la théorie des fractales, la complexité des phéno­
mènes naturels ne résiste plus à l'analyse mathématique et 
à la description géométrique. De plus, elle permet d'exprimer 
la variabilité spatiale des phénomènes naturels en fonction 
de l'échelle d'observation et, de ce fait, les notions fondamen­
tales comme l'autosimilarité et la dimension fractionnaire 
possèdent une composante géographique évidente. 
L'utilisation adéquate de ces concepts s'avère prometteuse 
et tout à fait pertinente pour l'avenir de la science géogra­
phique. Il a ainsi été clairement démontré que plusieurs phé­
nomènes naturels possèdent certaines propriétés fractales, 
c'est-à-dire une variation de la complexité ou de l'irrégularité 
selon le degré de résolution. En milieu naturel, les fonctions 
stochastiques fractales ne sont toutefois applicables qu'en 
bandes étroites, séparées ou non par des zones de transi­
tion. Différents facteurs peuvent être invoqués pour expliquer 
cette structure fractale généralement rencontrée en milieu 
naturel. Parmi ces exemples, on peut mentionner la taille 
limite des structures sédimentaires observées dans les cours 
d'eau alluviaux (Robert, 1988a, b), des changements dans 
les processus physiques (Goodchild, 1982; Roy era/., 1987; 
Montgomery et Dietrich, 1992), la discontinuité entre l'échelle 
spatiale des versants et celle des réseaux de drainage 

Altitude relative de 
la surface du marais 

Accretion verticale / 
Augmentation 

du niveau marin 

Accretion verticale 
nette 

FIGURE 14. Ensemble des 
relations utilisées par Phillips 
(1992) dans une analyse de la sta­
bilité des terres humides. 

Set of relations used by Phillips 
(1992) in the analysis of the stabil­
ity of wetlands. 
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(Culling et Datko, 1987), la faible profondeur de plusieurs 
cours d'eau qui limite le développement de structures turbu­
lentes de grande taille, etc. Les différences observées entre 
le modèle et les données peuvent donc permettre d'inférer 
des variations de processus avec l'échelle ou la localisation 
et de ce fait, contribuer de façon singulière à l'explication de 
certains phénomènes géomorphologiques. 

Les méthodes employées pour estimer la dimension de 
Hausdorff sont variées. Nous avons décrit les deux plus 
importantes (tout au moins les plus utilisées), soit le dia­
gramme de Richardson pour les courbes fermées dans un 
plan, et le semi-variogramme pour les séries unidimension-
nelles. Différents algorithmes reliés à la méthode de 
Richardson sont également présentés par Longley et Batty 
(1989 a, b) et Hayward et al. (1989). Roy et al. (1987) ont 
également noté que la dimension fractionnaire estimée à par­
tir d'une surface est du même ordre de grandeur que la 
moyenne des valeurs de D obtenues à partir de profils ou de 
courbes de niveau. Toutefois, le variogramme des surfaces 
masque généralement la variation de D selon la direction et 
l'altitude, et cette technique devrait être employée avec pru­
dence. Le variogramme global peut donc masquer des écarts 
locaux importants dans la valeur de D et un certain nombre 
d'incertitudes demeurent dans l'interprétation des variogram-
mes de surface, principalement. 

Finalement, deux approches se sont constituées sur la 
modélisation fractale des phénomènes géographiques. La 
première consiste principalement en l'utilisation des fractales 
comme hypothèse nulle, c'est-à-dire comme point de réfé­
rence qui sert à étudier les propriétés statistiques des séries 
spatiales de données reliées à des phénomènes naturels 
(Burrough, 1984, 1985; Goodchild et Mark, 1987; Goodchild, 
1988). Dans le cas plus précis des propriétés statistiques des 
surfaces topographiques, la propriété d'autosimilarité des 
surfaces fractales permet leur utilisation comme hypothèse 
nulle (ou surface initiale) pour l'étude des processus géomor­
phologiques (Goodchild et Mark, 1987). La plupart des 
études en géomorphologie et autres domaines des sciences 
naturelles montrent que les phénomènes naturels ne pré­
sentent les propriétés fractales que pour d'étroites bandes. 
La dimension fractale peut donc varier de façon très impor­
tante avec l'étendue d'échelles considérées. L'utilisation des 
fractales en tant qu'hypothèse nulle s'est donc avérée plutôt 
fructueuse puisque l'absence d'autosimilarité permet cer­
taines conclusions sur les processus en cause. 

Une deuxième approche sur la modélisation fractale des 
surfaces topographiques a été élaborée par W.E.H. Culling 
dans une série d'articles récents (Culling, 1986b, 1987a, 
1988 a, 1988 b, 1989; Culling et Datko, 1987). Les travaux de 
Culling visent essentiellement à établir les liens entre les frac­
tales, la théorie du chaos dans un contexte géomorphologi­
que et les systèmes dynamiques. Culling intègre ainsi les 
processus dans la modélisation des surfaces topogra­
phiques. Il établit des liens entre les surfaces fractales et la 
théorie de la diffusion comme mécanisme d'évolution des 
surfaces géomorphologiques recouvertes d'un sol et montre 
qu'une surface fractale est le résultat de l'évolution davi-
sienne des paysages. Un des points fondamentaux qui se 

dégage des travaux de Culling consiste en l'utilisation des 
fractales comme fondement théorique en sciences de la 
Terre. Cette approche, d'un niveau conceptuel et mathéma­
tique élevé, permet néanmoins de montrer que l'emploi des 
fractales en géographie déborde la mesure et la modélisation 
descriptive. Culling a aussi ouvert la voie à ce qui pourrait se 
révéler être un progrès fondamental des sciences naturelles 
au cours des prochaines années. 
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