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LA MODELISATION FRACTALE
ET LA VARIABILITE SPATIALE
DES PHENOMENES NATURELS

André ROBERT et André G. ROY, Department of Geography, York University, 4700 Keele Street, North York, Ontario
M3J 1P3 et Département de géographie, Université de Montréal, C.P. 6128, succursale « A », Montréal, Québec H3C 3J7.

RESUME Le modéle fractal a suscité
beaucoup d'intérét récemment en sciences
naturelles. Cette théorie de Benoit
Mandelbrot s’avére particuliérement perti-
nente en geographie, puisque le modele
fractal traite de la variabilité spatiale des
phénomeénes naturels, de I'échelle d'obser-
vation de ces phénomenes et des propriétés
géomeétriques résultantes. La premiére par-
tie de cette revue consiste en une description
du modéle fractal et des méthodes qui
peuvent étre utilisées pour estimer la dimen-
sion de Hausdorff et de l'intérét immeédiat
des fractales en sciences naturelles. La
deuxiéme partie traite, de facon générale, de
I'application des fractales a la variabilité spa-
tiale de divers phénomeénes (pédologie,
réseaux hydrographiques, turbulence, etc.).
Une imbrication de différents niveaux de
variation est généralement observée et un
des intéréts du modéle provient de la varia-
tion de la dimension fractionnaire avec
I'étendue d'échelles considérée. La troi-
siéme partie est consacrée & |'analyse des
surfaces topographiques, de la micro-
échelle (quelques millimétres) a I'échelle des
bassins-versants. Différents types d'utilisa-
tion du modeéle fractal pour I'analyse des sur-
faces topographiques sont présentés. Plus
particuliérement, il s’agit de I'utilisation des
surfaces fractales comme surface initiale
pour I'étude des processus géomorphologi-
ques, de méme que ['utilisation de la dimen-
sion fractionnaire pour caractériser la rugo-
sité des surfaces topographiques (pour des
études hydrauliqgues ou hydrologiques).
Cette revue se termine en considérant brié-
vement les conséquences en géographie
physique et en géomorphologie des décou-
vertes recentes de la théorie du chaos.
L'outil fractal est privilégié dans I'étude du
comportement des systémes dynamiques.

ABSTRACT Fractal ideas have generated
a lot of interest recently in natural sciences.
Mandelbrot's theory is particularly relevant to
physical geographers since it deals in part
with the spatial variability of natural phenom-
ena, scales of observation, and resultant
geometric properties. The first part of this
review consists in a description of the fractal
model and the methods that can be used to
determine the fractal (Hausdorff) dimension,
as well as a description of the immediate
interests of fractals in natural sciences. The
second part deals with the application of
fractals to the spatial variability of different
phenomena (e.g. pedology, drainage net-
works, turbulence, etc.). Nested levels of
variation are generally observed and one
basic interest of fractals is related to the fact
that the fractal dimension varies with the
range of scales considered. A third section is
concerned with the analysis of topographic
surfaces, from the microscale (e.g. a few mil-
limetres) to the scale of drainage basins.
Different ways of using fractal concepts for
the analysis of topographic surfaces are pre-
sented. More specifically, these are the use
of fractal surfaces as a null hypothesis and
initial surface for the study of geomorphic
processes, and the use of the fractal dimen-
sion for the characterization of surface
roughness (for hydraulic and hydrologic
studies). Finally, this review considers brietly
the significance of chaos theory in physical
geography and geomorphology. Fractal con-
cepts are clearly predominant in the study of
dynamic systems behaviour.

Manuscrit regu le 8 janvier 1992, manuscrit révisé accepté le 2 novembre 1992

ZUSAMMENFASSUNG Die fraktale Model-
lierung und rdumliche Verdnderlichkeit der
Naturphdnomene. In den Naturwissen-
schaften hat das Fraktalmodell jlngst viel
Interesse hervorgerufen. Diese Theorie von
Benoit Mandelbrot erweist sich als beson-
ders sachdienlich in der Geographie, da das
Fraktalmodell von der raumlichen Verander-
lichkeit der Naturphanomene, dem Beo-
bachtungsmaBstab dieser Phdnomene und
den hieraus folgenden geometrischen
Eigenschaften handelt. Der erste Teil dieser
Ubersicht besteht aus einer Beschreibung
des Fraktalmodells und der Methoden, die
man benutzen kann, um die Hausdorff-
Dimension zu bestimmen sowie dem unmit-
telbaren Nutzen der Fraktalen in den Natur-
wissenschaften. Der zweite Teil handelt in
allgemeiner Weise von der Anwendung der
Fraktalen auf die rdumliche Veranderlichkeit
verschiedener Phanomene (z.B3. Bodenfor-
schung, Gewéassernetze, Turbulenz u.s.w.).
Im allgemeinen kann man eine
Dachziegellagerung verschiedener Varia-
tionsebenen beobachten, und einer der
Vorteile des Modells besteht in der Variation
der Bruchdimension entsprechend dem
Umfang der berlicksichtigten MaBstabe. Der
dritte Teil ist der Analyse der topographis-
chen Oberflachen gewidmet, vom Mikro-
maBstab (einige Millimeter) bis zum
MaBstab der Abhangsbecken. Es werden
verschiedene Verwendungstypen des Frak-
talmodells fiir die Analyse der topographis-
chen Oberflachen vorgestelit. Im besonde-
ren geht es um die Verwendung der Fraktal-
oberflachen als Ausgangsoberflache fur das
Studium der geomorphologischen Prozesse,
wie auch die Verwendung der Fraktal-
dimension, um die Rauhheit der topograph-
ischen Oberflichen zu bestimmen ( fir
hydraulische oder hydrologische Studien).
Diese Ubersicht betrachtet schlieBlich kurz
die Folgen der neuen Entdeckungen der
Chaos-Theorie fur die physische Geo-
graphie und die Geomorphologie.



INTRODUCTION

Durant la derniére décennie, la théorie des fractales a pro-
voqué un vif intérét et suscité de trés nombreux travaux dans
diverses disciplines scientifiques. Les articles de vulgarisa-
tion, d'intérét plus général, ol I'accent est davantage mis sur
la fascination visuelle et esthétique ont consacre la popularité
des fractales (voir, par exemple, Batty, 1985; Peitgen et
Richter, 1986; Peitgen et Saupe, 1988). Bien qu'elle ait des
antécédents dans les travaux des mathématiciens du début
du siécle, la théorie des fractales de Mandelbrot a été
élaborée de fagon formelle au cours des années 1960 et
1970. Elle a connu une diffusion fulgurante a la suite de la
parution de trois ouvrages (Mandelbrot, 1975a, 1977, 1982),
dont le dernier, The Fractal Geometry of Nature, consacre en
quelque sorte deux décennies de travaux rédigés sur les frac-
tales et leur importance pour décrire et expliquer les proprié-
tés géométriques des phénomeénes naturels.

Les fractales rendent possible la description mathéma-
tique de l'irrégularité et de la complexité des formes natu-
relles. La géometrie euclidienne classique repose sur des
formes géométriques parfaites (le cercle, le carré, le rec-
tangle, etc.) mais en méme temps abstraites par rapport aux
formes réelles que traitent les sciences de la nature. Par
exemple, peut-on dire comme Robert Pirsig dans son fameux
roman Traité du zen et de l'entretien de la motocyclette que
le paysage du Dakota est aussi plat que la géométrie d’'Eu-
clide? Ou encore peut-on décrire un sapin par un simple cone
ou un terrain fraichement labouré par des ondulations régu-
lires? Comment décrit-on mathématiquement un nuage ou
un jet turbulent? La géomeétrie classique nous force a rame-
ner les objets naturels & des formes simples & manipuler
mathématiquement. En I'absence d’outils mieux adaptés, ce
carcan rigide a dominé notre approche de la nature depuis
I'Antiquité, sans toutefois en permettre une description adeé-
quate. L'attrait des fractales est de fournir un instrument
mathématique capable de saisir la complexité géométrique
des objets et d'ainsi briser les limites imposées par la géomé-
trie euclidienne.

La géographie physique constitue 'un des domaines les
plus appropriés a l'application de la théorie de Benoit
Mandelbrot. En effet, cette théorie traite essentiellement de
I'échelle d'observation et de ses effets sur les propriétés
métriques des phénomeénes. Elle permet de modéliser la
variabilité spatiale et de saisir la complexité des phénoménes
naturels. Burrough (1984) souligne l'intérét que présentent
les fractales en géographie et dans les sciences de la nature
en général. Il a démontré que les fractales peuvent constituer
un outil efficace, nouveau, et stimulant pour I'étude des phé-
noménes géophysiques tout en illustrant clairement les
limites du modéle. Certaines différences fondamentales
apparaissent cependant entre les données réelles et les fonc-
tions stochastiques issues de la théorie des fractales
(Burrough, 1983a, b). Depuis, de trés nombreuses études ont
été publiées afin de clarifier et d'étayer les idées préconisées
par Burrough (1981, 1984, 1985). Plus récemment, une
revue du sujet préparée par Goodchild et Mark (1987) a iden-
tifié différents aspects de la géographie pour lesquels les
fractales constituent un changement important dans la pen-
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sée. L'article de Goodchild et Mark (1987) met I'accent sur la
notion d’autosimilarité statistique et les modéles d'organisa-
tion spatiale, limitant ainsi I'intérét des fractales a des champs
géographiques spécifiques et peut-étre trop restreints. Nous
croyons cependant que la théorie des fractales est essen-
tielle a I'étude de la géographie physique (et des sciences
naturelles en général). Ces aspects ne sont pas traités a fond
par Goodchild et Mark (1987). Finalement, le développement
rapide de la théorie et de ses applications en sciences de la
Terre (voir Culling, 1987a, b, 1988a, b, 1989; Roy et al., 1987;
Robert, 1988a; Elliot, 1989; Jones et al., 1989; Turcotte,
1989) illustrent clairement I'importance accrue de la modéli-
sation fractale en géographie physique. Cette éclosion de
I'utilisation des fractales en géographie physique exige que
I'on fasse le point sur le sujet.

L'article se divise en quatre parties. La premiére consiste
en une bréve description du modele fractal et de ses proprié-
tés fondamentales. Elle traite de I'estimation de la dimension
fractale selon diverses méthodes et dévoile I'intérét immédiat
des fractales pour I'étude des phénoménes géophysiques.
La deuxieme partie porte, surtout, sur la variabilité spatiale
des phénomeénes naturels. L'analyse fractale de divers phé-
nomeénes (pédologiques, karstiques, hydrauliques, hydrolo-
giques) met en évidence leur variabilité en fonction de
I'échelle. Dans ce contexte, l'imbrication de plusieurs
échelles de variation est importante puisqu'elle pourrait étre
révelatrice des processus sous-jacents aux phénomeénes.
Les objets et processus naturels apparaissent souvent
comme ayant des propriétés statistiques dites « multifracta-
les ». En troisiéme lieu, le champ d'analyse de la géographie
physique auquel les fractales ont le plus contribué consiste
probablement en I'étude des surfaces topographiques. La
modelisation fractale & toutes les échelles des paysages, et
particulierement de la topographie, y est aussi décrite et
expliqguée. Deux approches distinctes sur ['utilisation des
fractales dans I'étude des surfaces naturelles sont présen-
tées: celle de Goodchild et Mark (1987) qui préconisent le
recours aux surfaces fractales comme hypothése nulle ou
surface initiale pour I'étude des processus géomorphologi-
ques, et celle proposée par Culling (1986b, 1987a, 1988,
1989) sur les surfaces fractales comme résultantes de la
théorie de la diffusion de [I'évolution des paysages.
Finalement, une bréve présentation des liens entre la théorie
du chaos, les fractales et la géographie physique clét I'article.

DESCRIPTION DU MODELE FRACTAL

Avant de considérer certaines propriétés mathématiques
du modele fractal, illustrons a I'aide d’'un exemple simple en
quoi les fractales s'avérent d’'un intérét particulier en géomor-
phologie. La figure 1 représente un profil topographique
hypothétique obtenu a trois échelles différentes. On note
immeédiatement qu'il est impossible de déterminer I'echelle
d’'observation du profil & partir du degré d'irrégularité de la
surface. L'allure générale du profil demeure la méme en dépit
du fait que I'échelle est considérablement modifiée. Cette
propriété est appelée autosimilarité ou autoaffinité (ces con-
cepts seront définis de fagon plus détaillée plus loin dans
cette section). De plus, un indice mathématique peut étre uti-
lisé pour décrire les propriétés géométriques de ce profil,
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LA MODELISATION FRACTALE

FIGURE 1. lllustration, & l'aide d’'un exemple géomorphologique,
des concepts de base de la géométrie fractale (d'aprés Gravel,
1988).

Illustration of the basic concepts of fractal geometry using a geomor-
phological example (after Gravel. 1988).

c'est-a-dire principalement son degré d'irrégularité constant
observé a toutes les échelles spatiales et les liens statis-
tigues existant entre les mesures successives (qui dans ce
cas-ci sont des mesures d'altitudes). Cet indice consiste en
la dimension fractale ou fractionnaire du profil et sera
également défini en détail dans les sections qui suivent.
L'autosimilarité et la dimension fractionnaire peuvent s'appli-
quer a divers types de courbes, soit des courbes fermées
dans le plan (e.g. courbes de niveau, tracé des littoraux), des
séries statistiques unidimensionnelles représentant des phé-
nomeénes naturels (séries climatologiques, pédologiques,
etc.) et des surfaces topographiques naturelles.

Certains concepts de base reliés au modeéle fractal
peuvent étre décrits a I'aide de I'exemple illustré a la figure 2,
ou r représente un rapport de similarité et N le nombre de par-
ties déduites de I'ensemble. La figure 2 montre aussi les rap-
ports entre les notions de dimension euclidienne et d'autosi-
milarité d’'une part, et les valeurs de N et de r (rapport de
similarité) d'autre part. On peut généraliser ce concept pour

D=1
—t—t— N=3
r=1/3 = 1/N
Nrt =1
D=2
N=9
r=1/3=1/N"2
Nrz = 1
D=3
i — N = 27
P r_1/3=1/N1/3
Nrd =
GENERALISATION
NtD=1 ou N=rD
£ D= 200
log (1/r)
FIGURE 2. Interprétation de la notion de dimension et de I'autosi-

milarité (d’aprés Voss, 1988).

Interpretation of the concept of dimension and autosimilarity (after
Voss, 1988).

définir la dimension fractionnaire (D) d'une entité géome-
trique a partir de N et de r. La courbe de Koch est maintenant
'exemple classique de I'application de ce concept (fig. 3).
Cette courbe est un exemple idéal d'un objet fractal. Chaque
portion de la courbe de Koch représente une image réduite
de I'ensemble, d'ol une similarité géometrique a toutes les
echelles d'observation. Cette propriété d'un objet représente
l'autosimilarité stricte, c'est-a-dire I'imbrication successive de
formes géométriques identiques, sauf en ce qui a trait a leur
taille. En conséguence, on ne peut déterminer V'échelle de
I'objet a partir de son allure géométrique. De plus, cette ligne
(fig. 3) a une longueur indéterminée puisque cette derniére
augmente avec |'augmentation de chaque degré de résolu-
tion par un facteur de 4/3. Dans cet exemple, la valeur de
1,2618 représente la dimension fractionnaire ou dimension
de Hausdorff (D) du tracé. Un exemple additionnel est pré-
senté a la figure 3, ol un carré est utilisé pour produire I'irré-
gularité (dans ce cas, D=1,465). L'idée de dimension frac-
tionnaire revient a Hausdorff (1919) et Besicovitch (1929) et
la theorie mathématique sur les mesures et dimensions de
Hausdorff se trouve dans Rogers (1970), Adler (1981),
Falconer (1985), ainsi que Culling (1986b).

Une des propriétés bien connues des formes fractales
consiste en la relation entre la longueur d'une ligne (L) et
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(a) D = log 4/log 3 = 1,2618

(b) D = log 5/log 3 = 1,4650

(i) METHODE DE RICHARDSON

N: Nombre d'unités
r utilisées le
long du tracé

Nor©

L (Longueur du

tracé) = N . r
Lecr 1D
N(r) ocr D
Ch =
29 / N(r): Nombre de
carrés touches
\/\\-. \ pas le trace
NEhaY
)
/1T
1 [
r

FIGURE 4. Méthodes empiriques d’estimation de la dimension
fractionnaire (d’aprés Voss, 1988).

Empirical methods of estimating fractal dimensions (after Voss,
1988).

'unité de mesure utilisée (r). Par exemple, pour une ligne
fractale,

L=kr® (1)

ou k est une constante (Richardson, 1961; Mandelbrot,
1967), ce qui implique I'augmentation de la longueur de la
ligne mesurée avec la diminution de I'unité de mesure utilisée
(fig. 4). L'équation (1) s'applique évidemment aux courbes
fractales illustrées a la figure 3, mais également a des
courbes représentant divers phénoménes naturels tels qu'il-
lustrés par Mandelbrot (1967) pour le traceé des lignes de
rivage. La valeur de D estimée a partir de I'équation (1) repré-
sente donc la dimension fractionnaire du tracé considéré.
Plus la valeur de D est élevée, plus le tracé considéré est irré-
gulier et plus la longueur estimée augmente rapidement avec
une diminution du degré de résolution (r). Cette méthode a
été employée, par exemple, pour estimer la dimension frac-
tale des contours de particules sédimentaires (Orford et
Whalley, 1983; Whalley et Orford, 1982, 1989; Hayward et
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FIGURE 3. Courbe de Koch:
exemple classique de courbe frac-
tale (voir Burrough, 1983a).

Example of the ideal fractal curve
(Koch), see Burrough (1983a).

?

al., 1989), ainsi que pour les courbes de niveau par
Goodchild (1982), Roy et al. (1987) et Culling et Datko
(1987). Il s’agit d'une méthode simple a appliquer pour esti-
mer les dimensions fractionnaires de courbes fermées dans
un plan ou de segments de ces courbes (Mandelbrot, 1975b;
Burrough, 1984; Mark, 1984; Snow, 1989). Un exemple d'ap-
plication est présenté a la figure 5. Le tracé considéré est ici
celui d'un segment de la riviere Don (Angleterre) tel que
releve originellement sur un feuillet topographique a I'échelle
de 1/25 000. La longueur estimée du tracé de la riviére dimi-
nue dans ce cas-ci de 6,3 a 5 km lorsque 'unité de mesure
(r) utilisée pour estimer cette longueur augmente de 50 a
approximativement 300 m. En utilisant I'équation (1), la
valeur estimée de la dimension fractionnaire pour cette partie
du tracé de la riviére est de 1,16. Une méthode similaire a la
relation de Richardson (équation 1) est également présentée
a la figure 4. Le principe consiste ici a superposer une grille
réguliére sur la ligne a I'étude et a compter le nombre de car-
rés intersectés par la ligne a I'étude. Ces méthodes sont
également présentées et expliquées en détail par Longley et
Batty (1989a, b).

Le concept des fractales peut étre étendu aux surfaces et
aux volumes. Une surface fractale autosimilaire et isotropi-
que présente une dimension comprise entre 2 et 3. Une
courbe de niveau dans le plan horizontal et le profil d'une sec-
tion verticale d’'une surface fractale sont autosimilaires et ont
une dimension fractionnaire inférieure de 1 & celle de la sur-
face. On trouve de nombreuses simulations de surfaces frac-
tales dans la littérature (voir Mandelbrot, 1975b, 1982;
Goodchild, 1980; Adler, 1981; Culling, 1986a; Goodchild et
Mark, 1987). La dimension dans le plan horizontal peut étre
estimée a partir du diagramme de Richardson (équation 1) en
utilisant la courbe de niveau topographique associée a une
certaine altitude (Culling, 1988a), alors que la dimension
d'une section verticale peut étre estimée a partir de la varia-
tion de I'altitude le long d'un transect et de la théorie des pro-
cessus browniens fractionnaires (Mandelbrot, 1965, 1975b;
Mandelbrot et Van Ness, 1968).

En termes plus généraux, les propriétés fractales d'une
série unidimensionnelle de valeurs sont généralement
décrites et estimées par le semi-variogramme. Par exemple,
Burrough (1983a, b) et Culling (1986a) ont employé cette
méthode pour I'analyse fractale des séries spatiales des pro-
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FIGURE 5. Application de la
méthode de Richardson & un tra-

cé de riviere (Don River,
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priétés pédologiques, ainsi que Mark et Aronson (1983),
Ahnert (1984), Culling (1986b), et Culling et Datko (1987)
pour les propriétés fractales des surfaces naturelles. La
marche aléatoire (ou mouvement brownien) est souvent uti-
lisée pour illustrer comment les propriétés fractales d'une
série de points peuvent étre estimées a partir du semi-
variogramme. La marche aléatoire, désignée ici B (t), est un
exemple de processus stochastigue non stationnaire et auto-
similaire. De fagon plus spécifique, B.(t) a 1a propriété que,
pour chaque €>0, la séquence des valeurs de By (t+€) —
B.(t) soit une séquence de valeurs aléatoires et indépen-
dantes, distribuées normalement, avec une moyenne de zéro
et une variance égale & e. Les processus qui possédent cette
propriété (augmentation de la variance avec une augmenta-
tion de la distance entre les observations) sont définis comme
étant non stationnaires. Le mouvement brownien est autosi-
milaire en ce sens que pour toute valeur de u>0 et toute
valeur de s, By (t+s) — B, (t) a exactement la méme distribu-
tion de probabilité que [B.(t+su) — Bu(t)] / u" (Mandelbrot
et Van Ness, 1968), ou H est un parameétre d'échelle qui est
egal a 0,5. Pour étre plus précis, le terme autoaffinite devrait
étre ici employé plutdt qu'autosimilarité (Voss, 1988).
L'autoaffinité differe de I'autosimilarité en ce sens que les
coordonnées des axes horizontal et vertical différent et que
ces deux axes ne sont pas interchangeables. L'autosimilarité
s’applique, par exemple, aux courbes de niveau et au tracé
d'une riviere ou d'un littoral (fig. 3, 4 et 5), alors que I'autoaf-
finité se rapporte aux propriétés statistiques des séries unidi-
mensionnelles. Les profils topographiques possédant les
propriétés fractales sont ainsi caractérisés par I'autoaffinité.

Un corollaire important de I'autoaffinité en ce qui a trait au
mouvement brownien (ou marche aléatoire) est que

E [Bu(t+S) + Bu(t)]? =C,. S* 2
ol E représente la valeur attendue, C, est une constante
egale a 1 et H=0,5 (Mandelbrot et Wallis, 1969b). En variant
le paramétre H de I'équation (2) de la valeur standard de 0,5
a n'importe quelle valeur comprise entre 0 et 1, on obtient
selon Mandelbrot toute une famille de processus stochas-
tiques appelés mouvements browniens fractionnaires (fBm).
Ces processus couvrent une étendue de variations spatiales

T I | T
2,0 2,1 2,2 2,3

Unité de mesure, m (log )

(ou temporelles) allant des courbes trés lisses aux courbes
trés irréguliéres. Le processus fBm est défini pour 0<H <1
et I'exposant de I'équation (2) peut donc varier entre 0 et 2.
Ces mouvements browniens fractionnaires (fBm) possedent
également la propriété d'autoaffinité, I'autoaffinité ayant le
méme sens que celui décrit précédemment pour la marche
aléatoire (Mandelbrot, 1965, 1985; Mandelbrot et Van Ness,
1968).

De plus, la séquence des valeurs de z,, qui représentent
les différences entre les valeurs successives de B,(t) pour le
mouvement brownien fractionnaire

z, = Bu(t+1) — Bu(t) @)

ol t est un entier, est appelée bruit gaussien fractionnaire
(fGn). A I'opposé de la marche aléatoire, les valeurs succes-
sives de z, pour le mouvement brownien fractionnaire ne sont
pas indépendantes les unes des autres et 'autocorrélation a
une distance h nous est donnée par

p (h) = 0.5[(h+1)*" — 2h* + (h—1)*] 4)

(pour h=1 et 0 < H < 1; Mandelbrot et Wallis 1969b).
Difféerentes séries de fGn possédant les propriétés statis-
tiques définies par les équations 3 et 4 sont illustrées & la
figure 6. A partir de I'équation (4), on remarque que pour
H>0,5, un processus fGn a une autocorrélation positive,
indiquant une persistance des valeurs positives ou négatives
de z.. Pour H<0,5, l'autocorrélation est négative, indiquant
que des valeurs positives et négatives de z, tendent a alter-
ner. Lorsque H=0,5, 'autocorrélation est nulle (tel que défini
précédemment pour le mouvement brownien) et il s’agit d’un
bruit blanc. En résumé, le mouvement brownien standard est
caractérisé par une valeur de H égale a 0,5 ce qui implique
une séquence de valeurs successives de B, (t+i) — Bu(t)
aléatoires et indépendantes. A 'opposé, le mouvement brow-
nien fractionnaire (fBm) est caractérisé par un exposant H
variant entre 0 et 1; les différences entre les valeurs succes-
sives des séries correspondant au mouvement brownien
fractionnaire sont autocorrélées et cette corrélation dépend
de la distance h separant les observations et du parameétre H
(équation 4).
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FIGURE 6. Simulations de différents processus fGn et dimensions
qui leur sont associées (valeurs centrées-réduites; d'apres Robert,
1988a).

Simulations of different fGn processes and associated fractal dimen-
sions (zero mean and unit variance to facilitate comparisons, after
Robert, 1988a).
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Orey (1970) a montré que la dimension fractionnaire des
séries fractales est égale & 2-H. En supposant que I'on traite
de surfaces fractales autoaffines et isotropiques, le semi-
variogramme représente donc un moyen simple d'estimer la
dimension fractionnaire d'une série spatiale empirique Z (x,)
puisque

2y (h) = Cu h™ ()
et que

N-h
2y (h) = 1/(N=h) 2‘; [z(x,+h) — Z(x)])? (6)

o
(ol N-h représente le nombre de paires d'observations sepa-
rées par la distance h). La fonction y(h) est appelée semi-
variogramme et sa valeur estimée (y (h)) procure I'informa-
tion de base nécessaire a la description et I'explication de la
variation spatiale d'un phénomene naturel (Oliver et Webster,

A. ROBERT et A. G. ROY

D=19H=01
//
//
P +D=15H=05
i &
- Vé
e /  .D=13;H=07
-~ s
i A
T /
s
i
—_— s
= #
?- ”
2 "
- 7
log h

FIGURE 7. lllustration schématique des semi-variogrammes
associés a différents processus fractals (voir Burrough, 1983a).

Schematic illustration of semi-variograms corresponding to fractal
processes of different dimensions (see Burrough, 1983a).

1986; McBratney et Webster, 1986). Par conséquent, la
semi-variance a divers pas d’échantillonnage h est estimée
a partir de I'équation (6) et le parametre H (et D puisque
D=2-H) est ensuite estimé selon I'équation (5) (a partir
d'une régression linéaire entre log  (h) et log h). Des semi-
variogrammes correspondant a des processus fractals de
dimensions variées sont illustrés a la figure 7. Les processus
caractérisés par une forte valeur de D présentent donc un
faible taux d’augmentation de la semi-variance avec la dis-
tance (fig. 7) et les fréquences élevées dominent les fluctua-
tions. A I'opposé, les processus caractérisés par une faible
valeur de D présentent un semi-variogramme avec une forte
pente, ol les fréquences d’oscillations plus faibles dominent
la série.

Les deux méthodes décrites en détail ci-dessus (c'est-a-
dire le diagramme de Richardson et le semi-variogramme)
constituent sans aucun doute les méthodes les plus
employées pour estimer la dimension fractale d’'un phéno-
méne naturel. Il en existe toutefois d'autres décrites par
Burrough (1984) (par méthodes d'estimation basées sur la
relation périmétre-superficie, le spectrum de puissance et
I'entropie) et utilisées, notamment, par Lovejoy (1982),
Lovejoy et Mandelbrot (1985), Culling (1987), Brown et
Scholz (1985) ainsi que Fox (1989). Un des problemes
méthodologiques susceptibles de se poser est la variabilité
des résultats obtenus lorsque la dimension fractionnaire d'un
phénoméne est estimée selon différentes méthodes (voir
Bradbury et Reichelt (1983) et Bradbury et al. (1984)). Les
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comparaisons d'un certain nombre de méthodes présentées
par Roy et al. (1987), ainsi que celles de Culling et Datko
(1987) laissent croire qu'il n'y a pas de variation systématique
de la dimension fractionnaire estimée en fonction de la
méthode utilisée. A titre d’exemple, les résultats présentés au
tableau | sur I'application de différentes méthodes a un
modele numérique d'altitudes (MNA) pour la région fronta-
liere entre le Québec et le New Hampshire montrent que les
mesures individuelles peuvent varier considérablement, mais
que les dimensions moyennes estimées selon les diverses
méthodes ne différent pas de fagon significative. Toutefois,
I'étude récente et détaillée de Klinkenberg et Goodchild
(1992) laisse croire que la méthode de Richardson
(équation 1) sous-estime les dimensions fractionnaires des
surfaces topographiques et n’est pas suffisamment robuste
pour permettre de distinguer clairement des surfaces possé-
dant des degrés d'irrégularité variés.

VARIABILITE DES PHENOMENES NATURELS

Les processus browniens fractionnaires ont été originelle-
ment élaborés comme modele statistique du phénoméne de
Hurst (Hurst, 1951) que I'on observe dans les séries météo-
rologiques et hydrologiques (Mandelbrot, 1965; Mandelbrot
et Wallis, 1968, 1969a, b). L'effet de Hurst consiste en une
forme de persistance, c'est-a-dire une autocorrélation posi-
tive qui se manifeste parfois au-dela de la longueur des séries
disponibles. L'application des modéles browniens fraction-
naires aux séries temporelles hydrologiques a aussi été dis-
cutée de fagon détaillée par Klemes (1974), McLeod et Hipel
(1978) et Kirkby (1987). Un comportement statistique corres-
pondant au modéle fractal est parfois défini comme étant un
phénoméne de Hurst (e.g. Culling, 1986b).

Il existe de nombreux domaines des sciences naturelles
pertinents a la géographie physique et pour lesquels les frac-
tales sont d'un intérét certain. Parmi ceux-ci, les propriétés
fractales et la structure de la variabilité spatiale des phéno-
ménes pédologiques ont particulierement attiré I'attention
(Burrough, 1983a, b, c; Armstrong, 1986; Culling, 1986a).
Dans une étude détaillée et innovatrice, Burrough (1983a, b)
a tiré des conclusions importantes sur la structure d'autocor-
rélation spatiale des propriétés pédologiques et sur 'utilité
des fonctions fractales pour modéliser la variation spatiale de
ces propriétés. Il y est clairement démontré que les données
pédologiques sont fractales, en ce sens qu'un changement
de I'échelle d'observation (i.e. pour un pas d'échantillonnage
plus petit) introduit une variabilité ou une complexité addition-
nelle. Culling (1986a) a particulierement insisté sur la struc-
ture fractale de la variation fine ou détaillée du pH. La dimen-
sion de Hausdorff a également été présentée par Burrough
comme une mesure de l'importance relative des variations
pédologiques de courtes et de longues étendues. A ce pro-
pos, tous les résultats des études mentionnées précédem-
ment dans le domaine peédologique montrent que les varia-
tions de courtes étendues sont dominantes (D étant
généralement supérieur & 1,5), et les différences positives et
négatives entre les observations successives tendent 2 alter-
ner (Culling, 1986a). Il y a antipersistance du comportement
de la variable mesurée.

TABLEAU |

Dimensions fractionnaires estimées selon différentes méthodes pour
le modéle numérique d'altitudes (MNA) de la région de Moose Bog,
New Hampshire (d'apres Gravel, 1988 et Roy et al., 1987).

D Drmin Drmax
Variogramme de surface 2,16 - -
Variogrammes-profils E-O 1,13 1,06 1,19
n=9
Variogrammes-profils N-S 147 1,09 1,28
n=7
Courbes de niveau (extraites) 1,09 1,01 1,28
n =47
Courbes de niveau numeérisées 1,17 1,06 1,33

(& partir du feuillet 1/24 000; N=13)

n est le nombre de profils ou courbes de niveau utilisés

Malgré ces résultats, il existe toutefois des différences fon-
damentales entre le modeéle fractal type et |la variabilité spa-
tiale des données pédologiques. Alors que le modéle fractal
indique une augmentation de la semi-variance avec une aug-
mentation de la distance entre les points d’échantillonnage
(voir fig. 7), les données pédologiques sont souvent caracté-
risées par des semi-variogrammes ol une valeur maximale
de v (h) est observée & une certaine distance h. De plus, le
semi-variogramme des données pédologiques présente
généralement des zones assez restreintes et distinctes ol le
modéle fractal peut s'appliquer. Ces bandes fractales sont
parfois séparées par des zones de transition plus ou moins
marquées. |l s'agit en fait d'imbrication de différents niveaux
de variation représentant des processus pédologiques super-
posés et indépendants, chacun de ces processus agissant a
des échelles caracteristiques (Burrough, 1987). Ces proprié-
tés fréquemment rencontrées en milieu naturel (ainsi que la
forme générale du semi-variogramme correspondant) sont
illustrées a la figure 8. La valeur de c (fig. 8) représente la
semi-variance maximale observée (ce qui est également la
variance de la série) et h... constitue I'étendue du semi-
variogramme, c'est-a-dire la distance maximale & laquelle le
modele fractal s'applique. Un exemple tiré de la littérature est
également présenté a la figure 9. Cet exemple provient d’'une
etude détaillée de la microtopographie du lit des cours d'eau
a fond de graviers. Dans cet exemple, la semi-variance maxi-
male observée est de I'ordre de 8 cm® et I'étendue du proces-
sus (), Soit la distance maximale a laquelle le modéle frac-
tal s'applique est approximativement 75 cm (Robert, 1988b).
Cet exemple sur la rugosité de surtace dans les cours d'eau
naturels sera également repris en détail dans la prochaine
section. L'imbrication de différents niveaux de variation et la
présence de bandes fractales étroites semblent étre davan-
tage la norme que I'exception en modélisation fractale des
phénoménes naturels (voir Orford et Whalley, 1983; Mark et
Aronson, 1984; Culling et Datko, 1987; Robert, 1988b).

Les fortes valeurs de dimension fractionnaire généra-
lement observées pour les données pédologiques ont
des conséquences pratiques, surtout en ce qui concerne
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FIGURE 8. Représentation schématique du semi-variogramme
caractéristique associé a divers phénomeénes naturels.

Schematic illustration of characteristic semi-variograms correspond-
ing to various natural phenomena.

I'échantillonnage. Des valeurs élevées de dimension fraction-
naire impliquent une grande variabilité spatiale ainsi qu'un
degré de complexité constant, malgré une diminution du
degré de résolution. Par conséquent, la mesure sur le terrain
de variables & des échelles préalablement déterminées, I'uti-
lisation de valeurs moyennes et I'emploi de différentes tech-
niques d'interpolation doivent étre remises en question par
suite de I'analyse fractale des données pédologiques. De fait,
dans une surface extrémement complexe (D de l'ordre de
2,9), l'interpolation devient virtuellement impossible tant elle
est désorganisée et antipersistante. Pour Culling (19863,
1988b), le modéle fractal propose une vision alternative du
monde réel, vision fondée sur une conception plus fine de la
réalité et sur la notion d'irrégularité. Culling (1986a) avance
également la notion selon laquelle la plupart des processus
en géomorphologie prennent place a l'intérieur de bandes
fractales étroites et de dimension fractionnaire généralement
élevée.

L'analyse fractale de la variabilité des phénoménes natu-
rels s'étend également aux propriétés géométriques des
réseaux hydrographiques et aux phénoménes de turbulence.
L'analyse fractale des réseaux de drainage a connu récem-
ment un essor considérable (Gupta et Waymire, 1989; La
Barbera et Rosso, 1989; Tarboton et al., 1989; Thornes,
1990; Rosso et al, 1991; Stark, 1991, Montgomery et
Dietrich, 1992). Par exemple, La Barbera et Rosso (1989)
montrent que les propriétés géométriques des réseaux de
drainage des bassins-versants sont adéquatement représen-
tées par le modéle fractal dont la dimension varie entre 1,5
et 2 (valeur moyenne de 1,7). Ces dimensions fractionnaires
sont déterminées a partir des rapports de bifurcation (i.e. rap-
port du nombre de segments d'un certain ordre divisé par le
nombre de segments de I'ordre supérieur) et du rapport des
longueurs des segments d’ordres successifs. Ces propriétés

A. ROBERT et A. G. ROY

0,1 T T T
0.1 1.0 10 100
Distance (cm)
FIGURE 9. Exemple d'un semi-variogramme caractéristique de la
rugosité de surface dans les riviéres a lits graveleux (d’aprés Robert,
1988b).

Example of the characteristic semi-variogram used to model the sur-
face roughness properties in gravel-bed rivers (after Robert, 1988b).
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renvoient directement aux travaux antérieurs de Horton
(1945) et Strahler (1957) sur les lois de la composition des
reseaux hydrographiques. Un autre aspect relié a la structure
fractale des bassins hydrographiques concerne la longueur
estimée des cours d'eau et I'interprétation fractale de la rela-
tion entre la longueur du cours d'eau principal (L) et la super-
ficie de drainage (A) (Mesa et Gupta, 1987; Hjelfelt, 1988; La
Barbera et Rosso, 1989; Robert et Roy, 1990). Il existe pré-
sentement deux interprétations possibles de I'exposant dans
la relation de Hack (1957) ou

LxA® 0

Plus précisément, I'interprétation allométrique de la relation
(i.e., changement de forme avec I'augmentation de la taille;
Church et Mark, 1980) est remise en question. Mandelbrot
(1982) avance que les longueurs des cours d’eau sont carac-
térisées par une dimension fractionnaire puisque la longueur
estimée est fonction de I'échelle d'observation (voir fig. 5).
Plus précisément, il montre que la valeur de b=0,6
(équation 7) obtenue par Hack (1957) résulte du fait que la
dimension fractionnaire des cours d’eau principaux est égale
a 1,2 et que I'exposant b de la relation entre la longueur des
cours d'eau principaux et la superficie de drainage est égal
a D/2. Les travaux de Robert et Roy (1990) montrent toutefois
que l'interprétation de la valeur de b varie en fonction de
I'échelle de la carte utilisée et que l'interprétation fractale de
b (équation 7) est valable, tout au moins a certaines échelles.

Finalement, un autre domaine particuliérement négligé en
géographie physique a trait a la modélisation fractale de la
turbulence. Par suite des travaux originaux de Mandelbrot
(1974, 1975c) sur les phénomeénes de turbulence, la mode-
lisation fractale de ces phénomeénes a suscité relativement
peu d'intérét jusqu'aux travaux récents de Sreenivasan
(1986, 1991), Sreenivasan et Meneveau (1986), Sreenivasan
et al. (1989) et Ait-Kheddache et Rajala (1987). Un exemple
de leurs travaux est illustré a la figure 10 ol un «jet» est intro-
duit dans une écoulement turbulent. Le contour de ce jet est
irrégulier et se caractérise par une dimension fractionnaire de
1,36 (celle-ci étant obtenue par la méthode de la grille et du
diagramme présenté au bas de la fig. 10). Une des princi-
pales conclusions de ces travaux est que plusieurs aspects
des écoulements turbulents, caractérisés par une superposi-
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tion de mouvements a différentes longueurs d'ondes, ont un
comportement fractal et que leurs dimensions fractionnaires
peuvent étre mesurées. Sreenivasan et Meneveau (1986)
mentionnent également que la turbulence représente peut-
étre une collection d'un certain nombre d'entités fractales et
gue cette notion peut étre conciliée avec la vision moderne
de la turbulence comme un ensemble de mouvements semi-
organisés (Sreenivasan et Meneveau, 1986, p.382).
L'autosimilarité possible de certaines structures turbulentes
et la signature statistique (et possiblement fractale) des fluc-
tuations de vélocité dans le champ tridimensionnel pourraient
certainement se révéler des aspects a explorer davantage.
L'interprétation des processus a partir de la signature fractale
et de la valeur de D estimée n'est toutefois pas évidente
puisque la signature fractale ne traduit pas nécessairement
un processus particulier. Ce point sera abordé plus en détail
en discussion.

ANALYSE DES SURFACES TOPOGRAPHIQUES

En géographie physique, I'utilisation la plus intensive de la
théorie des fractales consiste en I'analyse des surfaces topo-
graphiques, de la micro-échelle (sur quelques centimétres;
voir Armstrong, 1986; Whalley et Orford, 1989) a I'échelle de
la planéte (Mandelbrot, 1982). Ces études procurent une
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FIGURE 10. Contour d'un «jet» dans un écoulement turbulent et
diagramme de Richardson correspondant (d'aprés Sreenivasan,
1991).

Contour of a jet in a turbuient flow and corresponding Richardson’s
plot (after Sreenivasan, 1991).

vision détaillée et relativement nouvelle des surfaces topo-
graphigues, tant du point de vue de la modélisation descrip-
tive (Pentland, 1984) que de l'intégration théorique des pro-
cessus ou mécanismes d'évolution des paysages.

Des propriétés d'ensemble du paysage (en termes de
signature statistique et d'autocorrélation des différences d'al-
titudes ou pentes locales) se dégagent trés bien des nom-
breuses études des surfaces topographiques. En premier
lieu, les études détaillées de Mark et Aronson (1984), Culling
et Datko (1987), Roy et al. (1987), et Culling (1988a)
montrent que les surfaces topographiques se caractérisent
par deux bandes fractales. Pour des distances relativement
faibles (intervalle d'échantillonnage généralement de 'ordre
de 50 m; voir Culling, 1988a), les valeurs de D généralement
obtenues varient entre 2,1 et 2,3. Ces valeurs sont considé-
rées comme étant les plus représentatives des surfaces natu-
relles et elles correspondent probablement a la texture de la
surface des versants. A des échelles spatiales plus grandes,
on rapporte souvent un changement marqué de la pente du
semi-variogramme ou du diagramme de Richardson
(équations 5 et 1), ce qui entraine une augmentation signifi-
cative de la dimension de Hausdorff (D variant entre 2,4 et
2,6; voir fig. 8 pour les propriétés caractéristiques du semi-
variogramme des surfaces topographiques). Les sites du sud
de I'Angleterre analysés par Culling et Datko (1987) et Culling
(1988a) sont interprétés par les auteurs comme étant des
surfaces browniennes fractionnaires ou un mécanisme
d'évolution des paysages de type davisien est dominant le
long des versants. Ces surfaces fractales sont également
superposées sur une seconde structure fractale du paysage,
de dimension plus élevée et qui est associée au réseau de
drainage.

Un deuxiéme point fondamental a également été relevé
par Goodchild (1982) et Roy et al. (1987). Il s'agit en fait de
la variation de la complexité des surfaces selon {'altitude
(variation systématique de la dimension fractale avec 'alti-
tude). Roy et al. (1987) et Gravel (1988) ont fait ressortir les
liens entre la complexité (ou l'irrégularité) des surfaces, I'al-
titude et la nature des sédiments (tabl. 11). En effet, ils ont noté
que la portion du modéle numérique d’altitudes ol les dépbts
glaciaires sont dominants (fond de vallée) présente une
dimension fractionnaire supérieure aux fenétres correspon-
dant a un sommet et & une surface d’érosion fluviale, tout au
moins en ce qui a trait au variogramme de surface et aux pro-
fils E-O. La modélisation fractale s’avére ainsi un instrument
efficace et précis pour décrire et comparer les propriétés
d'ensemble de différentes surfaces topographiques (Elliot,
1989) et une étude plus approfondie devrait étre entreprise
sur les signatures fractales de terrains caractéristiques (tels
que les paysages fluvial, morainique, éolien, structural).

Plusieurs études ont également été effectuées a micro-
échelle, soit & des échelles spatiales inférieures au meétre
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(voir Brown et Scholz, 1985; Armstrong, 1986; Robert,
1988a, 1988b, 1991). Ces études (tabl. lll) ont permis de
démontrer clairement qu'a micro-échelle, les surfaces topo-
graphiques sont trés irréguliéres et caractérisées par des
valeurs de D allant de 2,5 a 2,9 (Armstrong, 1986; Robert,
1988a, b; Elliot, 1989). La seule exception semble étre I'étude
de Andrle et Abrahams (1989). |Is rapportent des valeurs trés
faibles (de I'ordre de 2,10 pour des surfaces ou 1,10 pour des
profils longitudinaux ou transects). Andrle et Abrahams
(1989) ont toutefois utilisé le diagramme de Richardson pour
estimer la dimension fractale de séries unidimensionnelles
d'altitudes d'une surface topographique. Cefte méthode
(équation 1) est généralement employée pour estimer la
dimension de Hausdorff de courbes fermées dans un plan
(telle une courbe de niveau), alors que les fonctions fractales
stochastiques et le semi-variogramme sont utilisés pour esti-
mer la dimension de Hausdorff des séries de points ou la

TABLEAU I

Dimensions fractionnaires moyennes estimées selon différentes
méthodes pour les trois sous-surfaces extraites du MNA complet
(région de Moose Bog, New Hampshire; d'aprés Gravel (1988)
et Roy et al., 1987).

Sommet Fluviale Glaciaire
Variogramme de surface 2,10 2,13 2,21
Variogramme-profils E-O 1,10 1,11 1,28
(n=8) 8 (8)
Variogramme-profils N-S 1,13 1,17 1,45
(8) (8 (8
Courbes de niveau 1,08 1,07 1,10

extraites (13) (9) (21)

Les nombres entre parenthéses indiquent le nombre de mesures uti-
lisées pour déterminer la moyenne
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variabilité n'existe que dans une dimension (Burrough, 1984;
Culling, 1986a). Les implications méthodologiques a ce
niveau ne sont pas claires, mais les travaux de Mandelbrot
(1975b) et Culling et Datko (1987) laissent croire que la
méthode employée par Andrle et Abrahams (1989) est inap-
propriée (Roy et Robert, 1990). Une étude détaillée de ce
type de probléme méthodologique et de I'équivalence des dif-
férents algorithmes disponibles pour estimer D devrait
egalement étre entreprise. Dans un continuum topogra-
phique, les résultats obtenus montrent que la dimension frac-
tale des surfaces varie systématiguement avec I'échelle.
D'une fagon générale, on prévoit qu'elle soit irés élevée &
micro-échelle (D > 2,6), faible & I'échelle des versants
(D — 2,1) et plus élevée a I'échelle de la structure hydrogra-
phique (D = 2,6 — 2,7). L'imbrication et la transition entre ces
dimensions sont encore mal connues et doivent faire I'objet
d’'une etude particuliére en fonction des types de paysages
(Roy et Robert, 1990).

En plus de [lirrégularité prononcée de la micro-
topographie (en raison des valeurs de D élevées générale-
ment observées), les études récentes ont mis en valeur deux
types d'application des fractales en sciences de la Terre.
Elliot (1989), par exemple, a considéré la dimension fractale
comme indice de rugosité des surfaces permettant de déter-
miner I'Age relatif des surfaces d'érosion glaciaires, en
Norvege. Les propriétés mathématiques de la dimension de
Hausdorff en font, selon Culling (1986a), I'indice de rugosité
des surfaces le plus informatif. Ces propriétés descriptives de
l'indice D ont également permis a Robert (1988b, 1991) de
caractériser deux échelles de rugosité associées aux lits de
graviers des cours d'eau alluviaux : la rugosité a I'échelle du
grain et une seconde, plus irréguliére, correspondant aux
petites structures sédimentaires. Dans I'exemple présenté
précédemment a la figure 9, ces deux échelles corres-
pondent respectivement & des distances inférieures a 15 cm
d'une part, et comprises entre 15 et 75 cm d’autre part. Ces

TABLEAU Il

Analyse fractale et microtopographie des différents types de surfaces naturelles

Echelle Etendue des
Auteur spatiale 4 3 Méthode d'estimation Milieu
dimensions
(mm)
Robert (1988a, b) 5-125 1,52-1,72 Variogramme-profils Lit de rivieres
70-700 1,70-1.91
Brown et Scholz 1-10 1,19-1,52 Analyse spectrale Surface de roche
10-100 1,18-1,68
Armstrong (1986) 20-100 1,53-1,01 Variogramme-profils Surface de sol
(approximatif)
Elliot (1989) 1-260 1,60-1,86 Variogramme-profils Til
100-900 1,27-1,64
Gravel (1988) 100-400 1,25-1,96 Variogramme-profils Terre agricole
1,47-1,89
100-550 1,58-1,89
1,16-1,22
Andrie et Abrahams (1989) 75-1000 1,06-1,20 Diagramme de Richardson Talus-éboulis
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deux échelles de rugosité sont caractérisées par des dimen-
sions fractionnaires supérieures a 1,5 (telles qu'estimées
selon I'équation 5) et sont imbriquées dans un profil longitu-
dinal. La rugosité de la surface dans les lits de graviers est
hautement irréguliére et difficile & caractériser étant donné la
variabilité dans la taille, la forme et l'orientation des cailloux.
Cette modélisation descriptive de la configuration du lit per-
met également d'inférer certaines propriétés significatives de
la rugosité hydraulique et du transport des sédiments. En
effet, il apparait raisonnable de penser que chacune des
échelles de rugosité du lit, telles qu'identifiées par le modéle
fractal, est également associée a un type particulier de résis-
tance et de contrainte de cisaillement sur le lit (Robert, 1988a,
b). La rugosité introduite par les structures sédimentaires a
petite échelle augmente la résistance a I'écoulement et la
force de cisaillement totale, alors qu'une partie seulement de
cette force serait disponible pour le transport des cailloux sur
le fond du lit. Ces exemples illustrent bien le potentiel des
fonctions fractales pour modéliser la micro-topographie ainsi
que I'utilisation adéquate et puissante de D comme indice de
rugosité. Cet indice permet ainsi la distinction et la comparai-
son précise entre les échelles de rugosité et les différents
types de surfaces topographigues.

FRACTALES, SYSTEMES DYNAMIQUES
ET CHAOS

Les fractales sont intimement liees aux découvertes
récentes sur le comportement des systémes dynamiques,
c'est-a-dire des systémes qui évoluent dans le temps. Un des
objectifs des sciences naturelles est de prévoir I'état futur
d'un systéme a partir de la connaissance de son état initial
et d'équations déterministes qui régissent son comportement
dans le temps. Le fait que des équations déterministes soient
utilisées porte a croire que I'on peut a coup sidr donner I'état
du systéme pour n'importe quel temps a venir. Cependant,
certains systemes comme la circulation de I'atmosphére ou
I'écoulement d'un fluide turbulent sont irréductibles a une
telle approche, en ce sens qu'ils demeurent imprévisibles a
plus ou moins long terme. Il est aujourd’hui reconnu que
méme des systémes déterministes simples sont aussi sujet
a des comportements imprévisibles, voire erratiques.

Prenons un exemple simple qui a été traité par Lorentz
(1964) et May (1976), soit I'équation quadratique ou logis-
tique que I'on retrouve en biologie des populations. Cette
équation prévoit la population (X) au temps (t+ 1) a partir de
la connaissance de la population au temps t et d'un para-
meétre r. L'équation s'écrit comme suit

X = X, (1=X) (8)
ol

0<r<wm (9)
et

0o=sX=<1. (10)

Donc, connaissant X, soit I'état initial du systéme et fixant le
paramétre r, on peut trouver par itération la valeur de X pour
n'importe quel temps futur. Le tableau IV présente des
séquences temporelles de X pour différentes conditions intia-
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les et pour un r de 2. De telles séquences temporelles sont
appelées orbite. Dans tous les cas la valeur de X se stabilise
et atteint un point fixe (0,500). Ce point de convergence,
aussi nommeé attracteur est constant quelle que soit la valeur
initiale du systéme, donc le systéme converge vers un état
unique et il est stationnaire. On peut représenter le compor-
tement du systéme ou son orbite en utilisant une approche
graphique telle qu'illustrée a la figure 11. Dans ce graphe, la
courbe correspond & la fonction quadratique et |a droite, a la
ligne ou les valeurs de X, et X.., sont égales. Pour decrire la
trajectoire suivie d’'une itération a l'autre il s'agit de partir avec
un X, sur I'axe X, et de projeter verticalement cette valeur sur
la courbe. La rencontre entre la verticale et la courbe donne

TABLEAU IV
Orbites de I'équation quadratique pour r = 2,0 et différentes valeurs
initiales de X
Itération Valeurs de X
0 0,100 0,200 0,400 0,500
1 0,180 0,320 0,480 0,500
2 0,295 0,435 0,499 0,500
3 0,416 0,492 0,500 0,500
4 0,486 0,500 0,500 0,500
5 0,500 0,500 0,500 0,500
6 0,500 0,500 0,500 0,500
7 0,500 0,500 0,500 0,500
1.0
<
+
\ v
0,84 X,
0.6
+
=
0.4
A
0,24 4
A
0.0 T T T T T T T -
0.0 0,2 0.4 0.6 0,8 1,0
Xt
FIGURE 11. lllustration de la méthode graphique appliquée &

I'équation quadratique. La courbe représente X,., = 2 X,(1-X,) etla
valeur initiale est X, = 0,1.

Illustration of the graphic method for the quadratic equation. In this
case, the curve represents X .., = 2 X (1 —X,) and the initial value is
X, =0.1.
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la nouvelle valeur aprés la premiére itération. Pour obtenir la
seconde itération, il s'agit de retourner cette nouvelle valeur
dans I'equation, ce qui revient a la projeter sur la droite pour
ensuite |a retourner vers la courbe et ainsi de suite pour les
prochaines itérations. A la figure 11, on remarque que la tra-
jectoire converge vers un point fixe. Dans cet exemple, on
peut sans erreur prévoir I'état stationnaire du systéme & long
terme. Lorsque X, est égal a 0 ou 1, la solution est 0, alors
que pour les autres valeurs initiales la solution est donnée par
1 - 1/r. Ceci est valable pour 1 < r < 3. Qu'arrive-t-il lorsque
r augmente? La figure 12 montre les séquences temporelles
de systémes avec différentes valeurs de r et une méme
valeur initiale (X, = 0,40). A premiére vue, on constate
immediatement une variabilité croissante dans le comporte-
ment du systéme en fonction de r. Aussi, le nombre de points
fixes augmente et le systéme tend & osciller périodiquement
entre les points fixes. Pour r = 4,0, on observe un com-

1.0 4
0,84

0.6

<
ool

0,24

0 10 . .20 30
Itération

0,24

0 10 ; ' 20 30
Itération

Itération
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portement irrégulier. L'effet de r comme paramétre de con-
trole a largement été étudié et on connait les bornes ol le
systéme change de comportement (pour une revue, voir
Goodings, 1991b). De fait, a partir de r = 3,0, le nombre de
points fixes passent a deux; a r = 3,45, il double et passe a
quatre. Le nombre double ensuite rapidement avec de petits
changements dans la valeur de r et on observe un compor-
tement irrégulier a partir de r = 3,57. De plus, si on utilise des
valeurs initales trés rapprochées pour une valeur élevée de
r comme par exemple r = 4,0, on note que les orbites diver-
gent & partir d'un certain nombre d'itérations (fig. 13). Cette
dépendance sensitive aux conditions initiales du systéme est
la propriété fondamentale d'un comportement que I'on quali-
fie de chaotique (voir Ruelle, 1991). Techniquement, si la
divergence est exponentielle avec le temps, le taux auguel la
divergence s'effectue permet de quantifier le chaos dans une
serie. Ainsi, lorsqu'il devient impossible de prévoir le compor-

1,0
0.8
0.6
x
0,4

0,24

0 10 . . 20 30
Itération

0,8

0,6

Xt

0,4

0,2+

0.0 T T T
Itération

FIGURE 12. Orbites de I'équation quadratique X.., = r X,(1 -X,)
pour une valeur initiale de X, = 0.4 et différentes valeurs der. A. r
=20;B.r=34;C.r=350;D.r=358,E.r = 4.0.

Orbits for the quadratic equation X .., = r X.(1 — X ) for an initial value
eX, = 0.4 and different r values. A. r = 2.0, B. r = 3.4; C. r = 3.50;
D.r= 358 E r=4.0.
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tement & long terme du systéme ou I'effet de changements
extrémement faibles dans les valeurs initiales, on entre dans
le chaos déterministe.

Quelle est I'importance des résultats obtenus & partir de
I'équation quadratique et que peut-on en tirer en ce qui con-
cerne les systémes naturels? D’abor, il faut dire qu'est née

1.0
i
0.8+ A l'
N/ |
[ Itv p
| M
0,6 I v
N | | |
> |' I [
0,4 | I
W
N
by
|
|
| /
1!
\/
0,0 T T —
0 10 20 30
Itération
—— —— Xo =0,400002
Xo =0,400001
1,04
w
2
o
b 0,5+
w
o
(4}]
= 0.5
=
@
@
(6]
=
& <0,5
-
=
-1,0 T T 1
0 0 20 30
Itération

FIGURE 13. Orbites de I'équation quadratique X,., = 4 X,(1-X,)
pour deux valeurs de X, trés rapprochées.

Orbits for the quadratic equation X.., = 4 X (1 —X,) for two closed
values of X,.
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de I'équation quadratique une famille extrémement riche de
fonctions qui ont permis d'élaborer des ensembles fascinants
(pour une revue, voir Peitgen et Saupe, 1988) qui produisent
des images d'une complexité encore jamais soupgonnée.
Mais au-dela de cette fascination qu'en est-il? Malgré sa sim-
plicité, I'équation quadratique est une illustration éloquente
du chaos déterministe. Elie permet, justement par sa simpii-
cité, une exploration relativement facile de la transition vers
le chaos ou la turbulence dans un systeme et de comprendre
ainsi ce qui peut se manifester dans un systéme régi par une
équation déterministe. La cascade du doublement du nombre
de points fixes est une route vers le chaos que I'on retrouve
dans d'autres systémes (Goodings, 1991b). De plus, tous les
systémes déterministes décrits par des eéquations non
linéaires sont sujets & un comportement chaotique. L'étude
de I'équation quadratique permet de comprendre intuitive-
ment ce qui se passe dans des systémes complexes comme
les fluides en mouvement. Ainsi, la transition vers le chaos
peut s'appliquer au mouvement d’'un fluide passant de lami-
naire a turbulent. La turbulence est vue comme un compor-
tement chaotique issu des équations non linéaires qui la gou-
vernent (Ruelle et Takens, 1971; Tritton, 1989; Ruelle, 1991).

Les fractales interviennent dans I'étude des systémes
dynamiques pour décrire leur comportement. Etant un outil
qui permet de saisir mathématiquement la complexité des
trajectoires, les fractales sont tout indiquées pour distinguer
quantitativement les orbites ou I'évolution dans le temps des
systémes. Les itérations successives des systémes chao-
tiqgues peuvent se traduire par des propriétés fractales. Dans
un systéme chaotique, la trajectoire peut tendre vers un ou
plusieurs attracteurs que l'on qualifie d'étranges (Lorentz,
1963; Grassberger et Procaccia, 1983). L'analyse de ces
attracteurs est possible par les fractales.

En quoi ces découvertes sont-elles importantes pour les
sciences de la Terre? Plusieurs auteurs ont déja signalé des
avenues nouvelles qui découlent du chaos déterministe et de
I'étude des systémes dynamiques (Culling, 1987b; Huggett,
1988; Malanson et al., 1990; Middleton, 1990, 1991). Dans
les domaines du climat (Nicolis et Nicolis, 1984, 1987;
Lorentz, 1984; Grassberger, 1986) ou de la dynamique de la
crolte et du manteau de la Terre (Kellog et Turcotte, 1990;
Turcotte, 1989), des progrés importants sont imputables &
I'avénement de la théorie du chaos. Le climat est reconnu
pour son irrégularité et son imprévisibilité et a d"ailleurs figuré
de facon importante dans les découvertes sur le chaos
(Lorentz, 1963). En geomorphologie, par contre, les applica-
tions s'avérent plus difficiles. Ceci s'explique en partie par
I'absence d’'un corpus théorique soutenu et essentiellement
mathématique des systémes géomorphologiques. Cette
lacune rend impossible I'exploration des eéquations qui
décrivent les systemes géomorphologiques puisque la des-
cription quantitative des systémes semble un prérequis a
I'¢tude dynamique. Puisque les applications proprement géo-
morphologiques se font encore peu nombreuses, une bonne
partie de ce qui est paru sur le sujet tente de montrer le poten-
tiel de ce champ d'étude tout en dégageant les répercussions
conceptuelles importantes qu'occasionnent ces découvertes.
On reconnait que la dépendance sensitive du comportement
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d'un systéme aux conditions.initiales est cruciale. En géomor-
phologie, le concept d'équifinalité domine depuis que la théo-
rie générale des systémes soutient I'élaboration des con-
cepts dynamiques (Chorley, 1962). L'équifinalité signifie que
les conditions initiales n'affectent pas I'état final du systéme.
Eu égard a ce que nous savons des systémes dynamiques,
cette vision est trés limitante et ne correspond qu'a une por-
tion (probablement la moins intéressante) des comporte-
ments possibles (Culling, 1987b) ou a des systémes
linéaires. |l serait avantageux de remplacer le concept d'équi-
finalité par une caractérisation des systémes utilisant leur sta-
bilité potentielle. La dépendance sensitive aux conditions ini-
tiales signifie aussi que méme une légére imprécision dans
la détermination de I'état initial du systéme peut entrainer une
différence importante dans la prévision a long terme de son
comportement.

Puisque les mécanismes de transport en géomorphologie
sont régis par des équations de mouvement non linéaires,
I'étude des processus devrait bénéficier des connaissances
sur les systémes chaotiques. Les mécanismes donnant nais-
sance a la turbulence en particulier joueront un réle crucial
dans notre compréhension du systéme fluvial. Etant donné la
présence quasi certaine de comportements irréguliers dans
les meécanismes de transport, on devrait observer des traces
d'instabilité a différentes échelles du paysage.

Des applications récentes viennent confirmer ['intérét de
la théorie du chaos pour la géomorphologie. Phillips (1992)
a traité de la réponse des terres humides aux fluctuations du
niveau marin. L'auteur postule la présence d'un comporte-
ment chaotiqgue dans les systémes géomorphologiques et
tente de déterminer dans quelle mesure il est présent. La
méthode préconisée est semi-quantitative. Ceci a permis de
contourner la difficulté inhérente a I'absence d’'une descrip-
tion mathématique adéquate du systéme. Le point de départ
de I'analyse est une matrice des liens entre les composantes
du systéeme (fig. 14). La méthode repose sur un systéme
d'équations basées sur les relations entre les composantes
du systéme. Les effets de rétroaction causés par la végéta-
tion (fig. 14) sont particuliérement importants dans le contrdle
du systeme. Ainsi, 'auteur montre que si la rétroaction est
positive le systéme est généralement chaotique et que, par
contre, si elle est négative, le systeme est instable et poten-
tiellement chaotique. L'analyse graphique analogue a celle
présentée a la figure 11 peut aussi étre mise a profit comme
le font Arlinghaus et al. (sous presse). Les auteurs montrent
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qu'une différence minime dans la relation souvent asymetri-
que entre la production de sol et I'épaisseur du sol conduisent
a des comportements difiérents du systéme. Ainsi, une quan-
tification exacte de la courbe est requise afin de décrire le
comportement du systéme avec justesse. La méthode d'ajus-
tement de la courbe aux données s'avére donc critique.

L'analyse des séries temporelles recéle un potentiel
énorme pour la mise en évidence du comportement des sys-
témes (Goodings, 1991a). En I'absence d'une théorie mathé-
matique, les fluctuations dans le temps de I'état d'un systéme
permettent une analyse du degré de stabilité. Cette approche
s'avere particuliérement prometteuse pour les sciences de la
Terre puisqu'elle permet de mettre en évidence la présence
de comportement chaotique de faible dimension. Des tech-
niques de corrélation sont particuliérement utiles pour I'ana-
lyse des séries. Des travaux en dynamique des fluides sur la
convection montrent un comportement décrit par une dimen-
sion relativement faible (Malraison et al., 1983). Il faut cepen-
dant utiliser ces techniques avec prudence (Ruelle, 1990;
Goodings, 1991a).

DISCUSSION ET CONCLUSIONS

Gréace a la théorie des fractales, la complexité des phéno-
ménes naturels ne résiste plus a I'analyse mathématique et
a la description géométrique. De plus, elle permet d’exprimer
la variabilité spatiale des phénoménes naturels en fonction
de I'échelle d'observation et, de ce fait, les notions fondamen-
tales comme l'autosimilarité et la dimension fractionnaire
possédent une composante géographique évidente.
L'utilisation adéquate de ces concepts s’avére prometteuse
et tout a fait pertinente pour I'avenir de la science géogra-
phigue. Il a ainsi été clairement démontré que plusieurs phé-
noménes naturels possédent certaines propriétés fractales,
c'est-a-dire une variation de la complexité ou de l'irrégularité
selon le degré de résolution. En milieu naturel, les fonctions
stochastiques fractales ne sont toutefois applicables qu'en
bandes étroites, séparées ou non par des zones de transi-
tion. Différents facteurs peuvent étre invoqués pour expliquer
cette structure fractale généralement rencontrée en milieu
naturel. Parmi ces exemples, on peut mentionner la taille
limite des structures sédimentaires observées dans les cours
d’eau alluviaux (Robert, 1988a, b), des changements dans
les processus physiques (Goodchild, 1982; Roy et al., 1987,
Montgomery et Dietrich, 1992), la discontinuité entre I'échelle
spatiale des versants et celle des réseaux de drainage

Période

Altitude relative de
la surface du marais

/ hydrologique
/ \ .

Accretion verticale i
Augmentation ~
du niveau marin

Accrétion verticale
nette

+
i Mecanismes Croissance
i3 d'accumulation * de la végétation FIGURE 14. Ensemble des
relations utilisées par Phillips

(1992) dans une analyse de la sta-
bilité des terres humides.

Set of relations used by Phillips
(1992) in the analysis of the stabil-

ity of wetlands.
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(Culling et Datko, 1987), la faible profondeur de plusieurs
cours d'eau qui limite le développement de structures turbu-
lentes de grande taille, etc. Les différences observées entre
le modele et les données peuvent donc permettre d'inférer
des variations de processus avec I'échelle ou la localisation
et de ce fait, contribuer de fagon singuliére a I'explication de
certains phénoménes géomorphologiques.

Les méthodes employées pour estimer la dimension de
Hausdorff sont variées. Nous avons décrit les deux plus
importantes (tout au moins les plus utilisées), soit le dia-
gramme de Richardson pour les courbes fermées dans un
plan, et le semi-variogramme pour les séries unidimension-
nelles. Différents algorithmes reliés a la méthode de
Richardson sont également présentés par Longley et Batty
(1989 a, b) et Hayward et al. (1989). Roy et al. (1987) ont
également noté que la dimension fractionnaire estimée a par-
tir d'une surface est du méme ordre de grandeur que la
moyenne des valeurs de D obtenues & partir de profils ou de
courbes de niveau. Toutefois, le variogramme des surfaces
masque généralement la variation de D selon la direction et
I'altitude, et cette technique devrait étre employée avec pru-
dence. Le variogramme global peut donc masquer des écarts
locaux importants dans la valeur de D et un certain nombre
d'incertitudes demeurent dans l'interprétation des variogram-
mes de surface, principalement.

Finalement, deux approches se sont constituées sur la
modélisation fractale des phénomeénes géographiques. La
premiére consiste principalement en 'utilisation des fractales
comme hypotheése nulle, c'est-a-dire comme point de réfe-
rence qui sert a étudier les propriétés statistiques des séries
spatiales de données reliées & des phénoménes naturels
(Burrough, 1984, 1985; Goodchild et Mark, 1987; Goodchild,
1988). Dans le cas plus précis des propriétés statistiques des
surfaces topographiques, la propriété d'autosimilarité des
surfaces fractales permet leur utilisation comme hypothése
nulle (ou surface initiale) pour I'étude des processus géomor-
phologiques (Goodchild et Mark, 1987). La plupart des
études en géomorphologie et autres domaines des sciences
naturelles montrent que les phénomeénes naturels ne pré-
sentent les propriétés fractales que pour d’étroites bandes.
La dimension fractale peut donc varier de fagon trés impor-
tante avec I'étendue d'échelles considérées. L'utilisation des
fractales en tant qu'hypothése nulle s'est donc avérée plutdt
fructueuse puisque lI'absence d'autosimilarité permet cer-
taines conclusions sur les processus en cause.

Une deuxiéme approche sur la modélisation fractale des
surfaces topographiques a été élaborée par W.E.H. Culling
dans une série d'articles récents (Culling, 1986b, 1987a,
1988 a, 1988 b, 1989; Culling et Datko, 1987). Les travaux de
Culling visent essentiellement & établir les liens entre les frac-
tales, la théorie du chaos dans un contexte géomorphologi-
que et les systémes dynamiques. Culling intégre ainsi les
processus dans la modélisation des surfaces topogra-
phigues. Il établit des liens entre les surfaces fractales et la
théorie de la diffusion comme mécanisme d'évolution des
surfaces géomorphologiques recouvertes d'un sol et montre
qu'une surface fractale est le résultat de I'évolution davi-
sienne des paysages. Un des points fondamentaux qui se
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dégage des travaux de Culling consiste en l'utilisation des
fractales comme fondement théorique en sciences de la
Terre. Cette approche, d'un niveau conceptuel et mathéma-
tique élevé, permet néanmoins de montrer que I'emploi des
fractales en géographie déborde la mesure et la modélisation
descriptive. Culling a aussi ouvert la voie a ce qui pourrait se
réveler étre un progrés fondamental des sciences naturelles
au cours des prochaines années.
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