Timing and position of Late Wisconsinan ice-margins on the upper slope seaward of Laurentian Channel
Chronologie et emplacement des marges glaciaires sur le talus supérieur au large du Chenal laurentien
Cronología y localización del margen glaciar durante el periodo wisconsiniano tardío de la vertiente costera superior del canal del san lorenzo

David J. W. Piper et Adam Macdonald

Volume 55, numéro 2, 2001
URI : https://id.erudit.org/iderudit/008298ar
DOI : https://doi.org/10.7202/008298ar

Résumé de l'article
Au cours du dernier maximum glaciaire, le principal exutoire à travers le Chenal laurentien se terminait sur le talus continental supérieur. Une surface de 10 km² sur le talus supérieur a été étudiée en détail, à l'aide de profils résultant de l'utilisation de divers instruments de sismique réflexion. Le glissement pendant le tremblement de terre de 1929 au Grand Banc a causé la mise à nu sur le fond marin de sédiments du dernier maximum glaciaire, normalement enfouis sous des dizaines de mètres de nouvelles couches. Les lithofaciès et faciès acoustiques ont été interprétés à l'aide de critères mis au point sur la plate-forme continentale et la chronologie a été fournie par les datations SMA faites sur des coquillages de mollusques in situ. Les données sismiques font ressortir une crête morainique à 500 m snm (sous le niveau actuel de la mer) correspondant à la ligne d'ancrage au dernier maximum glaciaire. Un changement dans le régime thermique de la glace ou une éruption d'eau de fusion sousglaciaire à 16,5 ± 0,15 ka (âge corrigé à -0,4 ka, compte tenu de l'effet de réservoir) a causé la libération d’eau de fusion enfouie qui a creusé des ravins sur le talus continental. Cette surface d’érosion a immédiatement été recouverte par un important diamicton pierreux jusqu’à 700 m snm, qui semble être un till déposé au cours d’une crue glaciaire. La marge glaciaire s’est par la suite retirée vers l’amont vers 16,3 ka, à l’emplacement de l’importante moraine située à 380 m snm, sur le bord du chanal Laurentien. Des indices tirés des boues de turbidites sur l’éventail Laurentien laissent croire que cette position de la marge glaciaire a été maintenue jusque vers 14,2 ka. La glace s’est ensuite rapidement retirée vers le nord le long du chenal Laurentien, vers 14 ka (Épisode de Heinrich 1/Heinrich Event 1). Des sédiments proglaciaires plus récents se sont effondrés vers 12 ka, probablement en raison d’une surcharge causée par une récurrence glaciaire tardive à travers le banc de Saint-Pierre.
TIMING AND POSITION OF LATE WISCONSINAN ICE-MARGINS ON THE UPPER SLOPE SEAWARD OF LAURENTIAN CHANNEL

ABSTRACT At the last glacial maximum, the major ice outlet through Laurentian Channel terminated on the upper continental slope. A 10 km square area of the upper slope has been investigated in detail, using airgun and boomier seismic reflection profiles and piston cores. Sediment failure during the 1929 Grand Banks earthquake resulted in exposure of the seabed of Last Glacial Maximum (LGM) sediments that are normally buried beneath tens of metres of younger strata. Ice-margin acoustic and lithofacies are interpreted using criteria developed on the continental shelf and chronology is provided by AMS radiocarbon dates on in situ mollusc shells. Seismic data show a morainal ridge at 500 mbsl (m = metres below present sea level) corresponding to the Last Glacial Maximum ice-grounding line. A change in thermal regime of the ice or a subglacial meltwater outburst, at 16.5 ± 0.15 ka (radiocarbon years, 0.4 ka marine reservoir correction applied), resulted in release of sediment-laden meltwater that eroded gullies on the continental slope. This erosion surface is immediately overlain by a prominent stony diamict that extends to about 700 mbsl and may represent till deposition from a glacial surge. The ice margin then retreated upslope by 16.3 ka, probably to the prominent moraine at 380 mbsl at the tip of the Laurentian Channel. Evidence from mud turbidites on Laurentian fan suggests that this ice marginal position may have persisted until about 12 ka. A serious gully was entrenched rapidly northwards on Laurentian Channel, synchronous with Heinrich Event 1 at about 14 ka. Younger proglacial sediment on the upper continental slope slumped at about 12 ka, probably as a result of loading by a late-ice advance across St. Pierre Bank.

RÉSUMÉ Chronologie et emplacement des marges glaciaires sur le talus supérieur au large du Chenal laurentien. Au cours du dernier maximum glaciaire, la principale sortie d’iceberg vers le Chenal laurentien se terminait sur le talus continental supérieur. Une surface de 10 km² sur le talus supérieur a été étudiée en détail, à l’aide de profils de réflexion utilisant divers instruments de sismique réflexion. Le glissement pendant le tremblement de terre de 1929 au Grand Banc a causé la mise à nu sur le fond marin de sédiments du dernier maximum glaciaire, normalement enfouis sous des dunes de mètres de nouvelles couches. Les lithofacies et faciès acoustiques ont été interprétés à l’aide de critères de l’océan Atlantique et la chronologie a été fournie par des datations AMS faites sur des coquillages in situ. Les données sismiques ont révélé une grande moraine de 500 m msnm (sous le niveau actuel de la mer) correspondant à une ligne d’ancrage au dernier maximum glaciaire. Un changement dans le régime thermique de la glace ou une éruption d’eau de fusion en sous-glaciaire à 16.5 ± 0.15 ka (âge corrigé à 0.4 ka, comp. tenu de l’effet de réservoir) a causé la libération d’eau de fusion enfouie qui a creusé des vallées sur le talus continental. Cette surface d’érosion a immédiatement été recouverte par un important diamicte piédestal jusqu’à 700 m msnm, qui semblerait être un remplissage déposé en cas de crue glaciaire. La moraine glaciaire s’est ensuite située vers 16.3 ka, à l’emplacement de l’important moraine située à 380 m msnm, sur le bord du chenal laurentien. Des indices tirés des bouées de turbidites sur l’éventuel débouché de la glace laurentienne montrent que cette position de la marge glaciaire a été maintenue jusqu’à vers 14.2 ka. La glace s’est ensuite rapidement retirée vers le nord le long du chenal laurentien, vers 14 ka (Épisode de Heinrich 1/Événement 1). Des sédiments proglaciaires plus récents se sont enfouis vers 12 ka, probablement en raison d’une succession causée par une récurrence glaciaire tardive à travers le banc de Saint-Pierre.

Manuscrit reçu le 29 février 2001; manuscrit révisé accepté le 12 février 2002.
** Geographical Survey of Canada contribution nº 2000245
**E-mail address: piper@agc.bio.ns.ca

RESUMEN Cronología y localización del margen glacial durant el periodo wisconsinano tardío sobre el fondo continental superior del canal del san lorenzo Durante el pleno máximo glacial, el mayor avance del hielo hacia el continente se uno en las regiones de la vertiente continental. Con la ayuda de diversos métodos de perfil de refacción acústica, un área de 10 km² de la vertiente superior a sido investigada en detalle. En 1929 el terremoto acaecido en Grand Banks, junto al descubrimiento de la formación de aguas de fusión compuesto por sedimentos del periodo climático de la última glaciación, dichos sedimentos generalmente se encuentran sepultados a decenas de metros de los estratos mas recientes. La interpretación del margen acústico del hielo y las litofacies fue establecida con base a criterios desarrollados en la zona continental, la edad de las formaciones fue proporcionada por la datación AMS de isotopos de carbono radiactivo en sustrato sobre conchas de moluscos. Los datos acústicos indican una cima morániaca a 500 m brm (brm- metros bajo el nivel del mar) correspon- diente a la línea de anclaje durante el cli- max de la ultima glaciación. Un cambio en el régimen térmico del hielo o un esparcimiento subglacial que generó la fusión del agua a 16.5±0.15 ka (años de radiocarbono, -0.4 ka considerando la corrección debido al efe- to de «recipiente» marino) dio por resultado la liberación de aguas de fusión, y que generó las barrancas de la vertiente continental. Dicha erosión superficial fue inmediatamente recubierto por una capa tópica de diamicto que se exten- dió hasta 700 m msnm, que sembró una nueva erosión del hielo. El margen del hielo retrocedió hacia 16.3 ka, probablemente hasta la moraña situada a 380 m msnm al borde del canal loreniano. Ciertos índices obtenidos a partir de la fusión de la arena hacia el norte del canal loreniano a igual tiempo que el Evento 1 de Heinrich, aproximadamente 14 ka. Algunos sedi- mentos proglaciares más recientes en la parte superior de la vertiente continental se hun- dieron hacia unos 12 ka, probablemente como resultado de una progresión tardía del hielo hacia el banco de St. Pierre .
INTRODUCTION

The Laurentian Channel (Fig. 1) was the major ice outlet of the Appalachian Ice Complex and the southeastern portion of the Laurentide Ice Sheet (Grant 1989). When glacial ice extended to the top of the continental slope, it played an important role in supplying sediment to Laurentian Fan (Uchupi and Austin, 1979; Skene, 1998), the largest Pleistocene sediment depocentre off southeastern Canada. Calving of icebergs from this ice margin was an important source of ice-rafted detritus to the North Atlantic Ocean (Bond and Lotti, 1995). The deglacial history of the ice outlet in the Gulf of St. Lawrence since about 14 ka has recently been documented by Josenhans and Lehman (1999). In this paper, we attempt to define the glacial history of the ice outlet around the Last Glacial Maximum (LGM).

METHODS

The principal data set for this study is a detailed seismic survey in August 1999 using a Huntec Deep-Tow Seismic boomer system and one piston core (99036-01) located on the

![Image of a map showing the region of interest.](image-url)
basis on this survey (Fig. 2a). Previous data from the area include high-resolution sparker seismic-reflection profiles, run along strike, that were interpreted by Bonifay and Piper (1988) and a 1-km swath deep-water sidescan survey and coincident airgun seismic reflection profiles, interpreted by Piper et al. (1999). Several piston cores have been collected from the area on previous cruises. Navigation for cruises since 1990 has been by GPS; earlier cruises used Loran C. All AMS radiocarbon ages (Table I) are reported in radiocarbon years with a -400 year reservoir correction.

FIGURE 2. Detailed map of study area showing (a) location of seismic reflection profiles and cores and (b) interpreted sidescan sonar imagery (Piper et al., 1999).

SEISMIC STRATIGRAPHY

Regional seismic stratigraphy is known from multichannel seismic profiles STP-1 and STP-5 illustrated by MacLean and Wade (1992). These show that the modern shelf break approximately corresponds to the shelf break at the base of the Tertiary and that a series of basin-dipping normal faults underlie the outer shelf and upper slope. Regional airgun single-channel seismic reflection profiles (Fig. 2a) show that the outermost part of Laurentian Channel
described by various authors (e.g. Mosher et al., 1989; Piper, 2000). Relationships are found in several areas along the upper continental shelf. This unit correlates with the LaHave Clay Formation on the Scotian Slope and is interpreted as representing the transi-

tion from a long-lived grounding line into strati-

graphie and the acoustically incoherent strata pass downslope into approximately the 500 m isobath, where there is a low ridge underlies a series of three till-tongues off St. Pierre Bank and one off Misaine Bank, the latter interpreted as dating from about 13.5 ka by Stea et al. (1988) on northwestern St. Pierre Slope (Fig. 4). King and Fader (1990) showed that this till stratigraphie and Piper (1988) on deeper water (Figs. 4 and 5) but higher on the slope appears like two units.

d) an acoustically incoherent but strongly reflective unit with an irregular upper surface (Fig. 4). This unit has the acoustic character of tills that have been sampled on the conti-

nental shelf (cf. King and Fader, 1986). The distribution of this unit is patchy, but it is generally about 5 ms (~4 m) thick. The unit conformably (Fig. 5) overlies older acoustically stratified sediment in places, but elsewhere there is a pronounced unconformity (Fig. 6) that in places is marked by deep gullies (Fig. 4b). The downslope limit of the diamict unit appears to be at about 700 mbsl (Fig. 2b).

e) a lower unit of acoustically stratified sediment underlies the diamict unit. This unit is at least 15 m thick and passos upslope into an inferred morainal ridge at about 500 mbsl (Figs. 2b and 3a).

Widespread slumping during the 1929 "Grand Banks" earth-

quake (Piper et al., 1999) resulted in prominent headscars forming in water depths of 500-700 mbsl (Fig. 2b). These fai-
lures removed the entire sediment sequence above the diamict horizon (d above) (Fig. 4).

PISTON CORE CONTROL AND RADIOCARBON CHRONOLOGY

The uppermost stratified unit has been sampled by seve-

ral piston cores, including 86001-05 (Fig. 4), for which a series of radiocarbon dates is available. The Holocene section com-

prises ~1 m of sandy silt with scattered mollusc shells. It over-
lies 2.5 m of alternating olive grey bioturbated mud and lami-
nated sandy silt beds, with radiocarbon ages of between 10.55 and 10.75 ka. Beneath this, a 4.6 m long interval of bioturba-
ted muds corresponds to the acoustically transparent unit. Upslope, where the acoustically transparent unit is incoherent and has surface relief, core 86034-04 retrieved 20 cm of Holocene sandy silt overlying 2 m of alternating bioturbated mud and sandy silt beds, resting on a mud clast conglomerate of highly contorted blocks of a variety of types of mud. Such mud clast conglomerates are typical of rotational slumps and debris flows found elsewhere on the Scotian Slope (Piper et al. 1985; Shor and Piper, 1989).

1. All ages expressed in radiocarbon years with a ~400 year marine reservoir correction

2. In radiocarbon years with a ~400 year reservoir correction
The stratified unit capped by the orange reflector has not been penetrated by cores, except for its extreme base in core 99036-01. This core, located within a slump scar, penetrates a thin sequence of the diamict unit near its downslope limit, together with the underlying stratified sediment (Fig. 7). The uppermost 30 cm consists bioturbated silty mud that rests apparently unconformably on stiff grey mud, 1.3 m thick, with sparse dropstones and alternating bioturbated and unbioturbated intervals. This is interpreted as the base of the stratified unit that is capped by the orange reflector. It overlies 55 cm of alternating laminae (1-3 cm) of brown and grey sandy gravelly mud, interpreted as a proximal ice-meltout facies (Fig. 3a). Neither diamict nor underlying grey mud appears overconsolidated, suggesting that if the diamict is a till, then ice was essentially supported by its buoyancy. Three radiocarbon dates from this core show a progressive increase in age downcore. A date of 16.37 ka was obtained from a single valve of a bivalve mollusc at a depth of 1.15 m in the core, 45 cm above the top of the laminated sandy gravelly mud. Bivalve mollusc fragments in the diamict (presumably reworked from the underlying sediment) dated at 16.55 ka (Table I). The consistency of these dates suggests that they reliably date the diamict and the underlying erosion surface as younger than 16.53 ± 0.15 ka but older than 16.37 ± 0.05 ka.
DISCUSSION

INTERPRETATION OF ACOUSTIC FACIES AND LITHOFACIES

The bioturbated grey muds of the lower stratified unit closely resemble glaciomarine muds described by Gipp (1994) as lithofacies 2 of the Emerald Silt Formation from Emerald Basin on the Scotian Shelf (Fig. 1). Off Laurentian Channel, these muds appear to pass upslope into a morainal ridge (Fig. 3a), similar to relationships seen elsewhere on the Scotian and Grand Banks margins (Bonifay and Piper, 1988; Mosher et al., 1989; Piper, 2000). If sedimentation rates are similar to the 20 m/ka determined by Bonifay and Piper (1988) close to ice margins on St. Pierre Slope, then the 15 m of muds could represent as little as a thousand years of sedimentation, but on the steep continental slope, overall sedimentation rates were likely lower than in an enclosed basin.

The overlying diamict is interpreted as a till, on the basis of its acoustic character, downslope limit at about 700 mbsl, and lithology. The possibility that it is an aquatill rather than a lodgement till cannot be excluded. The downslope limit has been mapped at about the same water depth over a distance of 6 km, suggesting that it is not an ice-margin debris flow facies, which would show more irregular downslope extent. Likewise, if it were a proximal glaciomarine facies, its abrupt termination in acoustic records is difficult to account for. The alternating brown and grey sandy gravelly muds are similar to lithofacies 1 of Gipp (1994), interpreted as deposited proximal to melting and calving ice. They have a much higher proportion of coarse ice-rafted detritus than the muds underlying the diamict, which seismic reflection profiles show accumulated only 1.5 km from the ice margin marked by the morainal ridge. The overlying alternating bioturbated and unbioturbated muds with dropstones are similar to Gipp's lithofacies 2. He demonstrated that these accumulated within 10 km of a marine ice margin. Only the extreme base and top of this acoustically stratified section between the diamict and reflector c has been sampled (Figs. 4a and 5). It has a mean sediment accumulation rate of about 3 m/ka. Given the radiocarbon age of reflector c as 10.75 ka and the 16.37 ka date just above the diamict, the interpolated age of the orange reflector is about 14.1 ka (Fig. 3b). This prominent reflector thus has an age similar to the brick-red sandy-mud ice-rafterd horizon "d" described by Piper and Ikene (1996) on the Scotian margin, which they interpreted as transported by ice-rafting during rapid calving.

Geographie physique et Quaternaire, 55(2), 2001
a water depth of about 500 mbsl. Beyond the ice margin, glaciomarine muds accumulated. We suggest that loading by this ice on the upper slope probably triggered upper slope failure and development of slumps and debris flows (as proposed elsewhere on the Scotian Slope by Mulder and Moran, 1995).

A GLACIOLOGICAL INTERPRETATION OF THE SEDIMENT SEQUENCE

The morainal ridge at 500 mbsl is interpreted as a stable ice margin position of perhaps 1 ka duration that is a little older than 16.4 ka (Fig. 8). We suggest that this is likely the ca. 18 ka Last Glacial Maximum position of ice in Laurentian Channel and that the ice margin was stable for at least a thousand years, based on the thickness of proglacial stratified sediment. Following this, there was an erosional event that cut deeply incised gullies in places and appears to have had little effect in other places. The erosional agent was presumably sediment-laden water: the gullies appear too narrow (Fig. 4b) for the erosion to have been by ice. The gully erosion also continues into deeper water, suggesting that it was not exclusively by subglacial meltwater. The position of the ice-margin at this time is unknown, but with the shelf break at 380 mbsl, this erosion cannot be related to a lowstand of sea level. Neither is upper slope sediment failure an adequate mechanism to explain such 10-20 m deep erosion. We suggest that the erosion resulted from an event that released erosive subglacial meltwater, which continued to flow down the steep slope as hyperpycnal flows. Overlying the erosion surface is a discontinuous stony diamict that extends to water depths of about 700 mbsl. Its age is less than 200 years younger than the erosional surface, suggesting that the two events may have been glaciologically related. They appear to represent a change in glacial conditions similar to that inferred for Heinrich events in Hudson Strait, i.e., either a change in basal temperature regime to warm-base conditions (MacAyeal, 1993) or release of dammed subglacial water (Johnson and Lauritzen, 1995).

The age of this event corresponds to the Scotian Phase of Stea et al. (1998). Following deposition of the diamict, the abundance of ice-rafted detritus suggests proximity to an ice margin that calved or melted much more vigorously than the LGM ice margin, perhaps because of changed thermal regime of the ice. The rapid upward decrease in abundance of ice-rafted detritus suggests that the ice margin retreated rapidly. It may have restabilised at the lip of Laurentian Channel, at about 380 mbsl, where there is a prominent morainal ridge in the Lower Till (Fig. 1). We suggest that this ice margin persisted until about 14.2 ka and supplied suspended sediment that accumulated as mud turbidites on Laurentian Fan. Deposition of these mud turbidites terminated abruptly and typically 0.5 m above the topmost turbidite is a distinctive bed of ice-rafted sandy-gravelly mud derived from the Gulf of St. Lawrence and dated at about 14.0 ka (Piper and Skene, 1998).
Available radiocarbon dates suggest that the retreat of ice from the end of Laurentian Channel back into the Gulf of St. Lawrence took place at about 14 ka within a span equivalent to the error range of radiocarbon dating and uncertainties in reservoir corrections and bioturbational mixing. The youngest date in red mud turbidites on Laurentian Fan, 4 m below the ice-rafted ice-rafted sandy-gravelly mud bed, is 14.09 ± 0.09 ka (Piper et al., 1999). Keigwin and Jones (1995) obtained an age of 14.00 ± 0.06 ka from 15 cm above the mud turbidites and Piper and Skene (1998) reported an age of 14.0 ± 0.2 ka at a similar stratigraphic level. About 100 km southwest of Cabot Strait, Josenhans and Lehman (1999) reported an age of 14.31 ± 0.15 at the base of glaciomarine sediment in core V17-179 and 80 km northeast of Cabot Strait, a date of 14.02 ± 0.17 ka at the base of the glaciomarine section in core HU90028-037. The rapid retreat of ice implied by the Josenhans and Lehman (1999) dates was probably responsible for the release of voluminous ice-rafted detritus to give ice-rafted sandy-gravelly mud bed over much of the Scotian margin (Piper and Skene, 1998). This event initiated the rapid retreat of ice from Laurentian Channel, which Josenhans and Lehman (1999) documented as retreating to Anticosti Island (Fig. 1) by 13.7 ka. Shaw et al. (2000) reported open water along the southwest coast of Newfoundland starting about 14.2 ka. Following this retreat, ice occupied Halibut Channel (Moran and Fader, 1997) and crossed St. Pierre Bank (Bonifay and Piper, 1988) at about 12 ka. Whether this represented local ice developed on St. Pierre Bank or was derived from southeastern Newfoundland, probably the Avalon Peninsula, as suggested by detrital petrology, is not clear. We postulate that this ice advance caused the widespread slumping on the upper slope off the eastern Laurentian Channel.

CONCLUSION

1. At the LGM, ice was grounded to 500 mbsl seaward of Laurentian Channel and built a morainal ridge.

2. A change in thermal regime or a subglacial meltwater outburst, between 16.54 ± 0.15 ka and 16.37 ± 0.05 ka, resulted in release of sediment-laden meltwater that caused local gully erosion on the continental slope. This erosion surface is overlain by a prominent stony diamict that extends to about 700 mbsl and may represent till deposition from a glacial surge.

3. The ice margin then appears to have retreated upslope, probably to the prominent moraine at 380 mbsl at the lip of the Laurentian Channel. Evidence from mud turbidites on Laurentian Fan suggests that this ice marginal position persisted until about 14.2 ka.

4. Ice retreated rapidly northwards up Laurentian Channel at about 14 ka. Younger proglacial sediment on the upper continental slope slumped at about 12 ka, probably as a result of loading by a late-ice advance across St. Pierre Bank.
ACKNOWLEDGMENTS

Work supported by Program of Energy Research and Development (PERD). We thank the Master, officers and crew and GSCA technical staff on CCGS Hudson. The manuscript was improved by the internal reviews of John Shaw and Heiner Josenhans and by the comments of Serge Occhietti, Bernard Long and an anonymous referee.

REFERENCES

FIGURE 7. Photographs and lithostratigraphy of the middle part of core 99036-1.
Photographies et lithostratigraphie de la partie centrale de la carotte 99036-1.

FIGURE 8. Cartoon showing generalised stratigraphy and inferred ice history at the seaward end of the Laurentian Channel in the Late Wisconsinan.
Stratigraphie générale et évolution glaciaire du chenal Laurentien à sa limite vers le large pendant le Wisconsinien supérieur.

