Late Wisconsinan Sedimentation in the Québec City Region: Evidence for Energetic Subaqueous Fan Deposition During Initial Deglaciation

Don Cummings et Serge Occhietti

Volume 55, numéro 3, 2001

URI : id.erudit.org/iderudit/006854ar
DOI : 10.7202/006854ar

Résumé de l'article

Tous droits réservés © Les Presses de l’Université de Montréal, 2001
Late Wisconsinan sedimentation in the Québec City region: evidence for energetic subaqueous fan deposition during initial deglaciation

Don Cummings* and Serge Occietti, respectively, Département des Sciences de la Terre, Université du Québec à Montréal, C.P. 8888, succursale Centre-ville, Montréal, Québec H3C 3P8, and Centre de recherche en géochimie isotopique et en géochronologie (GEOTOP), Université du Québec à Montréal, C.P. 8888, succursale Centre-ville, Montréal, Québec H3C 3P8.

ABSTRACT: In the St. Lawrence Valley just west of Québec City, initial deglaciation was accompanied by an energetic northward discharge of meltwater into a body of water, possibly subglacial, that was present in the axis of the valley. At Pointe Saint-Nicolas, a thick (> 35 m) ice-proximal sandy subaqueous fan was deposited during this event. The subaqueous fan is composed primarily of northwest-dipping turbidite sheets, with minor hyperconcentrated underflow channel fills and gravel-outwash deposits. By 11 200 14C BP, subaqueous fan sedimentation had stopped, and massive to rhythmically interbedded glaciomarine muds were being deposited.

RESUME: La sédimentation dans la région de Québec au Wisconsinien supérieur : mise en place d’un cénose sableux de turbidité à l’origine d’une phase initiale de la déglacia
dation. Pendant la phase initiale de la déglaciation de la vallée du Saint-Laurent, dans la région à l’ouest de la ville de Québec, des eaux de fonte à haute énergie se sont déversées vers le nord dans une masse d’eau très probablement sous-glaciaire localisée dans l’axe de la vallée. Ce déversement est à l’ori
gine d’un cône sableux de turbidité à penda
gne nord-ouest, associé à des dépôts de cou
cants de fond hyperconcentrés et à des graviers et galets d’édapage proglaciaire. Vers 11 200 14C BP, des boues glaciomarines massives et des tufs intercalés de rythmites sont déposés dans l’axe de la vallée en con
dien a progressé de nouveau jusque sur la rivière sud de l’actuel Saint-Laurent et déposé le til sous-glaciaire de Saint-Nicolas. Les cou
cants de marée ont ensuite remanié les litto
rax progradement progressivement engloutis par l’atome sous-aquatique. Les dépôts fluviatiles ont commencé à inciser des vallées, en éro
dant et redéposant les dépôts antérieurs.

RESUMEN: Sedimentación del wisconsiniano tardío en la región de la ciudad de Quebec, Canadá: evidencia de un depósito subacuá
tico en cono de alta energía durante el de
deshielo inicial. En el valle del San Lorenzo justo al oeste de la ciudad de Quebec un deshielo precoz fue acompañado de una des
carga energética de agua de fusión en direc
tión norte hacia un cuerpo de agua proba
damente subglacial ya presente en el eje del
deshielo. En Punto San Nicolas ese derrame dio origen a un depósito arenoso próximo al hielo de un espesor de 35 m en forma de cono. Dicho cono subacuático estuvo compuesto en primer lugar por capas de turbid del noreste asociados en la altillo con corrientes de fondo hiperconcentradas y aluvión de grava. Hacia aproximadamente 11 200 BP, la sedi
timentación del cono subacuático se detuvo y simultáneamente cantidades masivas de todos glacioclimatos fueron depositados de manera íntima. La introducción de lodo en la cuenca provocó la fractura de la pendiente subacuática y conllevó la acumulación de desechos locales. Entre 10 950 y 10 800 BP, La Capa glacial Lorenzana avanzó nuevamente en dirección sur hasta la negra originando el depósito subglacial de las Tillas de San Nicolás. Posteriormente, las cor
rrientes de maresas fueron definiendo el litoral emergente mientras que el sistema fluvial fue provocando la adición de los valles.
INTRODUCTION

The deglacial history of the Quebec City region is poorly understood, and has proven difficult to integrate into larger basin-scale deglacial models of the St. Lawrence Valley (LaSalle et al., 1984; Chaunin et al., 1985; Parent and Occhietti, 1988, 1999; Occhietti et al., 2001b). During deglaciation, the greater Quebec City region acted as a gateway for major meltwater discharges into the Atlantic Ocean (Parent and Occhietti, 1988, 1999; Rodrigue and Vilks, 1994). Detailed ice margin reconstructions related to the Appalachian orogen, which outcrop on the south shore of the St. Lawrence River, and volcanic, carbonate, and siliciclastic rocks of the Canadian Shield, which outcrop on the north shore of the St. Lawrence River, 2) carbonate mudstones and wackestones of the Champlain Sea, which he called the Beaupré Till (Fig. 1). These events are poorly constrained in time and space. In an attempt to provide insight into the deglacial history of the Quebec City region, this paper investigates the sedimentology of a well-exposed outcrop in a sand pit at Pointe Saint-Nicolas that has served as the de facto type section for the Quebec City region.

The Pointe Saint-Nicolas site is located in the axis of the St. Lawrence Valley ~10 km west of Quebec City on the south shore of the St. Lawrence River (Fig. 1). Topography on the valley floor slopes gently northward (< 1°) towards a ~50 m high bedrock cliff that lines the south shore. The sand pit is perched in a knickpoint cut into the bedrock cliff. Bedrock in the Quebec City region can be divided into three major provinces, as follows: 1) granitoid rocks of the Precambrian Shield, which outcrop on the north shore of the St. Lawrence River, 2) carbonate mudstones and wackestones of the St. Lawrence Platform, which occur in the axis of the valley, and 3) volcanic, carbonite, and siliciclastic rocks of the Appalachian orogen, which outcrop on the south shore of the St. Lawrence River (Fig. 1). Overlying ice stream

DEGLACIATION OF THE ST. LAWRENCE VALLEY

Quebec City is located between two regions of the St. Lawrence Valley with contrasting Late Wisconsinan deglacial histories. Deglaciation east of Quebec City was marked by the development of a northeast flowing ice stream in the valley axis. Between ~13 500 and ~12 000 14C BP, an arm of marine water, possibly in the form of a calving bay (Thomas, 1977), migrated inland against the ice stream from the Atlantic Ocean to at least the Saguenay River and possibly to a position near Quebec City, forming the Goldthwait Sea (Stein et al., 1998; Occhietti et al., 2001). This effectively isolated a large ice mass over the Appalachians from the Laurentide Ice Sheet (LaSalle et al., 1977; Chaunin et al., 1985). Glacial landform and sedimentological data suggest that the Appalachian ice mass extended as far west as the Bois Francs region (Fig. 1).

In contrast, in regions west of Quebec City the Laurentide Ice Sheet receded northward as a single sheet, and deposited a series of end moraines and eskers on the Appalachian uplands (Fig. 1). Here, ice-pounded lakes formed between the ice front and the Appalachian Mountains. The last glacial lake, Lake Candona, extended > 350 km up the St. Lawrence Lowlands west of the Bois Frans region (Parent and Occhietti, 1988, 1999). At some time between 12 000 and 11 500 14C BP, Lake Candona drained into the Goldthwait Sea, dropping somewhere between 18 to 60 m in the process (Parent and Occhietti, 1988; Rodrigue and Vilks, 1994). Mixing of the marine waters with residual freshwater in the former Lake Candona basin formed the Champlain Sea. The next conclusive ice margin position north of moraines on the Appalachian uplands is the St. Narcisse Moraine (Fig. 1), which was deposited on the north shore of the St. Lawrence River by the Laurentide Ice Sheet at ~10 800 14C BP (LaSalle and Eton, 1975). The period of deglaciation of the drainage of Lake Candona (12 000-11 500 14C BP) and the St. Narcisse Moraine

STRATIGRAPHY AND PREVIOUS WORK

The initial Quaternary stratigraphic framework for the Quebec City region (Fig. 2) was established by LaSalle (1984, 1989). He distinguished two subglacial tills deposited prior to the last deglaciation (Pointe Saint-Nicolas and Beaupré tills) with intervening silt, sand and gravel, which he grouped vertically under the Anse-aux-Hirondelles Formation, and muddy varves which he called the Beaupré Formation. The uppermost till is overlain by undifferentiated Champlain Sea mud, sand and gravel. At a later date, he identified a Late Wisconsinan fissile diamicton intercalated with the Champlain Sea deposits below the St. Nicolas Till (LaSalle and Shilts, 1993). Radiocarbon dates ranging between 28 375 14C BP (UGa-463) and > 42 000 14C BP (GSC-3420) obtained from plant macrofossils from Subunit 1 of the Anse-aux-Hirondelles Formation (Fig. 3) have been used to infer a Middle Wisconsinan age for the entire Anse-aux-Hirondelles Formation. A reworked Bathonian bivalve shell collected from the St. Nicolas Till at the site has yielded a date of 11 200 BP (GSC-1476; LaSalle and Shilts, 1993). All of the units outlined in this stratigraphic framework have been previously identified at the Pointe Saint-Nicolas site, with the notable exception of the Quebec City Till (Fig. 3).
LATE WISCONSINAN SEDIMENTATION IN THE QUEBEC CITY REGION

FIGURE 1. Location of the Pointe Saint-Nicolas pit, major deglacial landforms, and bedrock provinces in the greater Quebec City region of the St. Lawrence Valley (from Chauvin et al., 1985; Globensky, 1987; Parent and Occhietti, 1988).

Localisation de la sablière de la pointe Saint-Nicolas, emplacement des principales moraines et limites des provinces géologiques de la région de Québec (d'après Chauvin et al., 1985; Globensky, 1987; Parent et Occhietti, 1988).
event (~10 800 14C BP), which is the interval being investigat-
ed in this paper, is very poorly understood. Radiocarbon ages
from marine shells are presented in 14C years before present
(BP) and are reservoir corrected (~C = 0‰), as used in pre-
vious papers dealing with the Champlain Sea.

METHODOLOGY

Field work was carried out in the summer and fall of 1998,
when the Pointe Saint-Nicolas pit was relatively well exposed
(Fig. 4). Vertical sections were cleared, and spraypoint was
used to trace contacts laterally. Graphic logs of the vertical sec-
tions were drawn, noting sedimentary textures, types and ori-
etations of sedimentary structures, and the nature and ori-
etation of contacts. Following the field season, beds or groups
of beds with similar characteristics were grouped together, and
a list of sedimentary faces was compiled. Facies were then
grouped together into facies associations (FAs). Facies within
a facies association are related in that they represent various
components of a common depositional system.

SEDIMENTARY FACIES AND INTERPRETATION

A total of eight sedimentary facies were identified from ver-
tical sections cleared along the 50 m high by 150 m long south
wall of the Pointe Saint-Nicolas pit (Fig. 5). Facies descrip-
tions and interpretations are presented in detail below, and in
abridged format in Table I.

FACIES 1: MUD WITH RARE PEBBLES

Facies 1 is composed of massive gray and olive coloured
mud with rare pebble or cobble clasts (< 10 %) and occasion-
ally thin (< 1 mm) horizontal sandy partings (Fig. 6a). Lower-

![FIGURE 2. Proposed Quaternary stratigraphic frameworks for the Quebec City area (modified from LaSalle, 1984, 1989; LaSalle and Shilts, 1993). Cadre stratigraphique proposé pour la région de Québec (modifié de LaSalle, 1984, 1989; LaSalle et Shilts, 1993).](image)

![FIGURE 3. Previous descriptions of the Pointe Saint-Nicolas section (from LaSalle et al., 1977, and LaSalle 1989). Descriptions antérieures de l’afﬂeurement de la pointe Saint-Nicolas (d’après LaSalle et al., 1977; LaSalle, 1984).](image)
contacts are gradational, draped or intercalated. Clasts are commonly striated, and are of mostly carbonate wackestone and mudstone lithology, with minor percentages of red shale, granitoid, and sandstone (Fig. 7a). A very low-density, low-diversity faunal assemblage consisting of *Balanus hameri* and *Portunidae* arctica is present. Shells are typically articulated and are occasionally in growth position.

Interpretation: Glacial marine suspension deposits. These deposits are interpreted to have settled out of subaqueous suspension from turbulent meltwater overflows or interflows. The thin (<1 mm) sand laminae may record the transition from traction to suspension sedimentation, or possibly slightly more vigorous overflooding. Striated clasts are interpreted to be melt-out debris deposited from either seasonal sea ice or icebergs. The low-density, low-diversity faunal assemblage with *Portunidae* arctica suggests deposition in a cold, deep-water, low-salinity glaciomarine environment (Hillaire-Marcel, 1980). Interstratification, which is commonly pervasive in modern tidewater glaciomarine settings, is absent in these muds (thin sandy partings notwithstanding), suggesting that tidal, seasonal, and/or other factors that can cause stratification in glaciomarine deposits did not significantly affect deposition of this facies.

FACIES 2: STRATIFIED FINE SAND AND MUD

Facies 2 is composed of thinly interbedded fine sand and pebbly mud (Fig. 6b). Mud/sand couplets are between 4-20 cm thick, with an average of ~10 cm. The mud beds are massive, have a grayish to olive brown colour, and contain rare (=<10 %) pebble and cobbles clasts. Clasts, particularly those of gray carbonate mudstone and wackestone lithology, are often striated. Rare *Portunidae* arctica are present in the mud beds. The fine sand beds are massive to vaguely laminated, and contain no shells or pebbles. Both fine sand and mud beds are ungraded. Contacts between sand and mud interbeds are typically sharp and non-erosional.

Interpretation: Glacial marine suspension deposits with superimposed seasonal and/or other cyclical influence. The interstratified sands and muds are interpreted as being deposited by suspension settling from turbulent meltwater plume overflows in quiet glaciomarine water with seasonal and/or other factors that can cause rhythmicity and stratification (Phillips et al., 1991; Cowan et al., 1999). Although previously interpreted by LaValle (1984) as glaciolacustrine varves of the Braupre Formation (see Figs. 2 and 3), the presence of rare *Portunidae* arctica shells indicates that this facies was deposited in a glaciomarine environment (Hillaire-Marcel, 1980). In modern temperate glaciomarine environments, similar interbedded facies have been interpreted as glaciomarine varves formed by seasonal changes in meltwater discharge and iceberg activity (Cowan et al., 1999). If this facies is varved, sedimentation rates would have been high during deposition, ranging between 40-200 m per 1000 years. This estimate, although seemingly high, falls well within the range of sedimentation rates in modern temperate glaciomarine environments, which can reach several centimetres of sediment deposited per year (Cowan and Powell, 1991).

FACIES 3: NORMALLY GRADED SAND

Beds of well sorted normally graded sand account for 90 % of the sediment exposed in the lower 35 m of the Pointe Saint-Nicolas pit (Fig. 4). Beds are 5 to 100 cm thick. Lower bedding contacts are roughly flat, and can be erosional or non-erosional. Beds typically consist of a conformable succession of subfacies, the most common being (bottom to top) horizontal laminated medium sand to climbing unidirectional ripple cross-stratified fine sand to a wavy laminated mud drapes (Fig. 6c). Beds are sheet-like, dip gently to the northwest (5-12°), pinch out laterally over several decametres, and thin slightly towards the northwest (Fig. 4). Ripple and small scale (<15 cm) dune cross-stratification consistently dips towards the northwest. Pebble and small cobble are very rare, but when present lie along basal contacts. No shells or organic debris were observed in normally graded sand sheets in the lower 35 m of the pit. Normally graded sand sheets also occur in the upper 15 m of the pit. Here, beds are 10 to 20 cm thick, and typically fine up from granule-rich coarse sand with shell hash (*Balanus hameri* >> all other species) to medium coarse sand. Lower bedding contacts are roughly flat, and can be erosional or non-erosional. Beds have a crude horizontal stratification. Northeastward dipping small-scale dune cross-strata were observed in one location.

Interpretation: Turbidites. The normal grading, climbing ripples, and Bouma Tbcd subfacies successions are suggestive of deposition from waning subaqueous turbulent gravity flows (Middleton, 1993; Hiscott et al., 1997; Shanmugan 1996, 1997). In the lower 35 m of the pit, the 5°-12° northwest dip of bedding surfaces, northwest paleoflow, northwest thinning and fining trends, and sheet-like bed geometries suggest that the turbidity currents were unconfined, and flowed and decelerated down a gently inclined depositional surface towards the northwest. Rare gravel clasts located at the base of beds are interpreted to have been transported as rolling bedload at the base of the turbid underflows (Hiscott et al., 1997). Lack of obvious flow-rafted clasts or massive beds suggests that the flows had little strength coming from grain support mechanisms other than fluid turbulence (Middleton and Subbart, 1984; Middleton, 1993; Shanmugan, 1996, 1997). These features imply that grain-to-grain contacts were negligible, which in turn implies that sediment concentrations in the turbidity currents were low (probably <9 % sediment per unit volume — cf. Bagnold, 1954).

FACIES 4: DIFFUSELY LAMINATED SAND

Diffusely laminated sand (Fig. 6d,e) accounts for ~10 % of the sediment in the lower 35 m of the Pointe Saint-Nicolas pit. This facies is composed of very well sorted fine grained sand with rare to occasional pebbles (maximum diameter = 2 cm). Individual laminae are typically 0.25-3 cm thick, very gently curved to flat based, and are roughly horizontal. Gradational contacts between laminae give the facies a diffuse stratified appearance (Fig. 6d). The diffusely laminated sands infill broad, shallow, erosively based channels (maximum 25 m wide by 5 m deep; Fig. 6e). Channel fills do not appear to fine...
FIGURE 4. Pointe Saint-Nicolas pit, portion of the south wall. Paleo-flows throughout the section are towards the right (northwest).
Vue partielle de la paroi sud de la sablière de la pointe Saint-Nicolas. Les structures de paléocourants sont orientées vers la droite (nord-ouest).

FIGURE 6. Facies – (a) Mud with rare pebbles (Facies 1); (b) Stratified mud and sand (Facies 2); (c) Normally graded sand (Facies 3); (d) Diffusely laminated sand (Facies 4); (e) Diffusely laminated sand channel fill (Facies 4); (f) Homogeneous diamicton (Facies 5); (g) Heterogeneous diamicton (Facies 6); (h) Matrix-poor gravel (Facies 7).
Faciès – (a) Silt argileux avec quelques cailloux (faciès 1) ; (b) sédiments stratifiés argileux et sableux (faciès 2) ; (c) sable à granoclasses normal (faciès 3) ; (d) sable à stratification diffuse (faciès 4) ; (e) sable à stratification diffuse et fin (faciès 4) ; (f) diamicton homogène (faciès 5) ; (g) diamicton hétérogène (faciès 6) ; (h) gravier à matrice faible (faciès 7).
FIGURE 5. Sedimentology and facies associations (FAs), Pointe Saint-Nicolas pit. Sédimentologie et associations de faciès (FAs) de la sablière de la pointe Saint-Nicolas.
TABLE 1

Facies Textures Sedimentary Structures Macro-Fauna Bed contacts & bed thickness Geometry Interpretation

FACIES 1 Mud with rare pebbles
(< 10 %)

mud with occasional sand or gravel clasts (10 %); gravel clasts are often stratified
massive bedding (but actually stratified due to sandy clastics)
contains low-diversity and low density articulated and mildly reworked or in situ shells of B. hameri and P. arctica
lower contact can be erosional, gradational or dropped; bed thickness hard to discern due to massive appearance, debris flows, and remnant dunes
low erosional threshold; beds drop laterally out 5-25 meters; beds dip from 5-12° in the downstream direction thick sheet-like geometry glacial marine suspension deposits

FACIES 2 Inter-stratified
mud and fine sand

muds are massive and ungraded; silts are also ungraded
ungraded to normally graded; intra-facies contacts are sharp and non-erosional; lower contacts are gradational
massive appearance, debris flows, and remnant dunes
low erosional threshold; beds drop laterally out 5-25 meters; beds dip from 5-12° in the downstream direction thick sheet-like geometry glacial marine suspension deposits

FACIES 3 Normally
graded sand
coarse pebbly sand to laminated mud
beds are often fine upwards; beds have subfacies successions that are similar (but not identical) to the Broma sequence, all cross bedding dips northwest
none observed conformable to erosional plane-like contacts; beds are inclined from 5-12° towards the northwest thin sheet-like geometry; beds pinch out laterally over 5-25 meters; beds dip from 5-12° in the downstream direction turbidities

FACIES 4 Diffusely
laminated fine sand
fine sand; very well sorted; save for occasional floating small pebble
ungraded; diffusely bedded
no macro-fauna observed erosive, channel-form lower contact shallow channel geometries hyperconcentrated underflow deposits

FACIES 5 Homogeneous
matrix-supported
diamict

fine sandy mud matrix with small boulder clasts; clasts are often striated
massive; ungraded; clasts A/B planes inclined towards the north
rare broken fragments of B. hameri observed
lower contact is often sharp and planar, with material folded up across contact locally; bed is 20-200 cm thick thin sheet-like geometry subglacial till

FACIES 6 Heterogeneous
clasts to matrix-supported
diamict

pebbles to boulders (max 50 cm); clasts in a sandy mud matrix; clasts often striated and covered with parallel laminae basal plates
massive, ungraded; occasional chaotic or vertical clasts; can grade to normally graded gravel or with horizontal laminations
no in situ macro-fauna observed; can contain abundant fragments of B. hameri; Clasts often covered in B. hameri basal plates
infra-facies contacts are amalgamated; and only discernible when lined across contact locally; intra-facies contacts are planar and non-erosive (?); amalgamated contacts present; lower contact of unit is sharp, erosive and planar; beds are 20-75 cm thick thick sheet-like geometry; can pinch out in lenticular fashion; dip of unit hard to ascertain; seems close to horizontal subaqueous outwash

FACIES 7 Matrix poor
gravel
pebbles to cobbles; little to no matrix; well sorted; clasts are round to subrounded and are unstratified
typically reversely graded; normal, graded and ungraded beds observed; crudely stratified
no macro-fauna observed infra-facies contacts are planar and non-erosive (?); amalgamated contacts present; lower contact of unit is sharp, erosive and planar; beds are 20-75 cm thick thick sheet-like geometry; can pinch out in lenticular fashion; dip of unit hard to ascertain; seems close to horizontal subaqueous outwash

FACIES 8 Massive to
crude horst stratified
gravel
pebbles to small cobbles or gravel; no outsized clasts; sandy mud matrix; clasts are subrounded and unstratified
coarse horizontal fabric; ungraded
no in situ macro-fauna observed; contains fragments of B. hameri
erosive, planar and roughly horizontal contacts; beds are on ave. ~50 cm, occasional ice-sedimentary structures along contact sheet-like fluvial deposits

Géographie physique et Quaternaire, 55(3), 2001

Interpretation
or coarsen upwards. Channels exposed at the north end of the pit tend to contain fewer pebbles than channels at the south end of the pit. The top contacts of channels are typically flat, and can be either sharp, gradational over < 10 cm into normally graded sands, or loaded. No shells or organics were observed in this facies.

Interpretation: Hyperconcentrated underflow deposits. The typically well sorted nature of the diffusely laminated sands suggests that the sediments underwent substantial hydraulic sorting prior to deposition. Subtle centimetre-scale "diffuse"

stratification suggests that the channel fills were not deposited in a single en-masse event. Gradational contacts between successive laminae, as well as the absence of pebble lags along lamination planes, suggests that laminae-depositing events were largely non-erosive. Gradational contacts between laminae also suggest that sedimentation was continuous throughout channel filling.

The diffusely laminated channel fills at Pointe Saint-Nicolas are interpreted to have been deposited quickly by steady hyperconcentrated underflows. Hyperconcentrated flows have sediment concentrations (20-40% sediment per unit volume; Beverage and Culberston, 1964), flow dynamics, and sediment support mechanisms that are intermediate between clear water flows and debris flows. The diffuse stratification of Facies 4 is similar to laminated formed experimentally when upper plane bed is subjected to an intense rain of sediment from suspension (Arnott and Hand, 1989). Diffusely laminated channel fills are often observed in glacial and deep-sea fans (Rust, 1977; Lowe, 1982; Postma et al., 1983; Grellet and Shaw, 1991; Kneller and Branney, 1995; Barnett et al., 1997), and are commonly deposited by lahar-related hyperconcentrated channel flows in volcaniclastic environments (Pierson and Scott, 1985; Smith, 1986; Best, 1992; Vallance, 2000).

It is hypothesized that the slight grain size changes that define each diffuse lamina are related to vertical (Middleton, 1970; Druitt, 1995) and/or lateral segregation (Hand, 1997; Vallance, 2000) of grain populations that existed within the parental flows. Absence of cross-stratification in the channel fills may indicate that turbulent flow separation, which is believed to initiate and maintain ripple and dune bedforms (Raudkivi, 1963), was suppressed due to high suspended sediment concentrations (Middleton and Southard, 1984; Smith, 1986; Best, 1992). The occasionally observed loading along the upper contact suggests that the grain framework was metastable following deposition. Loading features are often observed along the tops of subaerial hyperconcentrated flow deposits (Vallance, 2000). Lack of coarsening or fining upward trends in the channel fills suggest that flow was relatively steady during channel filling events (Kneller and Branney, 1995).

FIGURE 7. Clast (a) lithologies and (b) fabrics from various facies.

Lithologie (a) et fabriques (b) de différents facés. Pour les fabriques (b) triées sur 50 fragments, l’orientation moyenne du plan A/B est indiquée par une ligne brisée.

Facies 4: Homogeneous diamicton with fine sandy matrix (Fig. 6f). The bed (there is only one) is 2-4 m thick and extends discontinuously across the south wall of the pit (Fig. 5). The lower contact is typically sharp and either flat or very gently undulating on a decametre scale. Wraps of material from underlying beds are locally folded up into the diamicton along the basal contact. Underlying material is typically undisturbed, but occasionally is ductily folded (see sections 1 and 2 in Fig. 5). At a nearby pit, the lower contact of the diamicton is thrust faulted (Cummins, 2000). The diamicton contains rare to occasional calcareous wackestone and mudstone/Carbonate mudstone has a diffuse laminae; lamination planes, suggests that laminae-depositing events were largely non-erosive. Gradational contacts between laminae also suggest that sedimentation was continuous throughout channel filling.

FACIES 5: HOMOGENEOUS MATRIX SUPPORTED MUDDY DIAMICTON

Facies 5 is composed of massive grey coloured diamicton with a homogeneous fine sandy mud matrix (Fig. 6f). The bed (there is only one) is 2-4 m thick and extends discontinuously across the south wall of the pit (Fig. 5). The lower contact is typically sharp and either flat or very gently undulating on a decametre scale. Wraps of material from underlying beds are locally folded up into the diamicton along the basal contact. Underlying material is typically undisturbed, but occasionally is ductily folded (see sections 1 and 2 in Fig. 5). At a nearby pit, the lower contact of the diamicton is thrust faulted (Cummins, 2000). The diamicton contains rare to occasional broken shells of Balanus hameri and very rare Portunidae arc-lose. Clasts range from gravel to small boulder, and are often striated. Clasts are almost entirely of carbonate mudstone and
wackestone lithology (Fig. 7a). Clast A/B planes dip shallowly toward the north to northwest (Fig. 7b).

Interpretation: Subglacial till. Facies 5 is interpreted to be a subglacial till deposited by grounded ice that flowed roughly southward across Pointe Saint-Nicolas. Injection of underlying sands up across the basal contact, as observed in this facies, is a common feature of subglacial tills (Dreimanis, 1988; Iverson et al., 1997). The folded nature of the injections suggests that subglacial deformation was largely ductile, although thrust faulting in adjacent pits suggests that brittle deformation occurred locally. The clasts of glaciomarine mud (Facies 1 and 2). However, the relatively high abundance of carbonate mudstone and wackestone clasts in Facies 5 (Fig. 7a) suggests at least partial derivation from the carbonate mudstone and wackestone rich St. Lawrence Platform (Fig. 1).

FACIES 6: HETEROGENEOUS CLAST-TO MATRIX-SUPPORTED MUDDY DIAMICTON

Heterogeneous diamicton occurs in the top ~15 m of the outcrop as thin sheets and as channel fills (Fig. 6g). Channel bases are erosive, and have rare local matrix-free pipes with vertical clast fabrics. Sheets of heterogeneous diamicton pinch out on a decametre scale, and have lower contacts that are flat and sharp. The diamicton is heterogeneous in that matrix texture, as well as clast content, clast support, and clast fabric can vary over small vertical and horizontal distances. The matrix ranges from fine sandy mud to muddy coarse sand. Clasts range from pebble to small boulder (average diameter ~4 cm; maximum diameter ~60 cm), and are often striated and covered with Balanus hameri fragments.

Interpretation: Subaqueous debris flow deposits. The marked spatial changes in matrix texture, clast fabric and matrix support, lack of grading, presence of larger clasts, and occasional dewatered lower contact suggests that the heterogeneous diamicton was deposited rapidly from subaqueous muddy debris flows (Middleton and Southard, 1984; Postma, 1986). Mud in the matrix may have added considerable buoyancy strength to the flows, which, along with bed-normal dispersive pressure and possibly elevated pore pressures, would have helped raft larger outsized clasts (Rodine and Johnson, 1976; Hampton, 1979; Iverson, 1997). Pipe-like zones in the diamicton with little matrix and vertical clast fabrics are associated with dewatering of the underlying sediments, and are interpreted to be elutriation pipes (Lowe, 1975; Drutt, 1995). The abundance of clasts covered with Balanus hameri basal plates suggests that the debris flows were derived from the colonized subaqueous banks of the basin.

FACIES 7: MATRIX-POOR GRAVEL

This facies is composed of clast-supported pebbles and cobbles (Fig. 6h). The gravel is generally matrix-poor and moderately sorted. Any matrix material present is typically poorly sorted muddy coarse sand. Beds are sheet-like, 20-150 cm thick (where bed thickness is discernable), and pinch out laterally over several decametres. Beds are typically inversely graded (Fig. 6h), although ungraded and normally graded beds occur. Clast A/B planes are inclined towards the southeast (Fig. 7b). No shells or organics were observed.

Interpretation: Subaqueous outwash deposits. The sheet-like nature of the beds suggests that the parental flows were unconfined on at least a decametre scale. Lack of cross-stratification indicates that flow separation and bedform development did not occur. Absence of a gravelly matrix and the matrix-poor nature of the facies suggest that the gravels were hydraulically sorted prior to deposition. The southeast inclination of the clast A/B planes (Fig. 7b) suggests that the gravel was deposited by flows moving towards the northwest.

Although inversely graded beds are typically ascribed to kinetic sieving or (erroneously) — J. Vallance, personal communication, 2001 — dispersive pressure sorting mechanisms in highly concentrated flows (Bagnold, 1954; Middleton, 1970), the inversely graded gravel beds at Pointe Saint-Nicolas are interpreted to have been deposited as tractional bedload by flows where coarser bedload grains lagged behind finer bedload grains. Progressive deposition from such flows would theoretically produce an inversely graded bed (Hand, 1997; Vallance, 2000). Although grainflowing can produce inversely graded beds (Bagnold, 1954), pure grainally-driven grainflowing would have been unlikely at Pointe Saint-Nicolas, as the maximum dip of underlying beds (5-12°) is much less than the subaqueous angle of repose for gravels (Fig. 4; see Sohn, 2000). However, traction-carpet type flow (Summer et al., 1996; Sohn, 1997; Pugh and Wilson, 1999), where the bed is sheared by an overlying fluid, cannot be ruled out completely, and is considered here as a viable alternative mechanism for generating the inversely graded beds. (This scenario becomes more appealing when one considers that the deposition environment could have been subglacial and pressured.)

FACIES 8: MASSIVE- TO CRUDELY-STRATIFIED GRAVEL

This facies is present only at the very top (and often inaccessible part) of the Pointe Saint-Nicolas section, where, is occurs as a thick sheet-like unit. The gravel sheet has an erosive lower contact and is composed of crudely stratified gravel beds (Bagnold, 1954). Pure gravitationally-driven grainflowing can produce inversely graded beds (Bagnold, 1954), pure gravitationally-driven grainflowing would have been unlikely at Pointe Saint-Nicolas, as the maximum dip of underlying beds (5-12°) is much less than the subaqueous angle of repose for gravels (Fig. 4; see Sohn, 2000). However, traction-carpet type flow (Summer et al., 1996; Sohn, 1997; Pugh and Wilson, 1999), where the bed is sheared by an overlying fluid, cannot be ruled out completely, and is considered here as a viable alternative mechanism for generating the inversely graded beds. (This scenario becomes more appealing when one considers that the deposition environment could have been subglacial and pressured.)

Interpretation: Subaqueous outwash deposits. The sheet-like nature of the beds suggests that the parental flows were unconfined on at least a decametre scale. Lack of cross-stratification indicates that flow separation and bedform development did not occur. Absence of a gravelly matrix and the matrix-poor nature of the facies suggest that the gravels were hydraulically sorted prior to deposition. The southeast inclination of the clast A/B planes (Fig. 7b) suggests that the gravel was deposited by flows moving towards the northwest.

Although inversely graded beds are typically ascribed to kinetic sieving or (erroneously) — J. Vallance, personal communication, 2001 — dispersive pressure sorting mechanisms in highly concentrated flows (Bagnold, 1954; Middleton, 1970), the inversely graded gravel beds at Pointe Saint-Nicolas are interpreted to have been deposited as tractional bedload by flows where coarser bedload grains lagged behind finer bedload grains. Progressive deposition from such flows would theoretically produce an inversely graded bed (Hand, 1997; Vallance, 2000). Although grainflowing can produce inversely graded beds (Bagnold, 1954), pure gravitationally-driven grainflowing would have been unlikely at Pointe Saint-Nicolas, as the maximum dip of underlying beds (5-12°) is much less than the subaqueous angle of repose for gravels (Fig. 4; see Sohn, 2000). However, traction-carpet type flow (Summer et al., 1996; Sohn, 1997; Pugh and Wilson, 1999), where the bed is sheared by an overlying fluid, cannot be ruled out completely, and is considered here as a viable alternative mechanism for generating the inversely graded beds. (This scenario becomes more appealing when one considers that the deposition environment could have been subglacial and pressured.)

Interpretation: Subaqueous outwash deposits. The sheet-like nature of the beds suggests that the parental flows were unconfined on at least a decametre scale. Lack of cross-stratification indicates that flow separation and bedform development did not occur. Absence of a gravelly matrix and the matrix-poor nature of the facies suggest that the gravels were hydraulically sorted prior to deposition. The southeast inclination of the clast A/B planes (Fig. 7b) suggests that the gravel was deposited by flows moving towards the northwest.
FACIES ASSOCIATIONS

Four facies associations, each representing a distinct depositional environment, have been identified in the Pointe Saint-Nicolas pit (Table II). The relationship of the facies associations is shown diagrammatically in Figure 8. The facies associations form the building blocks of the depositional model (Fig. 9), which is outlined in the next section.

FACIES ASSOCIATION 1: SUBAQUEOUS FAN

Facies Association 1 makes up the lower half of the outcrop (Fig. 8), and is equivalent to subunits 2 and 3 of LaSalle’s Anse-aux-Hirondelles Formation (see Fig. 3). This facies association, which has a northwest-thinning wedge-like geometry, is interpreted to be an ice-proximal subaqueous fan. The subaqueous fan is composed primarily (~90%) of normally graded sandy turbidites (Facies 3). The turbidites dip 5-12° towards the northwest, and form the subaqueous fan foresets (Fig. 4). The foresets are cut locally by channels that are filled with sandy hyperconcentrated underflow deposits (Facies 4).

A prominent, flat-based pebble to cobble gravel sheet (Facies 7) caps the subaqueous fan. The upper contact of the gravel sheet is locally convex-up and lobate (Fig. 6h), and is intercalated locally with turbidites with northwest paleoflows (section 8, Fig. 5) and locally with glaciomarine muds (section 1, Fig. 5). The turbidites that are intercalated with the top contact of the gravel sheet are locally dewatered and deformed, and are associated with elutriation pipes in overlying debris flow deposits (Facies 6, Facies Association 3). These data suggest that the gravel sheet is conformable with the overlying 14C-dated deglacial facies associations.

The lower contact of the gravel sheet is flat and erosive. However, several features of the gravel sheet suggest that it is genetically related with the underlying sandy subaqueous fan, and that it was deposited during a sheetflooding event near the end of fan deposition. First, local intercalation of the gravel sheet with overlying turbidites and glaciomarine muds suggests a subaqueous depositional environment akin to that of the underlying sandy fan. Secondly, the gravel sheet was deposited

<table>
<thead>
<tr>
<th>TABLE II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facies associations</td>
</tr>
</tbody>
</table>

- **Facies Association (FA)**: Subaqueous fan (FA1), Glacial marine suspension deposits (FA2), Subaqueous gravity flow deposits (FA3), Subglacial till and associate glaciotectonized deposits (FA4)

- **Constituent facies**
 - FA1: Facies 3, 4, 7
 - FA2: Facies 1, 2
 - FA3: Facies 6, 3
 - FA4: Facies 5 and deformed versions of Facies 1 and 2

- **3D architecture**
 - FA1: NW thinning wedge
 - FA2: draped bank or blanket-like unit (< or = 5 m thick); locally channelled into by FA3
 - FA3: thin (< 0.3 m) sheet-like, or as channel fills
 - FA4: sharply overlies and deforms FA2 mud; deposited between 10.95 °C ka BP (Beta-125567) and ~10.8 °C ka BP (St. Narcisse Moraine deposition)

- **Stratigraphic position**
 - FA1: lower contact is buried below pit surface; presumed erosional (see text)
 - FA2: lower contact draped or intercalated with FA1 muds deposition had started by 11.2 14C ka BP (GSC-1476)
 - FA3: sharply overlies and deforms FA2 mud; deposited between 10.95 °C ka BP (Beta-125567) and ~10.8 °C ka BP (St. Narcisse Moraine deposition)

- **δ¹⁸O (%)** (Shackleton and Opdyke, 1973)
 - 1 - 0 - 1

Figure 8. Facies associations, Pointe Saint-Nicolas, and proposed correlation with the marine δ¹⁸O isotope curve. Association de faciès à la pointe Saint-Nicolas et corrélation avec la courbe isotopique marine.
towards the northwest, as were the turbidites located both immediately above and below the gravel sheet (section 8, Fig. 5). Thirdly, the sandy subaqueous fan coarsens-up in the 2 m underlying the gravel sheet (section 8, Fig. 5), suggesting that meltwater discharge increased just prior to gravel deposition. Finally, the flat base of the sheet, sheet-like geometry of the gravel beds and locally convex up nature of the top contact are not compatible with deposition in front of a small efflux, where channelization would be expected (Powell, 1990). In concert, these data are suggestive of sheet flooding from a nearby ice front during final stages of subaqueous fan deposition.

FACIES ASSOCIATION 2: GLACIAL MARINE SUSPENSION DEPOSITS

A thick mud bank overlies the subaqueous fan (Fig. 8). The mud bank is composed of stratified (Facies 2) and unstratified (Facies 1) glaciomarine mud with rare pebbles (< 10 %). The lower contact of the mud bank is usually draped overtop of the subaqueous fan (Facies Association 1); locally this contact is intercalated (section 1, Fig. 5). In situ Porplanda arctica shells collected from this facies association ~1 m above the lower contact yielded a 14C age of 10 950 BP (Beta-125967). Muds with similar characteristics, often termed Champlain Sea clays, are found in deglacial successions throughout the St. Lawrence Valley.

FACIES ASSOCIATION 3: SUBAQUEOUS GRAVITY FLOW DEPOSITS

Facies Association 3 is composed of fossiliferous subaqueous debris flow deposits (Facies 6) and normally graded fossiliferous sandy turbidites (Facies 3). The lower contact of Facies Association 3 is erosive, locally dewatered, and can be highly channelized into the underlying mud bank (section 4, Fig. 5). Locally, the underlying mud bank is completely eroded, and Facies Association 3 debris flow deposits lie directly atop the subaqueous fan (Facies Association 1). Channels are filled predominantly with debris flow deposits (Facies 6) with occasional thin (< 10 cm) normally graded sandy turbidite interbeds (Facies 1). Debris flow and turbidite beds can also occur as sheet-like 'couplets' that pinch out laterally on the decametre scale. These are interpreted to be slope-failure derived debris flows that developed sandy turbulent tails during downslope translation (Mohrig et al., 1998).

FACIES ASSOCIATION 4: SUBGLACIAL TILL AND ASSOCIATED GLACIOTECTONIZED MUDS

Facies Association 4 consists primarily of a thin sheet of homogeneous diamicton interpreted to be subglacial till (Facies 5) that runs discontinuously across the entire outcrop (Fig. 8). Also included in this facies association are dust-like
DEPOSITIONAL MODEL

A depositional model for the Pointe Saint-Nicolas sand pit is presented in Figure 9. Although some of the events outlined in the model can be extended ~10 km west of the pit (Cummings, 2000), the depositional model should be considered as having only local significance. In order to give context, the sequence of regional events is shown in Figure 10.

Initial deglaciation at the Pointe Saint-Nicolas was accompanied by an energetic northwestward discharge of meltwater that was issued from a grounding line located nearby to the south (Fig. 9). This discharge deposited a subaqueous fan composed of normally graded sandy turbidites, diffusely laminated sandy channel fills, and gravel outwash. The predominance of turbidites in the subaqueous fan suggests that underflowing was facilitated by relatively low density fresh basinal waters and/or very high suspended sediment concentrations. The presence of diffusely laminated sands suggests that meltwater underflows were often hyperconcentrated (20-40 % vol) and highly energetic. Maximum cross-bed thickness observed in the subaqueous fan (~2.5 m) suggests that flow depth may have been ~15 m or more during subaqueous fan deposition (as dunes, unlike ripples, typically scale to the boundary layer at a ratio between 1:6 and 1:10 [Allen, 1985; Leclair and Bridge, 2001]).

Given the current lack of evidence of early marine incursion up the axis of the St. Lawrence Valley west of Quebec City (see Parent and Occhietti, 1988), it seems most likely that the subaqueous fan at Pointe Saint-Nicolas was deposited in a subglacial (brackish?) body of water. Establishing a unequivocal relationship between the episode of subaqueous fan deposition at Pointe Saint-Nicolas and an apparent period of early marine incursion east of Quebec City (e.g. 12 400 14C BP date at Charlesbourg — GSC-1533) requires additional supporting 14C data. The timing of initial deglaciation at Pointe Saint-Nicolas therefore remains unconstrained, as plant macrofossils from underlying organic-rich silty sand Subunit 1 of the Anse-aux-Hirondelles Formation have previously yielded a date of > 42 000 14C ka BP (GSC-3420).

By 11 200 14C BP (GSC-1476) subaqueous fan deposition at Pointe Saint-Nicolas had ended. An ice-free and glacimarine Champlain Sea occupied the valley of the axis, and muds were being deposited from suspension (Fig. 9). Iceberg calving during mud deposition is equivocal, as no iceberg homogenization/turbidity, iceberg mound-dump, or keel structures (Thomas and Connell, 1984; Powell and Molnia, 1989; Dowdeswell et al., 1994) were observed at Pointe Saint-Nicolas. Stratified pebbles and cobbles in glaciomarine mud facies may simply have been rafted by seasonal sea ice (Powell and Molnia, 1989; Cowan et al., 1999). Mud deposition continued until at least 10 950 14C BP (Beta-125967).

Subaqueous failure along the flanks of the basin ensued following the introduction of glaciomarine muds into the basin (Fig. 9). Large channels cut into the top of the glaciomarine mud bank at Pointe Saint-Nicolas are interpreted here as slump scars. Failure of the muddy subaqueous flanks of the Champlain Sea basin at Pointe Saint-Nicolas produced fossiliferous debris flows and turbidites.

Following the advent of slope modification, a grounded Laurentide Ice Sheet readvanced through the Champlain Sea towards the south and deposited the mildly fossiliferous St. Nicolas Till (Fig. 9, LaSalle and Silts, 1993; Cummings, 2000). The muddy texture and fossiliferous nature of the St. Nicolas Till suggests that it was sourced primarily from the underlying

FIGURE 10. Sequence of deglacial events in the Quebec City region. Séquence des événements dans la région de Québec, au Wisconsinien supérieur.
Champlain Sea glaciomarine mud. The St. Nicolas readvance (surge?) occurred after 10 95014C BP (Beta-125967) but prior to ~10 80014C BP, when the St. Narcisse Moraine was deposited on the north shore (Fig. 10). Deposition of the St. Nicolas Till after 10 80014C BP is unlikely, as no obvious breaks that could have been caused by a readvance are observed in the St. Narcisse Moraine.

During postglacial isostatic rebound and associated forced regression, the emergent flanks of the basin around Pointe Saint-Nicolas were reworked by tidal currents (Cummings, 2000; Occhietti et al., 2001a), and glacial systems began to incise their valleys. At Pointe Saint-Nicolas, a fluvial system reworked underlying fossiliferous sediments and deposited a crudely stratified gravel sheet (Fig. 9). A large ice wedge cast present along the base of the gravel sheet suggests that the climate was still relatively cold at this time.

DISCUSSION

Previously, the subaqueous fan (FA1), which is equivalent to subunits 2 and 3 of LaSalle’s Anse-aux-Hirondelles Formation (Fig. 3), has been interpreted as a Middle Wisconsinan fluvial floodplain unit (LaSalle, 1984, 1989). This interpretation is largely based on the assumption that the lower subaqueous fan contact, which remains buried below the base of the pit, is conformable with the underlying14C-dated Subunit 1, which is exposed below pit level at the edge of the St. Lawrence River. Although a subaerial fluvial floodplain depositional environment seems compatible with the insects and plant macrofossils present in Subunit 1 (LaSalle 1989), it is definitely incompatible with the organic-free sandy turbidites (Facies 3) and hyperconcentrated underflow deposits (Facies 4) that make up the foresets of the subaqueous fan (i.e. Subunit 2). As the subaqueous fan is not genetically related to Subunit 1, the subaqueous fan is most likely either separated from Subunit 1 by another unit, or overlies Subunit 1 unconformably. Given the high-energy nature of the facies in the subaqueous fan (e.g. hyperconcentrated underflow deposits), the lower fan contact is hypothesized to be an erosion surface formed during an energetic melting discharge that accompanied initial deglaciation.

The presence of a Late Wisconsinan subaqueous fan below Champlain Sea deposits at Pointe Saint-Nicolas suggests that a body of water, possibly subglacial, formed during deglaciation in the axis St. Lawrence Valley while ice remained on the south shore. Although there are no obvious ice front landforms near Pointe Saint-Nicolas (are they buried?), north-west paleoflows in the high-energy subaqueous fan facies suggest that both the grounding line and the meltwater source were located updip to the south. Candidate meltwater sources include Lake Candona, or Lake Chaudière-Etchemin, which was located in the Chaudière-Etchemin valley (see Occhietti et al., 2001b), or possibly even the Champlain Sea after it invaded the Lake Candona basin. Development of a body of water in the valley axis west of Quebec City would have effectively severed the pressure gradient that maintained southward flow in subglacial streams that fed these re-ponded glacial lakes (see easterly data in Warwick area on Fig. 1). This would effectively have allowed the ponded lake water to drain downward into the valley axis. Although this hypothesis should be considered preliminary until tested by further regional study, it is interesting to note that several major paleohydraulic events occurred during deglaciation in the greater Quebec City region (e.g. Lake Candona drainage), and no associated deposits have been discovered.

ACKNOWLEDGEMENTS

Thanks are extended to Gilbert Prichonnet, J. en Veillette and GéoQuébec editor Pierre J. H. Richard, who provided both constructive and critical comments to the manuscript. Hazen Russell read and helped improve an earlier version of the manuscript. DC would like to thank Bill Arnott, Marie Aulian, K. and C. Cummings, S. Dumas, Micheline Lacnoix, Michel Lamathe, Michel Parent, Carl Plante and "les Plouffe", each of whom contributed directly or indirectly to this paper. Funding for the project was provided by a NSERC grant awarded to S.O.
REFERENCES

Orchetti, S., Balestri, S., Larnodt, M., Clet, M., Cosen, T., Feland, P. and Frichet, P., 1996. Late stage-5 glacimarine, sea in the St. Lawrence Valley, Canada and United States. Quaternary Research, 45: 128-137.

