NouvellesNews

La résistance du moustique Culex pipiens aux insecticidesMolecular clues to the insecticide resistance of mosquitoes[Notice]

  • Mylène Weill,
  • Olivier Duron,
  • Pierryck Labbé,
  • Arnaud Berthomieu et
  • Michel Raymond

…plus d’informations

  • Mylène Weill
    Institut des Sciences de l’évolution,
    Génétique et Environnement,
    Université de Montpellier II (CC 065),
    34095 Montpellier 05,
    France.
    weill@isem.isem.univ-montp2.fr

  • Olivier Duron
    Institut des Sciences de l’évolution,
    Génétique et Environnement,
    Université de Montpellier II (CC 065),
    34095 Montpellier 05,
    France.

  • Pierryck Labbé
    Institut des Sciences de l’évolution,
    Génétique et Environnement,
    Université de Montpellier II (CC 065),
    34095 Montpellier 05,
    France.

  • Arnaud Berthomieu
    Institut des Sciences de l’évolution,
    Génétique et Environnement,
    Université de Montpellier II (CC 065),
    34095 Montpellier 05,
    France.

  • Michel Raymond
    Institut des Sciences de l’évolution,
    Génétique et Environnement,
    Université de Montpellier II (CC 065),
    34095 Montpellier 05,
    France.

Le moustique Culex pipiens est présent en zones tropicales et tempérées. Sa nuisance due aux piqûres et aux maladies qu’il véhicule (filariose, fièvre du Nil…) a poussé l’homme à le combattre activement dans de nombreux pays à l’aide d’insecticides. Au cours des dernières décennies, Culex pipiens a développé des résistances à une grande variété d’insecticides (DDT, pyréthrinoïdes, carbamates, organophosphorés, toxines de Bacillus sphaericus, etc.). La résistance aux insecticides organophosphorés (OP) représente un excellent modèle d’étude de l’adaptation à un nouvel environnement. Ces insecticides inhibent l’acétylcholinestérase, enzyme responsable de l’hydrolyse de l’acétylcholine dans les synapses cholinergiques (Figure 1). Cette inhibition prolonge la durée de l’influx nerveux, ce qui conduit rapidement à la mort du moustique. Développer une résistance à ces toxiques implique donc de supprimer ou de diminuer l’inhibition de l’acétylcholinestérase des synapses. L’étude des différents phénotypes de résistance et des changements génétiques qui leur sont associés permet d’appréhender finement comment se fait cette adaptation et comment elle se modifie au cours du temps [1]. Il est important de comprendre que le moustique ne mute pas pour résister aux insecticides ! De très nom- breuses mutations préexistent dans les immenses populations de moustiques. Lorsque des insecticides sont présents dans l’environnement, les moustiques qui ont des mutations favorables à leur survie se reproduisent et les transmettent ainsi à leurs descendants, alors que les moustiques sensibles aux toxiques meurent. Les mutations conférant aux moustiques la capacité de résister aux OP ne sont pas engendrées, mais sélectionnées par le milieu. Plus simplement, la fréquence des moustiques porteurs de ces mutations augmente dans un environnement toxique. Seuls trois locus sont responsables de résistances majeures, Est-2, Est-3 et ace-1 (Figure 2). Est-2 et Est-3 forment un super locus (désigné par Ester) car ils sont très proches dans le génome; ces gènes codent pour des estérases qui piègent ou métabolisent les insecticides avant qu’ils puissent inhiber l’acétylcholinestérase des synapses. Dans les cas de résistance, ces estérases sont produites en excès grâce à un processus d’amplification du nombre de copies des gènes qui les codent dans le génome ou une augmentation de leur expression. Certains allèles de résistance comportent jusqu’à 50 copies d’Ester, alors que l’allèle sensible ne comporte qu’une seule copie [2]. Le gène ace-1 code pour la cible des insecticides OP, l’acétylcholinestérase1 (AChE1). Dans les cas de résistance, cette cible est mutée, ce qui réduit son affinité pour les OP. On connaît une dizaine d’allèles de résistance au locus Ester et seulement deux au locus ace-1, ce qui indique que le nombre d’événements indépendants aboutissant à des mutations (amplification ou mutation ponctuelle) est en fait très faible. Cependant, les Culex pipiens résistants, sélectionnés par des insecticides ou des pesticides utilisés en agriculture, sont disséminés sur toute la planète. Souvent, la résistance apparaît en un point localisé puis se répand rapidement parce que les moustiques sont transportés passivement par bateau ou par avion. L’expansion géographique de la résistance est indiscutablement liée à l’activité humaine [3]. Le fait de résister est coûteux, les moustiques résistants ne sont pas en grande forme. Dans les cas de résistance par amplification d’estérases, leur métabolisme de base doit être perturbé. Dans les cas de mutation de l’AChE1, certes l’enzyme fixe moins bien l’insecticide, mais également son substrat naturel (l’acétylcholine), ce qui conduit à une transmission du signal nerveux plus approximative (Figure 1). Dans un environnement sans insecticides, les moustiques résistants meurent plus jeunes que les moustiques dépourvus de mutations, se développent plus lentement, sont plus fréquemment capturés par des prédateurs, sont plus sensibles aux infections par des bactéries endocellulaires de type Wolbachia. Si les moustiques …

Parties annexes