Résumés
Résumé
Un chaînon manquant dans la compréhension des mécanismes de transport des récepteurs du mannose 6-phosphate vient d’être récemment découvert à la suite de l’identification de la protéine TIP47. Cette protéine, en association avec Rab9-GTP, assure le retour de ces récepteurs des endosomes tardifs vers le réseau trans-golgien. Curieusement, la même protéine, baptisée PP17b, avait été décrite comme une protéine placentaire il y a vingt ans et, plus récemment, comme un marqueur d’évolution du cancer du col de l’utérus. Non seulement la séquence de la PP17b/TIP47 présente une forte homologie avec celles de l’adipophiline et des périlipines, protéines connues pour participer au trafic intracellulaire des gouttelettes lipidiques, mais la PP17b/TIP47 est aussi associée à ces dernières. Comment cette protéine peut-elle participer en même temps à des processus aussi différents que le transport du récepteur du mannose 6-phosphate et la formation et/ou le transport des gouttelettes lipidiques ? Une première hypothèse est proposée.
Summary
A missing link in the understanding of the mechanisms of transport of the mannose 6-phosphate receptors has recently been discovered, following the identification of the protein TIP47. In association with Rab9-GTP, this protein is responsible for the return of the receptors from the late endosomes back to the trans-Golgi network. Curiously, the same protein called PP17b, was described as a placental protein twenty years ago, and more recently, as a blood marker for human uterine cervical cancer. The sequence of PP17b/TIP47 displays not only a strong homology with those of adipophilin and the perilipins, two proteins known to be involved in the intracellular traffic of lipid droplets but also PP17b/TIP47 is associated with the later. How this ubiquitous protein could participate in processes as different as the mannose 6-phosphate receptors traffic and the formation and/or traffic of lipid droplets ? A tentative hypothesis is put forward.
Parties annexes
Références
- 1. Méresse S, Bauer U, Ludwig T, Schmidt A, Hoflack B. Bases moléculaires du transport vers les lysosomes. Med Sci (Paris) 1993 ; 9 : 148-56.
- 2. Hille-Rehfeld A. Mannose 6-phosphate receptors in sorting and transport of lysosomal enzymes. Biochim Biophys Acta 1995 ; 1241 : 177-94.
- 3. Kornfeld S. Structure and function of the mannose 6-phosphate/insulinlike growth factor II receptors. Annu Rev Biochem 1992 ; 61 : 307-30.
- 4. Diaz E, Pfeffer SR. TIP47 : a cargo selection device for mannose 6-phosphate receptor trafficking. Cell 1998 ; 93 : 433-43.
- 5. Bohn H, Kraus W, Winckler W. Purification and characterization of two new soluble placental tissue proteins (PP13 and PP17). Oncodev Biol Med 1983 ; 4 : 343-50.
- 6. Than NG, Sumegi B, Than GN, et al. Cloning and sequence analysis of cDNAs encoding human placental tissue protein 17 (PP17) variants. Eur J Biochem 1998 ; 258 : 752-7.
- 7. Than NG, Sumegi B, Bellyei S, et al. Lipid droplet and milk lipid globule membrane associated placental protein 17b (PP17b) is involved in apoptotic and differentiation processes of human epithelial cervical carcinoma cells. Eur JBiochem 2003 ; 270 : 1176-88.
- 8. Schweizer A, Kornfeld S, Rohrer, J. Proper sorting of the cation-dependent mannose 6-phosphate receptor in endosomes depends on a pair of aromatic amino acids in its cytoplasmic tail. Proc Natl Acad Sci USA 1997 ; 94 : 14471-6.
- 9. Nair P, Schaub BE, Rohrer J. Characterization of the endosomal sorting signal of the cation-dependent mannose 6-phosphate receptor. J Biol Chem 2003 ; 278 : 24753-8.
- 10. Blot G, Janvier K, Le Panse S, et al. Targeting of the human immunodeficiency virus type 1 envelope to the trans-Golgi network through binding to TIP47 is required for Env incorporation into virions and infectivity. J Virol 2003 ; 77 : 6931-45.
- 11. Orsel JG, Sincock PM, Krise JP, Pfeffer SR. Recognition of the 300-kDa mannose 6-phosphate receptor cytoplasmic domain by 47-kDa tail-interacting protein. Proc Natl Acad Sci USA 2000 ; 97 : 9047-51.
- 12. Lombardi D, Soldati T, Riederer MA, et al. Rab9 functions in transport between late endosomes and the trans-Golgi network. EMBO J 1993 ; 12 : 677-82.
- 13. Barbero P, Bittova L, Pfeffer SR. Visualization of Rab9-mediated vesicle transport from endosomes to the trans-Golgi in living cells. J Cell Biol 2002 ; 156 : 511-8.
- 14. Carroll KS, Hanna J, Simon I, et al. Role of Rab9 GTPase in facilitating receptor recruitment by TIP47. Science 2001 ; 292 : 1373-6.
- 15. Hanna J, Carroll K, Pfeffer SR. Identification of residues in TIP47 essential for Rab9 binding. Proc Natl Acad Sci USA 2002 ; 99 : 7450-4.
- 16. Wolins NE, Rubin B, Brasaemle DL. TIP47 associates with lipid droplets. J Biol Chem 2001 ; 276 : 5101-8.
- 17. Barbero P, Buell E, Zulley S, Pfeffer SR. TIP47 is not a component of lipid droplets. J Biol Chem 2001 ; 276 : 24348-51.
- 18. Miura S, Gan JW, Brzostowski J, et al. Functional conservation for lipid storage droplet association among perilipin, ADRP, and TIP47 (PAT)-related proteins in mammals, Drosophila, and Dictyostelium. J Biol Chem 2002 ; 277 : 32253-7.
- 19. Ohashi M, Mizushima N, Kabeya Y, Yoshimori T. Localization of mammalian NAD(P)H steroid dehydrogenase-like protein on lipid droplets. J Biol Chem 2003 ; 278 : 36819-29.
- 20. Murphy DJ, Vance J. Mechanisms of lipid-body formation. Trends Biochem Sci 1999 ; 24 : 109-15.
- 21. Lu X, Gruia-Gray J, Copeland NG, et al. The murine perilipin gene : the lipid droplet-associated perilipins derive from tissue-specific, mRNA splice variants and define a gene family of ancient origin. Mamm Genome 2001 ; 12 : 741-9.
- 22. Wolins NE, Skinner JR, Schoenfish MJ, et al. Adipocyte protein S3-12 coats nascent lipid droplets. J Biol Chem 2003 ; 278 : 37713-21.
- 23. McManaman JL, Zabaronick W, Schaack J, Orlicky DJ. Lipid droplet targeting domains of adipophilin. J Lipid Res 2003 ; 44 : 668-73.
- 24. Kraemer J, Schmitz F, Drenckhahn D. Cytoplasmic dynein and dynactin as likely candidates for microtubule-dependent apical targeting of pancreatic zymogen granules. Eur J Cell Biol 1999 ; 78 : 265-77.
- 25. Wu CC, Howell KE, Neville MC, et al. Proteomics reveal a link between the endoplasmic reticulum and lipid secretory mechanisms in mammary epithelial cells. Electrophoresis 2000 ; 21 : 3470-82.
- 26. Franke WW, Hergt M, Grund C. Rearrangement of the vimentin cytoskeleton during adipose conversion: formation of an intermediate filament cage around lipid globules. Cell 1987 ; 49 : 131-41.
- 27. Helfand BT, Mikami A, Vallee RB, Goldman RD. A requirement for cytoplasmic dynein and dynactin in intermediate filament network assembly and organization. J Cell Biol 2002 ; 157 : 795-806.
- 28. McGookey DJ, Anderson RG. Morphological characterization of the cholesteryl ester cycle in cultured mouse macrophage foam cells. J Cell Biol 1983 ; 97 : 1156-68.
- 29. Knudson CM, Stemberger BH, Patton S. Effects of colchicine on ultrastructure of the lactating mammary cell: membrane involvement and stress on the Golgi apparatus. Cell Tissue Res 1978 ; 195 : 169-81.
- 30. Daudet F, Augeron C, Ollivier-Bousquet M. Early action of colchicine, ammonium chloride and prolactin, on secretion of milk lipids in the lactating mammary gland. Eur J Cell Biol 1981 ; 24 : 197-202.
- 31. Fong TH, Wu CH, Liao, et al. Association of globular beta-actin with intracellular lipid droplets in rat adrenocortical cells and adipocytes. Biochem Biophys Res Commun 2001 ; 289 : 1168-74.
- 32. Brunetti CR, Burke RL, Kornfeld S, et al. Herpes simplex virus glycoprotein D acquires mannose 6-phosphate residues and binds to mannose 6-phosphate receptors. J Biol Chem 1994 ; 269 : 17067-74.
- 33. Mellick AS, Day CJ, Weinstein SR, et al. Differential gene expression in breast cancer cell lines and stroma- tumor differences in microdissected breast cancer biopsies revealed by display array analysis. Int J Cancer 2002 ; 100 : 172-80.
- 34. Stoll BA. Upper abdominal obesity, insulin resistance and breast cancer risk. Int J Obes Relat Metab Disord 2002 ; 26 : 747-53.
- 35. McDonald RG, Pfeffer SR, Coussens L, et al. A single receptor binds both insulin-like growth factor II and mannose-6-phosphate. Science 1988 ; 239 : 1134-7.
- 36. Jeffery CJ. Moonlighting proteins. Trends Biochem Sci 1999 ; 24 : 8-11.
- 37. Barlowe C. Traffic COPs of the early secretory pathway. Traffic 2000 ; 1 : 371-7.
- 38. Pfeffer SR. Membrane transport: retromer to the rescue. Curr Biol 2001 ; 11 : R109-11.
- 39. Sincock PM, Ganley IG, Krise JP, et al. Self-assembly is important for TIP47 function in mannose 6-phosphate receptor transport. Traffic 2003 ; 4 : 18-25.
- 40. Thompson JD, Higgins DG, Gibson TJ. ClustalW improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994 ; 22 : 4673-80.
- 41. Mather IH, Keenan TW. Origin and secretion of milk lipids. J Mammary Gland BiolNeoplasia 1998 ; 3 : 259-73.
- 42. Lacey ML, Haimo LT. Cytoplasmic dynein binds to phospholipid vesicles. Cell Motil Cytoskeleton 1994 ; 28 : 205-12.
- 43. Ghosal D, Ankrapp D, Keenan TW. Low molecular mass GTP-binding proteins are secreted from mammary epithelial cells in association with lipid globules. Biochim Biophys Acta 1993 ; 1168 : 299-306.