The effect of two ectomycorrhizal fungi, *Paxillus involutus* and *Suillus tomentosus*, and of *Bacillus subtilis* on *Fusarium* damping-off in jack pine seedlings

S.F. Hwang, P. Chakravarty et K.-F. Chang

Volume 76, numéro 2, 1995

URI: https://id.erudit.org/iderudit/706085ar
DOI: https://doi.org/10.7202/706085ar

Résumé de l'article

On a testé l'effet de deux espèces de champignons ectomycorhiziens, le *Paxillus involutus* et le *Suillus tomentosus*, et une lignée de la bactérie *Bacillus subtilis* sur le *Fusarium moniliforme*, agent pathogène de la fonte des semis du pin gris (*Pinus banksiana*). Le *P. involutus* et *B. subtilis* ont tous les deux inhibé la croissance in vitro du *F moniliforme*. Les filtrats de culture de *P. involutus* et de *B. subtilis* ont été toxiques pour le *F moniliforme*, mais la formation de chlamydosporoses par le *F moniliforme* a été observée. Une meilleure survie des plantules a été observée lorsqu'elles étaient co-inoculées avec le *P. involutus* et le *B. subtilis* plutôt qu'avec le *F moniliforme* seulement. Le *S. tomentosus* n'a pas inhibé la croissance in vitro du *F moniliforme* ni accru la survie des plantules de pin gris en présence de *F moniliforme*. Ce dernier a réduit la formation d'ectomycorhizes sur le pin gris par le *P. involutus* et le *S. tomentosus*. Le nombre d'unités formatrices de colonies du *F moniliforme* a été significativement réduit quand les plantules ont été inoculées avec le *P. involotus* ou le *B. subtilis* seul ou en combinaison. D'autre part, le *S. tomentosus* n'a pas réduit le nombre d'unités formatrices de colonies du *F. moniliforme*. La suppression de la croissance du *F. moniliforme* par le *P. involutus* et le *B. subtilis* a entraîné la production de composés antifongiques.
Two species of ectomycorrhizal fungi, *Paxillus involutus* and *Suillus tomentosus*, and a bacterial strain of *Bacillus subtilis*, were tested against *Fusarium moniliforme*, the causal agent of damping-off in jack pine (*Pinus banksiana*) seedlings. Both *P. involutus* and *B. subtilis* inhibited *in vitro* growth of *F. moniliforme*. The culture filtrates of *P. involutus* and *B. subtilis* were toxic to *F. moniliforme*, but chlamydospore formation of *F. moniliforme* was observed. Greater jack pine seedling survival was observed when co-inoculated with *P. involutus* and *B. subtilis* than with *F. moniliforme* alone. *S. tomentosus* neither inhibited *in vitro* growth of *F. moniliforme* nor increased survival of jack pine seedlings on *F. moniliforme*. The number of colony forming units of *F. moniliforme* was significantly reduced when seedlings were inoculated with *P. involutus* and *B. subtilis* alone or in combination. *S. tomentosus*, on the other hand, did not reduce the number of colony forming units of *F. moniliforme*. The suppression of *F. moniliforme* growth by *P. involutus* and *B. subtilis* involved production of antifungal compounds.

On a testé l'effet de deux espèces de champignons ectomycorrhiziens, le *Paxillus involutus* et le *Suillus tomentosus*, et une lignée de la bactérie *Bacillus subtilis* sur le *Fusarium moniliforme*, agent pathogène de la fonte des semis du pin gris (*Pinus banksiana*). Le *P. involutus* et *B. subtilis* ont tous les deux inhibé la croissance *in vitro* du *F. moniliforme*. Les filtrats de culture de *P. involutus* et de *B. subtilis* ont été toxiques pour le *F. moniliforme*, mais la formation de chlamydospores par le *F. moniliforme* a été observée. Une meilleure survie des plantules a été observée lorsqu'elles étaient co-inoculées avec *P. involutus* et *B. subtilis* plutôt qu'avec le *F. moniliforme* seulement. Le *S. tomentosus* n'a pas inhibé la croissance *in vitro* du *F. moniliforme* ni accru la survie des plantules de pin gris en présence de *F. moniliforme*. Ce dernier a réduit la formation d'ectomycorrhizes sur le pin gris par le *P. involutus* et le

1. Biological Sciences, Alberta Environmental Centre, Bag 4000, Vegreville, Alberta, Canada T9C 1T4
2. Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, 5320-122 Street, Edmonton, Alberta, Canada T6H 3S5. Author to whom correspondence should be addressed
3. Agriculture, Food, and Rural Development, SS4, Brooks, Alberta, Canada T1R 1E6
S. tomentosus. Le nombre d’unités formatrices de colonies du F. moniliforme a été significativement réduit quand les plantules ont été inoculées avec le P. involutus ou le B. subtilis seul ou en combinaison. D’autre part, le S. tomentosus n’a pas réduit le nombre d’unités formatrices de colonies du F. moniliforme. La suppression de la croissance du F. moniliforme par le P. involutus et le B. subtilis a entraîné la production de composés antifongiques.

INTRODUCTION

Fusarium damping-off, caused by several species of Fusarium, is responsible for considerable losses in both container and bare root nurseries in North America (Filer and Peterson 1975; Hiratsuka 1987; Sutherland and Van Eerden 1980). The inoculum of the fungus can be carried on seed, contaminated growing media or in water. Various fungicides are used to control this disease. However, many of these fungicides are not very effective and do not protect the seedlings during their stay in the nurseries (Sinclair et al. 1975). In recent years, several root pathogens have been found to be resistant to many fungicides (Chakravarty and Kean, unpublished data). In addition to fungicides, proper fertility management may also reduce the incidence of damping-off. Alternative non-chemical strategies for protecting nursery seedlings from various soil pathogens have received considerable attention in the last few decades (Adams 1990; Baker and Cook 1982). Reducing residual toxicity from chemicals in the soil is also essential for maintaining the operation of forest tree nurseries environmentally acceptable.

Bacillus subtilis (Ehrenberg) Cohn, a soil-inhabiting bacterium, has been used to control diseases of field crops. The bacterium produces antifungal substances which are toxic to several plant pathogens (Hall and Davis 1990; Jordon and Tarr 1987; Krause et al. 1987; Krezel and Leszcynska 1978; Podile et al. 1985; Pusey and Wilson 1984; Pusey et al. 1986; Singh and Deverall 1984; Utkhede 1984; Utkhede and Sholberg 1986). Although B. subtilis has potential for biological control in agricultural and horticultural crops, our knowledge on the effect of B. subtilis on forest tree seedlings is limited.

Paxillus involutus (Batsch.) Fr. and Suillus tomentosus (Kauffman) Singer, Snell, & Dick, two species of ectomycor-
from forest soil collected near Hinton, Alberta, lat. 53°23' N long. 117°32' W) were evaluated. The culture of *F. moniliforme* was maintained on potato dextrose agar (PDA), *B. subtilis* on nutrient agar (NA), and *P. involutus* and *S. tomentosus* on modified Melin Norkrans’ (MMN) medium (Marx 1969).

In vitro antagonism

Antagonism between *F. moniliforme* and *B. subtilis* was studied on PDA in 90-mm diam plastic Petri plates. Agar plugs (5-mm diam) with *F. moniliforme* were placed at the margin of the plate and allowed to grow at 20°C in the dark. After 3 d, *B. subtilis* was streaked on the plate opposite the *F. moniliforme* colony (4 cm apart). For the control, sterile distilled water was streaked on the plate opposite to the *F. moniliforme* colony. The plates were incubated as described above. The inhibition zone was measured from the edge of the *F. moniliforme* colony to the edge of the *B. subtilis* colony after 3 d.

For antagonism of *P. involutus* and *S. tomentosus* against *F. moniliforme*, 5-mm-diam agar plugs of *P. involutus* and *S. tomentosus* (1-wk-old cultures) were placed separately at the margin of plates containing PDA, and allowed to grow at 20°C in the dark. After 7 d, a 5-mm mycelial disk was removed from the PDA culture of *F. moniliforme* and placed on the plate opposite *P. involutus* and *S. tomentosus* (4 cm apart). For the control, 5-mm-diam sterile agar plugs were placed opposite to the *F. moniliforme* colony. The plates were incubated at 20°C in the dark. The inhibition zone was measured after 3-5 d and the mycelia of *P. involutus* and *S. tomentosus* were observed under a microscope at a contact point with *F. moniliforme*.

Effect of culture filtrates of antagonists on spore germination of *F. moniliforme*

Paxillus involutus and *S. tomentosus* were grown in liquid MMN medium at 20°C in the dark in a shaker. After 10 d, the mycelium was harvested on a Whatman No.1 filter paper and ethyl acetate was added to the filtrate to extract polar metabolites. The resulting solution was stored at 5°C in the dark. Similarly, culture filtrate of *B. subtilis* was prepared by growing it in 50 mL nutrient broth at 20°C in the dark in a shaker. After 36 h, the broth was filtered through a filter paper (5.5 μm pore size) and the filtrate was extracted with ethyl acetate. A spore suspension of *F. moniliforme* was prepared in saline solution (0.08% NaCl). A drop of the spore suspension of *F. moniliforme* was placed on a cavity slide and 20 μL of the culture filtrate of *P. involutus*, *S. tomentosus* or *B. subtilis* was added separately on the cavity slide containing spore suspension of *F. moniliforme*. The slides were incubated in a sterile moist chamber at 20°C for 6, 12, and 24 h. Spore germination and formation of chlamydospores of *F. moniliforme* were determined by examination under a microscope. For each treatment, a total of 500 spores were counted.

Interactions of antagonists and *F. moniliforme* in the rhizosphere of jack pine seedlings

For this experiment, two systems were used to grow *P. banksiana* seedlings: a flask system and a tray system.

Flask system

Jack pine seeds were surface sterilized using 30% H₂O₂ for 30 min. Seeds were then washed 10 times with sterile distilled water and germinated in the dark on water agar. Erlenmeyer flasks (250 mL) were prepared by adding 100 mL vermiculite (pH adjusted to 5.0) and moistened with MMN liquid medium. The flasks were stopped with a foam plug, wrapped with aluminium foil, and autoclaved for 45 min at 121°C. Ten-day-old jack pine seedlings were transferred into the flasks (one seedling per flask) under aseptic conditions. Seedlings were inoculated with *P. involutus*, *S. tomentosus*, *B. subtilis*, and *F. moniliforme*. The control treatment was not inoculated with any fungal or bacterial inoculum. The following treatments resulted: i) *P. involutus*, ii) *S. tomentosus*, iii) *B. subtilis*, iv) *F. moniliforme*, v) *P. involutus + F. moniliforme*, vi) *S. tomentosus + F. moniliforme*, vii) *B. subtilis + F. moniliforme*, viii) *P. involutus + B. subtilis + F. moniliforme*, ix) *S. tomentosus + B. subtilis + F. moniliforme*, and x) control. A 5-mL spore suspension (10⁸ spores mL⁻¹) of *F. moniliforme* was added using a sterile pipette to each flask except the control.
in the rhizosphere of jack pine seedlings. Control seedlings were inoculated with three 5-mm sterile MMN agar plugs and 2 mL of sterile distilled water. The flasks were kept in a growth chamber under a photoperiod of 16 h (100 μmol m–2 s–1 PAR, provided by fluorescent lamps) at 20°C and randomized every 5 d. No fertilizer or water was added to the flasks. There were 25 seedlings per treatment. Seedlings were harvested after 10 wk. Seedling mortality, shoot and root length, total biomass, and number of mycorrhizal short roots were determined for each seedling.

Tray system
Jack pine seeds were surface sterilized using 30% H2O2. Seeds were sown in a tray containing sterile vermiculite (pH 5.5) and inoculated with 5 g inoculum of P. involutus and S. tomentosus (grown in vermiculite). For the control, seeds were grown in trays containing sterile vermiculite without P. involutus and S. tomentosus inocula. The trays were kept in a growth chamber as described above. Ten-day-old seedlings were transferred to plastic trays (18 cm × 45 cm × 15 cm) containing sterile moistened vermiculite. Twenty-five seedlings were planted in each tray. Two days later, seedlings were inoculated with a 24-h-old culture of B. subtilis by adding 1 mL cell suspension (2 × 106 cells mL–1) to the rhizosphere of each seedling. Two days after inoculation with B. subtilis, seedlings were inoculated by adding 1 mL spore suspension (106 spores mL–1) of F. moniliforme in the rhizosphere of each seedling. The same 10 treatments as for the flask system were applied. There were 3 trays per treatment. Trays were returned to the growth chamber and randomized every 5 d. Ten weeks later, seedlings were harvested. Seedling mortality, shoot and root length, total biomass, and number of mycorrhizal short roots were determined for each seedling.

Population density of F. moniliforme in the rhizosphere of jack pine seedlings
The dilution plate technique was used to determine the population density of F. moniliforme in the rhizospheric vermiculite of jack pine seedlings. The vermiculite was diluted with sterile distilled water and spread evenly on PDA medium. There were 25 replicates for each treatment. Plates were incubated at 20°C in the dark. Colonies of F. moniliforme were counted and identified after incubation for 4 d. The number of colonies per plate was multiplied by the dilution factor to obtain total concentration (no. g–1) in vermiculite.

Statistical analysis
Data from all the experiments were analyzed by one-way ANOVA using SAS software (SAS Institute Inc. 1990). The individual means were compared using Scheffé’s test for multiple comparison after arcsine transformation (Zar 1984).

RESULTS

In vitro antagonism
The growth of F. moniliforme was significantly inhibited when grown in dual culture either with B. subtilis or P. involutus. B. subtilis showed a greater inhibitory effect than P. involutus on agar plate studies (Fig. 1). The growth of F. moniliforme was not affected when grown in dual culture with S. tomentosus. In addition, inhibition zones were observed with B. subtilis and P. involutus but not with S. tomentosus. When observed under a microscope, mycelia of P. involutus and
S. tomentosus or cells of B. subtilis did not penetrate the mycelia or spores of F. moniliforme.

Effect of culture filtrates of antagonists on spore germination and chlamydospore formation of F. moniliforme

The culture filtrates of P. involutus and B. subtilis significantly inhibited spore germination of F. moniliforme. The spore germination of F. moniliforme was 75% for controls whereas it was 30% when treated with culture filtrate of P. involutus and 41.4% when treated with culture filtrate of B. subtilis (Fig. 2). The spore germination of F. moniliforme was not significantly reduced when treated with culture filtrate of S. tomentosus. The formation of chlamydospores of F. moniliforme was 10.6% when treated with culture filtrate of B. subtilis and only 4.3% when treated with culture filtrate of P. involutus. No chlamydospore formation was observed when treated with culture filtrate of S. tomentosus and non-treated controls (Fig. 2).

Effect of antagonists on jack pine seedling mortality and disease development caused by F. moniliforme

Flask system

Both P. involutus and B. subtilis significantly increased survival of jack pine seedlings infected with F. moniliforme. F. moniliforme alone caused 84% seedling mortality (Table 1). When co-inoculated with P. involutus and B. subtilis, mortality of the seedlings was 20 and 28%, respectively (Table 1). When both P. involutus and B. subtilis were concomitantly inoculated with F. moniliforme, seedling mortality was 16% (Table 1). S. tomentosus did not increase survival of seedlings when co-inoculated with F. moniliforme. Shoot height, root length, and total biomass of the seedlings were similar to the control when inoculated with P. involutus, S. tomentosus or B. subtilis (Table 1). Mycorrhizal formation by P. involutus and S. tomentosus

Table 1. Effect of *Paxillus involutus* (Pi), *Suillus tomentosus* (St), and *Bacillus subtilis* (Bs) on seedling mortality and disease development caused by *Fusarium moniliforme* (Fm) on jack pine grown in Erlenmeyer flasks

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Seedling mortality (%)</th>
<th>Shoot height (cm)</th>
<th>Root length (cm)</th>
<th>Total dry wt (mg)</th>
<th>No. of mycorrhizal short roots (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0 d†</td>
<td>3.5 a</td>
<td>2.2 ab</td>
<td>74.0 b</td>
<td>0 d</td>
</tr>
<tr>
<td>Fm</td>
<td>84.0 a</td>
<td>1.0 c</td>
<td>0.6 c</td>
<td>10.3 e</td>
<td>0 d</td>
</tr>
<tr>
<td>Bs</td>
<td>0 d</td>
<td>3.1 ab</td>
<td>2.5 a</td>
<td>82.0 a</td>
<td>0 d</td>
</tr>
<tr>
<td>Pi</td>
<td>0 d</td>
<td>3.0 ab</td>
<td>2.4 a</td>
<td>85.0 a</td>
<td>52.2 a</td>
</tr>
<tr>
<td>St</td>
<td>0 d</td>
<td>3.2 ab</td>
<td>2.3 a</td>
<td>86.0 a</td>
<td>51.5 a</td>
</tr>
<tr>
<td>Bs + Fm</td>
<td>28.0 b</td>
<td>2.8 b</td>
<td>1.9 b</td>
<td>50.0 d</td>
<td>0 d</td>
</tr>
<tr>
<td>Pi + Fm</td>
<td>20.0 c</td>
<td>2.8 b</td>
<td>2.4 a</td>
<td>57.0 c</td>
<td>35.0 b</td>
</tr>
<tr>
<td>St + Fm</td>
<td>62.5 a</td>
<td>1.2 c</td>
<td>0.7 c</td>
<td>9.5 e</td>
<td>10.0 c</td>
</tr>
<tr>
<td>Bs + Pi + Fm</td>
<td>16.0 c</td>
<td>2.8 b</td>
<td>2.3 a</td>
<td>60.0 c</td>
<td>30.0 b</td>
</tr>
<tr>
<td>Bs + St + Fm</td>
<td>27.5 b</td>
<td>2.5 b</td>
<td>1.7 b</td>
<td>49.5 d</td>
<td>10.0 c</td>
</tr>
</tbody>
</table>

† Means within a column followed by the same letter are not significantly different (P = 0.05) according to the Scheffé's test.
was significantly decreased when seedlings were co-inoculated with *F. moniliforme* (Table 1).

Tray system

As in the Erlenmeyer flasks, both *P. involutus* and *B. subtilis* significantly increased survival of seedlings infected with *F. moniliforme* (Table 2). *S. tomentosus* did not increase survival of seedlings when co-inoculated with *F. moniliforme*. Shoot height, root length, and total biomass of the seedlings were significantly higher when co-inoculated with *F. moniliforme* and *P. involutus* or *B. subtilis* than with *F. moniliforme* alone (Table 2). Mycorrhizal formation by *P. involutus* and *S. tomentosus* was significantly reduced when seedlings were co-inoculated with *F. moniliforme* (Table 2).

Population density of *F. moniliforme* in the rhizosphere of jack pine seedlings inoculated with antagonists

The colony forming units (cfu) of *F. moniliforme* were significantly reduced in both Erlenmeyer flasks and trays when inoculated with *P. involutus* or *B. subtilis* (Table 3). *S. tomentosus* did not reduce the numbers of cfu of *F. moniliforme*. However, no significant difference in

<table>
<thead>
<tr>
<th>Population density of Fusarium moniliforme (Fm) in the rhizosphere of jack pine seedlings inoculated with Paxillus involutus (Pi), Suillus tomentosus (St), and Bacillus subtilis (Bs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
</tr>
<tr>
<td>Control</td>
</tr>
<tr>
<td>Fm</td>
</tr>
<tr>
<td>Bs</td>
</tr>
<tr>
<td>Pi</td>
</tr>
<tr>
<td>St</td>
</tr>
<tr>
<td>Bs + Fm</td>
</tr>
<tr>
<td>Pi + Fm</td>
</tr>
<tr>
<td>St + Fm</td>
</tr>
<tr>
<td>Bs + Pi + Fm</td>
</tr>
<tr>
<td>Bs + St + Fm</td>
</tr>
<tr>
<td>Bs + Pi + Fm</td>
</tr>
<tr>
<td>Bs + St + Fm</td>
</tr>
</tbody>
</table>

† Colony forming units.
§ Means in a column followed by the same letter are not significantly different (P = 0.05) according to the Scheffé’s test.
numbers of cfu of *F. moniliforme* was observed when seedlings were inoculated with *P. involutus* + *B. subtilis* + *F. moniliforme* and *S. tomentosus* + *B. subtilis* + *F. moniliforme* (Table 3).

DISCUSSION

In our study, the mycelium of *P. involutus* or cells of *B. subtilis* did not penetrate the mycelium or spores of *F. moniliforme*. The formation of dormant spores was observed when *F. moniliforme* was treated with culture filtrate of *P. involutus*. When jack pine seedlings were inoculated with *P. involutus*, it was observed that not only the mantle-covered short-root tips of jack pine were protected, but also the long tap roots without a mantle were protected against *F. moniliforme*. Many short roots without a mantle were also protected, while the roots not inoculated with *P. involutus* were susceptible. Thus, the mantle barrier hypotheses cannot explain the mechanism of protection. Our *in vitro* studies suggest that *P. involutus* produced inhibitory substances in the liquid medium which was toxic to *F. moniliforme*. *Suillus tomentosus*, on the other hand, did not produce substances that are inhibitory to *F. moniliforme*.

Several authors have reported that disease suppression by ectomycorrhizal fungi is associated with plant-produced antimicrobial substances (Chakravarty and Hwang 1991; Chakravarty and Unestam 1986, 1987a, b; Duchesne *et al.* 1987a, b, 1988, 1989a, b; Sampangi and Perrin 1985; Sylvia and Sinclair 1983a, b). Suppression of *F. moniliforme* damping-off by *P. involutus* likely results from the production of antifungal compounds by *P. involutus* or production of antimicrobial compounds by the plant.

The number of cfu of *F. moniliforme* was significantly reduced in the rhizosphere of jack pine seedlings inoculated with *P. involutus*. This indicates that *P. involutus* produced antifungal substances in the rhizosphere of jack pine seedlings that limited the numbers of cfu of *F. moniliforme*. It has been suggested by several authors that ectomycorrhizae produce solvent-extractable volatile compounds which can inhibit several root pathogens (Graham and Linderman 1980; Krupa and Fries 1971; Krupa and Nylund 1972; Krupa *et al.* 1973; Schisler and Linderman 1989a, b). The production of volatiles by ectomycorrhizal fungi may be deleterious to several species of *Fusarium* (Chakravarty *et al.* 1991; Schisler and Linderman 1989b; Stack and Sinclair 1975). The formation of ectomycorrhizae on jack pine seedlings was also reduced when challenged with *F. moniliforme*. This suggests that *F. moniliforme* also produced antifungal compounds in the rhizosphere of jack pine seedlings that inhibited ectomycorrhiza formation by *P. involutus*. Chakravarty *et al.* (1991) made similar observations with several root pathogenic fungi including *Fusarium* spp.

As with *P. involutus*, *B. subtilis* also significantly inhibited *in vitro* growth of *F. moniliforme* and reduced mortality of jack pine seedlings. *B. subtilis* is known to be an active antagonistic bacterium against several root pathogens (Broadbent *et al.* 1971; Gordon *et al.* 1973; Hall and Davis 1990; Pusey *et al.* 1988; Singh and Deverall 1984; Utkhede and Sholberg 1986). The bacterium protects against or prevents root pathogens by secreting antimicrobial substances including several antibiotics such as bacilysin, fengymycin, bacitracin, bacillin, bulbiformin, mycosubtilin, and subtilin (Loeffler *et al.* 1986; Vanittanakom *et al.* 1986). In this study, *B. subtilis* significantly inhibited the *in vitro* growth of *F. moniliforme*. The culture filtrate of *B. subtilis* strongly inhibited spore germination but stimulated chlamydospore formation of *F. moniliforme*. Similar observations were also reported by Singh and Singh (1983). Our *in vitro* study indicates that inhibition of growth of *F. moniliforme* and formation of chlamydospores was related to the production of antifungal compounds by *B. subtilis*. The bacterium also reduced seedling mortality and decreased the population density of *F. moniliforme* in the rhizosphere of jack pine seedlings.

The biological protection provided by *B. subtilis* in this study was similar to that of *P. involutus*. When *P. involutus* and *B. subtilis* were co-inoculated, the effectiveness of both these organisms, however, remained the same. *P. involutus* and *B. subtilis*, on the other hand, did not
show any inhibitory effect against each other. This suggests that these two organisms are compatible and can function in the presence of each other. In this study, *P. involutus* did not reduce the effectiveness of *B. subtilis* and vice versa. Thus *P. involutus* and *B. subtilis* are potentially compatible for biological protection against *F. moniliforme* damping-off of jack pine. In this integrated system, both *P. involutus* and *B. subtilis* could provide protection at times when environmental factors are not favourable for the activity of either *P. involutus* or *B. subtilis*. *S. tomentosus* is not considered a potential candidate for biological control of *F. moniliforme*. Further field studies are in progress to determine the effectiveness of *P. involutus* and *B. subtilis* and their interactions with other soil microorganisms, pathogens, and naturally occurring mycorrhizal fungi.

ACKNOWLEDGEMENTS

We thank Drs. L.M. Dosdall and L.J. Hutchison for reviewing this manuscript.

REFERENCES

Hall, T.J., and W.E. Davis. 1990. Survival of
Bacillus subtilis in silver and sugar maple
seedlings over a two-year period. Plant
Dis. 74 : 608-609.

Hiratsuka, Y. 1987. Forest tree diseases of the
prairie provinces. Information Rep. NOR-
X-286, Can. For. Serv., Edmonton, Alberta,
Canada. 141 pp.

Appl. Biol. 89 : 139-141.

Krause, C.R., J.M. Ichida, L.R. Schreiber, and
G.F. Gregory. 1987. Morphological and
cytological effects on Ceratocystis ulmi of
an antifungal antibiotic produced by Bacil-
lus subtilis. Phytopathology 77 : 1771 (Ab-
stract).

Krezel, Z., and D. Leszcynska. 1978. Antibi­
otic activity of Bacillus subtilis to some
phytopathogenic microorganisms. Meded.
Fac. Landbouwwet. Rijksuniv. Gent. 43 :
859-865.

Krupa, S., and N. Fries. 1971. Studies on
ectomycorrhizae of pine. I. Production of
49 : 1425-1431.

Krupa, S., and J.E. Nylund. 1972. Studies on
ectomycorrhizae of pine. II. Growth inhibition
of two root pathogenic fungi by volatile
organic constituents of ectomycor­
rhizal root system of Pinus sylvestris. Eur.
J. For. Pathol. 2 : 88-94.

Studies on ectomycorrhizae of pine. IV.
Volatile organic compounds in mycorrhizal
and non-mycorrhizal root systems of Pi­
nus echinata Mill. Eur. J. For. Pathol. 3 :
194-200.

Loeffler, W., J.S.M. Tschen, N. Vanittanakom,
M. Krugler, E. Knorpp, T.T. Hsich, and T.G.
Wu. 1986. Antifungal effects of bacilysin
and fengyimycin from Bacillus subtilis
F-29-3 : A comparison with activities of other
Bacillus antibiotics. Phytopathology 72 :
204-213.

mycorrhizal fungi on the resistance of pine
roots to pathogenic infections. I. Antago­
nism of mycorrhizal fungi to pathogenic
fungi and soil bacteria. Phytopathology
59 : 153-163.

Marx, D.H. 1972. Ectomycorrhizae as biologi­
cal deterrents to pathogenic root infec­
tions. Annu. Rev. Phytopathol. 10 : 429-
454.

diseases. Pages 351-382 in G.C. Marks and
T.T. Kozlowski (eds), Ectomycorrhizae -
their ecology and physiology. Acad. Press,
New York.

Bacillus subtilis as antagonist to vascular

vest biological control of stone fruit brown
rot by Bacillus subtilis. Plant Dis. 68 : 753-
756.

Pusey, P.L., C.L. Wilson, M.W. Hotchkiss, and
J.D. Franklin. 1986. Compatibility of Bacil­
lus subtilis of postharvest control of peach
brown rot with commercial fruit waxes, dichloran, and cold-storage conditions.
Plant Dis. 70 : 587-590.

Pusey, P.L., M.W. Hotchkiss, H.T. Dulmage,
R.A. Baumgardner, E.I. Zehr, C.C. Reilly,
mercial production and application of
Bacillus subtilis (B-3) for postharvest con­
trol of peach brown rot. Plant Dis. 72 : 622-
626.

to elucidate the mechanisms involved in
the protective effect of Laccaria laccata
against Fusarium oxysporum. Pages
799-806 in V. Gianinazzi-Pearson and
S. Gianinazzi (eds.), Proc. 1rd Eur. Symp. on
Mycorrhizae. Dijon, France.

Carolina.

Selective influence of volatiles purged from
coniferous forest and nursery soils on mi­
crobes of a nursery soil. Soil Biol. Bio­
chem. 21 : 389-396.

Response of nursery soil microbial popu­
lation to volatiles purged from soil around
chem. 21 : 397-401.

1975. Fusarium root rot of Douglas fir
seedlings : suppression by soil fumiga­
tion, fertility management and inoculation
with spores of the fungal symbiont Lac­

subtilis as a control agent against fungal
pathogens of citrus fruit. Trans. Br. My­

