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The silverleaf whitefly (SLW), Bemisia tabaci, is an exotic pest that causes sporadic crop damage in Canadian 
greenhouses, mainly on tomatoes. Its plant feeding is responsible for both direct damage as well as the transmission of 
plant viruses. Interestingly, omnivorous predators, which are used as biological control agents for multiple whitefly 
species, can establish on greenhouse crops even before the pest has established, using alternative food resources and 
host plants to support the predator. However, the efficiency of such indigenous omnivorous biological agents in the 
suppression of high density and intense SLW infestations remains unknown. This research aimed to assess the potential 
of two indigenous omnivorous biological agents, Dicyphus hesperus and Orius insidiosus to control SLW infestations 
and their effects on tomato plant health and yield at both early stages of the crop cycle, and at high pest densities. This 
study showed that populations of B. tabaci are able to grow rapidly. However, neither of the introduced densities of 
B. tabaci nor the infestation time had a significant effect on the incidence of tomato irregular ripening disorder (TIR) 
and yield. Our results also show that the introduction of three or five D. hesperus adults per cage reduces the number 
of B. tabaci larvae and pseudo-nymphs, while O. insidiosus did not significantly reduce SLW populations. Our results 
suggest that D. hesperus could control high levels of SWL and at an early stage in the cropping cycle. 

Keywords: Bemisia tabaci, Dicyphus hesperus, Orius insidiosus, biological control, greenhouse, tomato irregular ripening 
disorder. 

[Contrôle biologique de l’aleurode du tabac Bemisia tabaci (Hemiptera : Aleyrodidae) en utilisant des insectes 
prédateurs, Dicyphus hesperus (Hemiptera : Miridae) et Orius insidiosus (Hemiptera : Anthocoridae)] 

L’aleurode du tabac (SLW), Bemisia tabaci, est un ravageur exotique qui cause des dommages sporadiques dans les 
serres canadiennes, principalement en culture de tomates. Son comportement alimentaire est responsable de 
dommages directs et de la transmission de virus. Les prédateurs omnivores peuvent s’établir en serre avant l’arrivée 
des ravageurs, en utilisant des proies et hôtes alternatifs. Toutefois, l’efficacité des prédateurs indigènes contre 
B. tabaci reste inconnue. Cette étude avait pour objectif de tester la réponse des plants de tomate aux infestations 
hâtives et de fortes intensités de B. tabaci, et le potentiel de deux punaises omnivores indigènes, Dicyphus hesperus et 
Orius insidiosus. Les résultats démontrent que les populations de B. tabaci augmentent rapidement. Cependant, ni la 
densité ni le temps d’infestation n’avaient d’effet significatif sur le trouble du désordre de maturation (TIR) et sur le 
rendement. L’introduction de trois et cinq D. hesperus adultes réduisait le nombre de larves et nymphes de B. tabaci, 
alors que l’utilisation d’O. insidiosus n’a pas permis de réduire significativement les populations. Nos résultats suggèrent 
que D. hesperus pourrait réguler de fortes et brèves infestations de B. tabaci. 

Mots-clés : Bemisia tabaci, Dicyphus hesperus, Orius insidiosus, contrôle biologique, serres, trouble du désordre de 
maturation de la tomate. 
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INTRODUCTION 

The silverleaf whitefly (SLW), also called the sweet potato 
whitefly, Bemisia tabaci (Gennadius, 1889) (Hemiptera: 
Aleyrodidae), is among the most common and globally 
distributed of crop pests (Castañé et al. 2020; Oliveira et al. 
2001). It has been found to attack at least 600 plant species, 
including cotton, poinsettia, sweet potato, or squash, and is 
a severe pest of several greenhouse crops including tomato, 
pepper, beans, eggplant, and cucumber (Cook 1986; Oliveira 
et al. 2001). In Quebec, the SLW is generally less frequently 
observed than the greenhouse whitefly Trialeurodes vapora-
riorum (Westwood, 1856), but its infestations have increased 
in recent years. The SLW represents a threat to greenhouse 
crops, particularly to tomato, since this species transmits 
over 90 viruses and generates plant physiological disorders 
(De Barro et al. 2011; Jones 2003; McAuslane and Smith 2018). 
In tomato crops, the SLW (biotype B) induces a ripening 
disorder, first detected in Florida (USA) in 1987 (McCollum 
et al. 2004), which caused losses of $25 million for producers 
of Florida in 1989 (McAuslane and Smith 2018). This physio-
logical disorder, called tomato irregular ripening (TIR), disturbs 
the ripening of tomatoes by inhibiting fruit softening, that is 
to say, that fruit remains green and firm in the centre 
(McCollum et al. 2004; McKenzie and Albano 2009; Schuster 
et al. 1990). As few as 0.5 individuals per leaf for a short 
period of time can induce TIR (Schuster et al. 2019). Control 
methods, such as pesticides or biological control, therefore 
have to be applied in a timely manner to reduce whitefly 
density to below this threshold (Smith and Krey 2019). 
Consequently, growers often rely on frequent pesticide 
applications for their control needs (Calvo, Torres-Ruiz et al. 
2018). However, the development of pesticide resistance in 
whitefly is well documented for many groups of pesticides 
(Bass et al. 2015; Cahill et al. 1996; Horowitz et al. 1999; Nauen 
and Denholm 2005; Palumbo et al. 2001; Prabhaker et al. 
1985). As such, a number of biological control organisms have 
been identified for controlling the SLW including parasitoids 
and predators.  

Natural enemies of the SLW include predators such as lady 
beetles (Coleoptera: Coccinellidae), predatory bugs (Heteroptera: 
Miridae and Anthocoridae), lacewings (Neuroptera: Chrysopidae 
and Coniopterygidae), mites (Acari: Phytoseiidae), and spiders 
(Araneae) (Gerling et al. 2001). In particular, commercially 
available biological agents include Amblyseius swirskii Athias-
Henriot, 1962 (Acari), Delphastus catalinae (Horn, 1895) 
(Coleoptera: Coccinellidae), Dicyphus hesperus (Knight, 
1943), Nesidiocoris tenuis (Reuter, 1895), and Macrolophus 
pygmaeus (Rambur, 1839) (Heteroptera: Miridae), as well as 
several species of parasitoids, including those from genera 
Encarsia. and Eretmocerus (Hymenoptera: Aphelinidae) 
(Greenberg et al. 2002; Hoddle and Van Driesche 1999; 
van Lenteren 2012). However, A. swirskii and D. catalinae are 
less effective on tomato plants due to the presence of trichomes 
(Buitenhuis et al. 2014; Guershon and Gerling 2006).  

In Canada, N. tenuis and M. pygmaeus are not commercially 
available because they are not native species (Calvo et al. 
2016). Hence, the predatory bug D. hesperus and aphelinid 
parasitoid wasps remain the only available biocontrol agents 
in Canada with which to effectively manage whitefly. 
Interestingly, predatory bugs can be introduced in greenhouses 
before the whitefly population becomes problematic, by adding 
Ephestia eggs or mullein plants as supplemental food or 
ovipositional substrates respectively (Sanchez et al. 2003; Smith 
and Krey 2019), which is rarely done with parasitoid wasps.  

Previous experiments have revealed that Dicyphus bugs 
are effective predators for controlling several pests in tomato 
crops, including mites, whiteflies (McGregor et al. 1999), and 
especially the SLW (Calvo et al. 2016; Calvo, Torres et al. 
2018; Calvo, Torres-Ruiz et al. 2018; Smith and Krey 2019). 
Whiteflies represent a food of higher quality for D. hesperus, 
as feeding on whitefly is associated with a higher predator 
growth rate and a reduced development time compared to 
feeding on mites (McGregor et al. 1999). Moreover, mullein 
plants can serve as reservoirs for D. hesperus (Smith and Krey 
2019). In addition to D. hesperus, the generalist bug Orius 
insidiosus, which feeds on several pests such as thrips and 
aphids, has also been reported to feed on whitefly (Coll and 
Ridgway 1995). Therefore, this species could also represent a 
potential to control agent of the SLW in tomato production. 
O. insidiosus also feeds on pollen, and the presence of this 
resource promotes its development and increases its longevity 
(Wong and Frank 2013). This anthocorid bug effectively 
controls pests on several crops (e.g., bean, corn, tomato, 
pepper, cucumber) (Coll and Ridgway 1995). 

The present study aims to evaluate the potential of these 
two indigenous and omnivorous biological agents, D. hesperus 
and O. insidiosus on high level and short time infestation of 
SLW and its impact on TIR and yield. We first tested the 
impact of B. tabaci densities and infestation time on the rate 
of TIR. Then, the effect of omnivorous predators on B. tabaci 
density was tested. 

MATERIALS AND METHODS 

Insect populations 

Silverleaf whiteflies used in experiments originated from a 
commercial tomato greenhouse collected during 2018 and 
2019 summers and were reared in the lab at the CRAM 
research centre until having enough individuals to perform 
the experiments. Biotype B was identified by genetic methods 
by the Laboratoire d’expertise et de diagnostic en phyto-
protection of the Ministère de l’Agriculture, des Pêcheries et 
de l’Alimentation du Québec (MAPAQ, Québec, Canada). 
Whiteflies were reared on healthy eggplants in cages in 
controlled environment chambers, maintained at 25 °C, a 
60% relative humidity, and a photoperiod 16:8 h (light:dark). 
A colony of D. hesperus maintained at the Université du 
Québec à Montréal (UQAM) (source population from Anatis 
bioprotection inc., Saint-Jacques-le-Mineur, Québec), as well as 
a commercial source (Anatis bioprotection inc.) for O. insidiosus 
provided the predatory bugs for trials in this study. For all 
experiments, adult whiteflies were introduced in a mesh 
sleeve covering a tomato leaf on 10-leaf plants. 

Experimental site 

The experiments took place in a greenhouse of the Centre de 
recherche agroalimentaire de Mirabel (CRAM), located in 
Mirabel (Quebec, Canada) during summer 2018. In the 
greenhouse, four rows of 10-leaf tomato plants (without 
flowers at the start of the experiment) of variety Beef 
Starbuck (known to be sensitive to whiteflies) were planted 
(distance between plants of 0.5 m on a row and row spacing 
of 1 m). The same set-up was used for experiment 1 (the 
study of whitefly density and damages) and experiment 2 
(effect of predators on whitefly density).  
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Experiment 1: Whitefly density and plant damage 

The effects of varying whitefly infestation intensity (densities 
of 0, 10, 50 or 100 whiteflies per treatment) and the duration 
of infestation (one versus three weeks) on tomato production 
(harvest date, number of tomatoes produced, mean tomato 
weight) and the presence of the maturation disorder were 
assessed in a trial with a randomized complete block design 
(80 plants total or 10 plants per treatment). A muslin sleeve 
was put around one of the two superior leaves of each plant 
(fully developed leaf), and adult whiteflies were introduced 
at rates of 10, 50, or 100 whiteflies depending on the treatment. 
The sleeves were sealed just after the introduction of the 
whiteflies. Control treatments consisted of leaves surrounded 
by a sleeve but with no whitefly added. One week later, all 
the 1-week treatment leaves were cut, and whiteflies (eggs, 
larvae, pseudo-nymphs, adults) were counted in the lab 
using a binocular. Three weeks after the introduction of 
whiteflies, all the 3-week treatment leaves were cut, and 
whiteflies (eggs, larvae, pseudo-nymphs, adults) were observed 
and counted in the lab. All tomatoes produced by plants 
were harvested when mature (up to three weeks after the 
end of the experiment), weighed, and the presence of 
maturation disorder was recorded (presence or absence) 
(green patches either on the tomato fruit or inside). 

Experiment 2: Effect of predators on whitefly 
density 

The effect of predatory bugs D. hesperus and O. insidiosus on 
whitefly density was determined in trials with a randomized 
complete block design (100 plants total, or 10 plants per 
treatment). A muslin sleeve was put around one of the two 
superior leaves of each plant (fully developed leaf), and 50 
adult whiteflies were introduced within (except for the 
Bemisia control treatment). The sleeves were sealed just after 

the introduction of whiteflies. One week later, depending on 
the treatment, 1, 3 or 5 individuals of D. hesperus or O. insidiosus 
were introduced into the sleeve cages. No predators were 
introduced onto control plants. Four weeks later, the leaves 
within sleeves were cut. Whiteflies (eggs, larvae, pseudo-
nymphs, adults) and predatory bugs (immatures, adults) were 
counted in the lab. 

Statistical analyses 

Whitefly density, ripening disorder, and yield 

Three generalized linear model (GLM) procedures for data 
with a Poisson distribution (corrected for overdispersion) 
were used to compare the densities of SLW eggs, larvae, 
pseudo-nymphs and adults as a function of initial SLW 
density. The factor “duration” was also included in the egg 
density model, but not in other models because there were 
no pseudo-nymphs and adults on week 1. 

The effects of SLW density, duration of infestation, and 
the interaction between these factors on the proportion of 
ripening disorder, the yield (number of tomatoes per plant), and 
the total weight of tomatoes per plant was assessed using, 
respectively, a GLM procedure for the binomial distribution, 
a GLM for Poisson distribution and a linear regression model. 

Effect of predators on whitefly density 

The effect of the initial predator (either O. insidiosus or 
D. hesperus) density on SLW density (all stages pooled) was 
also assessed through an analysis of variance (ANOVA) and a 
post-hoc means separation Tukey-Kramer test. The significance 
level was set at alpha = 0.05.  

All analyses were done in R (R Core Team 2017). 

 
Figure 1. Trial average number of Bemisia tabaci eggs (± SE) (a) or nymphs and pupae (b) per leaf relative to initial whitefly 
introduction rate and duration of infestation. The number of eggs, larvae or pseudo-nymphs increased with the initial density of 
B. tabaci introduced. Different letters indicate statistical differences among treatments. 



DUMONT ET AL.: BIOCONTROL OF WHITEFLY BY INDIGENOUS GENERALIST PREDATORS 

41 

 

 
Figure 2. Average rate of tomato irregular ripening (TIR) disorder (± SE) observed in function of the Bemisia tabaci introduction 
rate and duration of infestation. The introduction rate and the duration of infestation had no significant effect on the rate of TIR. 

 
Figure 3. Trial average Bemisia tabaci density (± SE) in function of the density of Dicyphus hesperus. Statistical significance is 
indicated by different letters (α = 0.05). 

RESULTS 

Whitefly density, ripening disorder, and yield 

Populations of the SLW were established very quickly on 
tomato plants, with a majority of eggs laid during the first 
week following the whiteflies’ introduction. In the third 
week, the whitefly population was mainly composed of 
larvae and pseudo-nymphs (Fig. 1). The number of eggs was 

lower over the period of three weeks (β = -0.51 ± 0.16, t = -3.24; 
P = 0.002). The number of eggs (t = 6.80, P < 0.0001), larvae 
or pseudo-nymphs (t = 2.79, P = 0.01) and adults (t = 2.70, 
P = 0.02) increased with the initial density of B. tabaci introduced. 

In the control treatment, 8% (± 3% SE) tomatoes were 
classified as irregularly ripened. This rate was not affected by 
initial whitefly density (P = 0.17) nor duration of infestation 
(P = 0.29) (Fig. 2). No interaction between SLW initial density 
and infestation duration (P = 0.56) was observed. 
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The mean tomato yield and total tomato weight per plant 
were respectively 3.72 (± 1.88 SD) tomatoes per plant and 
185.31 g (± 47.96 SD). Neither initial SLW density nor duration 
of infestation had an impact on tomato yield (density: 
P = 0.77, duration: P = 0.18) or total tomato weight per plant 
(density: P = 0.82, duration: P = 0.56). The interaction of SLW 
density and infestation duration had no effect on yield 
(P = 0.12) nor on weight of tomatoes (P = 0.17). 

Effect of predators on whitefly density 

Five weeks after introducing 50 adult whiteflies, 109.6 
(± 27.7 SE) eggs, 829.3 (± 126.8 SE) larvae or pseudo-nymphs 
and 9.3 (± 1.6 SE) adult whiteflies were observed in the 

muslin sleeve in the control treatment. The introduction of 
three and five D. hesperus adults reduced the number of 
whiteflies larvae and pseudo-nymphs by 42.8% and 49.9%, 
respectively (F(3, 36) = 4.01, P = 0.01) (Fig. 3). The lower density 
of D. hesperus (one individual) had no significant effect on 
SLW larvae and pseudo-nymph populations. The introduction 
of D. hesperus did not reduce the number of SLW eggs  
(F(3, 36) = 0.86, P = 0.47) and adults (F(3, 36) = 1.68, P = 0.19) (Fig. 3). 

The introduction of O. insidiosus had no significant effect 
on the density of SLW eggs (F(3, 36) = 0.86, P = 0.47), larvae or 
pseudo-nymphs (F(3, 36) = 1.29, P = 0.29) and adults (F(3, 36) = 0.12, 
P = 0.95) (Fig. 4). 

 
Figure 4. Bemisia tabaci density (± SE) in function of the density of Orius insidiosus. The O. insidiosus introduction rate had no 
significant effect on B. tabaci density. 

DISCUSSION 

High level and short time infestation of SLW did not impede 
tomato irregular ripening disorder nor incur a yield reduction, 
even if the threshold of 0.5 nymphs/leaflet was largely reached. 
Globally, the predatory bug D. hesperus had a negative effect 
on the populations of SLW, whereas O. insidiosus did not 
significantly impact SLW’s populations. A decrease in the 
larvae and pseudo-nymph populations of B. tabaci by 42.8% 
and 49.9% was observed at an initial density of three and five 
D. hesperus for the initial 50 B. tabaci release treatment. 

Whitefly density, ripening disorder, and yield 

The impact of B. tabaci presence on ripening disorder in 
tomato plants has yet to be fully understood (McCollum et al. 
2004; McKenzie and Albano 2009). Past work has found that 

SLW feeding suppresses ethylene biosynthesis in tomato 
fruit (McCollum et al. 2004), and this inhibition of ethylene 
biosynthesis disrupts ripening, which leads to the non-
uniform colour and inhibition of fruit softening associated 
with the TIR disorder (Hamilton et al. 1991; McCollum et al. 
2004; Oeller et al. 1991). Schuster (2002) also reported that 
the TIR could be induced by very low whitefly densities, as 
low as 5 nymphs per 10 leaflets (Schuster et al. 2019), while 
high densities can increase the severity of TIR (Schuster 2002; 
Schuster et al. 1990). In contrast, TIR severity was not related 
to whitefly density in our experiment, even if the threshold 
was largely reached. This very low prevalence of TIR (8%) 
could be due to different factors, such as tomato plants 
phenology at the time of the infestation or confined infestation 
on the plant. McKenzie and Albano (2009) noted that timing 
is a significant factor in the induction of TIR by whiteflies, and 
that only a low density of whitefly nymphs within two weeks 
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of harvest can induce TIR. In our experiment, whiteflies were 
introduced on one leaf of 10-leaf plants (one leaf presenting 
between 5 and 7 leaflets), then removed after one or three 
weeks, while the harvest occurred later in the season. Therefore, 
it can be concluded that either the infestation period was not 
long enough for the SLW to have a strong impact on the 
tomato plants and induce TIR, or the tomato plants could 
have recovered from the whitefly populations before fruit 
maturation occurred. Nevertheless, our results suggest that 
a rapid intervention after noticing a SLW infestation could 
limit the impact of TIR. 

Effect of predators on whitefly density 

Using generalist predators represent an interesting strategy 
to rapidly control SLW populations. For example, in an 
experiment carried out in a greenhouse in Mexico, a rate of 
introduction of one Dicyphus bug per tomato plant and 
Ephestia eggs induced an almost 90% reduction in adult 
whitefly populations (Calvo et al. 2016). In another expe-
riment, the introduction of a single D. hesperus on a tomato 
plant infested with 30 adult whiteflies significantly reduced 
whitefly populations after five weeks (seven times fewer 
larvae and pseudo-pupae in treatments with one Dicyphus 
than in treatments without predator) (Calvo, Torres et al. 
2018). Another experiment demonstrated a 60% reduction 
of whitefly nymphs in five weeks with the introduction of 2, 
4 or 6 pairs of D. hesperus during three consecutive weeks 
(Smith and Krey 2019). We observed similar results in our 
experiment, since D. hesperus had a significant impact on the 
SLW density in a relatively short time (five weeks), making it 
a good candidate for the control of the SLW in tomato crops. 
However, the decrease of whitefly populations was lower in 
our experiment (53%) than in Calvo, Torres et al. (2018) or 
Smith and Krey (2019). This difference could be attributed to 
the absence of supplementary food resources in our 
experiment. In fact, the addition of Ephestia eggs (Lepidoptera: 
Pyralidae), Artemia cysts (Crustacea: Branchiopoda, Artemiidae) 
or mullein plants to D. hesperus diet have been found to 
increase their population density (Labbé et al. 2018; Smith 
and Krey 2019).  

In contrast, O. insidiosus had no discernible impact on the 
SLW than D. hesperus in our experiment, which means that 
this anthocorid bug does not play a significant role in the 
biological control of the SLW in tomato crops. Only a few 
studies focused on O. insidiosus as a predator of whiteflies 
(Coll and Ridgway 1995; Watve and Clower 1976), while 
many studies reported an effective use of O. insidiosus to 
control thrips and mite populations (Cloyd and Herrick 2017; 
Van de Veire and Degheele 1992; Xu et al. 2006). According 
to these previous studies and our results, it may be preferred 
to use O. insidiosus as a biological control agent to control 
other pests (especially thrips and mites) than whiteflies. It 
could be interesting to evaluate this predator in combination 
with D. hesperus against a multiple prey species.  

CONCLUSION 

Overall, our results show that the predatory bug, D. hesperus, 
could be used as an effective biological control agent to 
control infestations of the SLW. At low pest densities in 
particular, Dicyphus bugs may be more efficient to control 
whiteflies than parasitoids because they are more efficient at 
finding prey patches since these two biological control agents 
have different foraging behaviours (Bennett et al. 2009). 

Firstly, Dicyphus bugs use both olfactory and visual cues to 
detect whiteflies (Hazard 2008; Sinia et al. 2004), while 
parasitoids use mainly olfactory cues (Birkett et al. 2003), 
which makes them more effective at high pest densities. 
Secondly, mirid bugs, which are zoophytophagous, can initiate 
plant defences. Interestingly, some zoophytophagous mirid 
species feeding on tomato plants have been found to reduce 
the plants’ attractiveness to the SLW and activate the jasmonic 
acid signalling pathway, which attracts the parasitoid Encarsia 
formosa Gahan, 1924 (Hymenoptera: Aphilinidae) (Pérez-Hedo 
et al. 2015). Although Dicyphus bugs are zoophytophagous 
and can feed on tomato plants, studies usually reveal no 
economic damage is incurred by this feeding behaviour 
(Calvo et al. 2016), especially if additional food resources are 
provided (Ephestia eggs or Artemia cysts). Finally, an optimal 
way of controlling the SLW would be to use a combination of 
biological control agents, such as the combination of entomo-
pathogenic fungus and D. hesperus (Alma et al. 2007), 
D. hesperus and parasitoids (Calvo, Torres-Ruiz et al. 2018), 
or a combination of these three types of agents (Labbé et al. 
2009). Although intraguild predation of mirid bugs on 
parasitoids has been reported (Bennett et al. 2009; McGregor 
and Gillespie 2005), the use of parasitoids in addition to 
D. hesperus resulted in better and more cost-effective 
control of the SLW (Calvo, Torres-Ruiz et al. 2018). However, 
further studies are needed to determine economic thresholds, 
the number of biological control agents to release in the 
greenhouse, and the best timing of intervention. 
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