NouvellesNews

Des cellules souches embryonnaires humaines pour le traitement de la maladie de Parkinson ?Human embryonic stem cell in Parkinson’s disease therapy ?[Record]

  • Anselme L. Perrier

…more information

  • Anselme L. Perrier
    Laboratoire de Plasticité cellulaire et thérapeutique,
    Inserm U.421, IM3, Faculté de Médecine,
    8, rue du Général Sarrail, 94010 Créteil Cedex, France.
    anselme.perrier@im3.inserm.fr

La maladie de Parkinson est une maladie neurodégénérative caractérisée par la perte progressive d’un seul type cellulaire du cerveau, les neurones dopaminergiques de la substance noire pars compacta. Cette perte cellulaire entraîne une déficience du striatum en dopamine, et il n’existe pour l’instant aucun traitement capable d’arrêter ou d’inverser durablement l’évolution de cette maladie. Une approche thérapeutique consiste à restaurer la fonction du striatum en transplantant des cellules neurales capables, à terme, de remplacer les neurones nigraux perdus. Des essais cliniques appliquant cette stratégie dite « substitutive » sont menés depuis maintenant près de 15 ans [1], essentiellement en transplantant des tissus mésencéphaliques issus de plusieurs foetus humains (parfois 6 à 10 par patient). L’approvisionnement, l’amplification et la standardisation de ce type de greffon étant très problématique, la généralisation de cette approche thérapeutique n’est, au-delà de toute considération éthique, pas envisageable pour l’instant. Pour pouvoir traiter un plus grand nombre de patients parkinsoniens par transplantation cellulaire, il faudrait disposer d’une source de greffons au moins aussi efficace que les tissus foetaux, mais permettant la préparation standardisée de grandes quantités de neurones dopaminergiques. Dérivées à partir de certaines cellules d’embryons âgés de seulement quelques jours (stade blastocyste), les cellules souches embryonnaires (ES) sont capables de se multiplier pratiquement sans limite et de se différencier en tous types cellulaires de l’organisme (cellules pluripotentes). Les cellules ES d’origine humaine constituent donc une source idéale de greffons pour des applications cliniques de thérapie cellulaire, mais seulement si l’on sait diriger efficacement leur croissance et leur différenciation vers les types cellulaires souhaités. Depuis quelques années, plusieurs équipes ont réussi à différencier des cellules ES murines, génétiquement modifiées ou non, en neurones dopaminergiques [2-5]. Ces neurones ont, chez le rat parkinsonien, un potentiel thérapeutique proche de celui de tissus foetaux [6, 7]. Jusqu’à présent, les divers essais de différenciation neurale de cellules ES humaines n’avaient permis de produire que très marginalement des neurones exprimant au moins un marqueur dopaminergique [8, 9]. Dans un article récemment publié dans les Proceedings of the National Academy of Sciences (USA) [10], l’équipe de L. Studer décrit un nouveau protocole permettant l’obtention de grandes quantités de neurones dopaminergiques mésencéphaliques à partir de différentes lignées de cellules ES humaines. Les auteurs montrent que les voies de différenciation et de signalisation clés au cours du développement du mésencéphale, in vivo, peuvent être reproduites de manière systématique afin de diriger avec succès la différenciation des cellules ES en neurones dopaminergiques. Le premier mois de différenciation in vitro des cellules ES humaines permet d’obtenir des progéniteurs neuraux ayant une forte capacité proliférative. L’induction neurale est déclenchée en cultivant les cellules à très faible densité sur une couche de cellules stromales de moelle osseuse. Cette propriété des cellules stromales est similaire à celle observée auprès de lignées de cellules ES de souris ou de singe avec plusieurs lignées de cellules stromales d’origine similaire (PA6, MS5, S17, S2) [5, 6]. À la différence de ce qui est obtenu en utilisant des cellules ES murines, la différenciation neurale de cellules ES humaines sur des cellules stromales (MS5) engendre des colonies de cellules neuro-épithéliales constituées de centaines de structures cellulaires circulaires désignées sous le terme de rosettes neurales (Figure 1A). Dans ces colonies, l’induction neurale se caractérise par l’apparition d’îlots cellulaires (préfigurant les futures rosettes) qui cessent d’exprimer des marqueurs de cellules souches embryonnaires tels que Oct-4, Nanog ou Cripto, et commencent à exprimer des marqueurs neuraux tels que le filament intermédiaire nestine (Figure 1B), les facteurs de transcription Sox-1 ou Pax-6, ou encore la molécule d’adhérence cellulaire neurale N-CAM. Contrairement à ce que leur …

Appendices