Abstracts
Résumé
Le génie tissulaire est un nouveau domaine, qui permet l’étude des mécanismes physiologiques du vivant. Il s’agit d’une technologie fondée sur la capacité des cellules vivantes, en présence ou non de biomatériaux, à s’assembler en un tissu tridimensionnel. Elle constitue une voie intéressante ouvrant aux chercheurs la possibilité de considérer les cellules dans un contexte proche de celui retrouvé in vivo. Cet article résume les travaux en génie tissulaire menés par le laboratoire d’organogenèse expérimentale (LOEX) au cours des dernières années, dans le but de comprendre certains des mécanismes physiologiques et pathologiques de l’organisme humain. Ainsi, la cicatrisation cutanée, mais aussi les cellules souches, l’angiogenèse et les interactions cellulaires sont des secteurs ayant profité de l’apport du génie tissulaire.
Summary
Tissue engineering is a new domain, which allows some very unique studies of many human physiological mechanisms. This technology, based on cell capacity to reproduce a three-dimensional tissue with or without the help of biomaterials, is an interesting approach to study cells in an environment quite similar to the in vivo context. This article summarizes the LOEX’s (laboratory of experimental organogenesis) scientific endeavor in tissue engineering in order to better understand some physiological or pathological mechanisms. Thus wound healing, stem cells, graft vascularization and cell interactions are domains where tissue engineering has already made a significant impact.
Appendices
Références
- 1. Zhao M, Song B, Pu J, Forrester JV, McCaig CD. Direct visualization of a stratified epithelium reveals that wounds heal by unified sliding of cell sheets. FASEB J 2003; 17: 397-406.
- 2. Falanga V, Grinnel F, Gilchrest B, Maddox YT, Moshell A. Experimental approaches to chronic wounds. Wound Repair Regen 1995; 3: 132-40.
- 3. Garlick JA, Taichman LB. Fate of human keratinocytes during reepithelialization in an organotypic culture model. Lab Invest 1994; 70: 916-24.
- 4. Genever PG, Cunliffe WJ, Wood EJ. Influence of the extracellular matrix on fibroblast responsiveness to phenytoin using in vitro wound healing models. Br J Dermatol 1995; 133: 231-5.
- 5. Jansson K, Kratz G, Haegerstrand A. Characterization of a new in vitro model for studies of reepithelialization in human partial thickness wounds. In Vitro Cell Dev Biol Anim 1996; 32: 534-40.
- 6. O’Leary R, Arrowsmith M, Wood EJ. The use of an in vitro wound healing model, the tri-layered skin equivalent, to study the effects of cytokines on the repopulation of the wound defect by fibroblasts and keratinocytes. Biochem Soc Trans 1997; 25: 369S.
- 7. Stephens P, Wood EJ, Raxworthy MJ. Development of a multilayered in vitro model for studying events associated with wound healing. Wound Repair Regen 1996; 4: 393-401.
- 8. Buck RC. Cell migration in repair of mouse corneal epithelium. Invest Ophthalmol Vis Sci 1979; 18: 767-84.
- 9. Ortonne JP, Loning T, Schmitt D. Immunomorphological and ultrastructural aspects of keratinocyte migration in epidermal wound healing. Virchows Arch 1981; 392: 217-30.
- 10. Laplante A, Germain L, Auger F, Moulin V. Mechanisms of wound reepithelialization: hints from a tissue-engineered reconstructed skin to long-standing questions. FASEB J 2001; 15: 2377-89.
- 11. Michel M, L’Heureux N, Pouliot R, Xu W, Auger FA, Germain L. Characterization of a new tissue-engineered human skin equivalent with hair. In Vitro Cell Dev Biol Anim 1999; 35: 318-26.
- 12. Werner S, Peters KG, Longaker MT, Fuller-Pace F, Banda MJ, Williams LT. Large induction of keratinocyte growth factor expression in the dermis during wound healing. Proc Natl Acad Sci USA 1992; 89: 6896-900.
- 13. Auger FA, Pouliot R, Tremblay N, et al. Multistep production of bioengineered skin substitutes: sequential modulation of culture conditions. In Vitro Cell Dev Biol Anim 2000; 36: 96-103.
- 14. Coulomb B, Lebreton C, Dubertret L. Influence of human dermal fibroblasts on epidermalization. J Invest Dermatol 1989; 92: 122-5.
- 15. Moulin V, Auger FA, Garrel D, Germain L. Role of wound healing myofibroblasts on re-epithelialization of human skin. Burns 2000; 26: 3-12.
- 16. Bouvard V, Germain L, Rompre P, Roy B, Auger FA. Influence of dermal equivalent maturation on a skin equivalent development. Biochem Cell Biol 1992; 70: 34-42.
- 17. Matsue H, Cruz PD, Jr., Bergstresser PR, Takashima A. Cytokine expression by epidermal cell subpopulations. J Invest Dermatol 1992; 99: 42S-5S.
- 18. Tavakkol A, Elder JT, Griffiths CEM, et al. Expression of growth hormone receptor, insulin-like growth factor 1 (IGF-1) and IGF-1 receptor mRNA and proteins in human skin. J Invest Dermatol 1992; 99: 343-9.
- 19. Phan TT, Lim IJ, Bay BH, et al. Role of IGF system of mitogens in the induction of fibroblast proliferation by keloid-derived keratinocytes in vitro. Am J Physiol Cell Physiol 2003; 284: C860-9.
- 20. Kratz G, Haegerstrand A, Dalsgaard C-J. Conditioned medium from cultured human keratinocytes has growth stimulatory properties on different human cell types. J Invest Dermatol 1991; 97: 1039-43.
- 21. Palmieri C, Roberts-Clark D, Assadi-Sabet A, et al. Fibroblast growth factor 7, secreted by breast fibroblasts, is an interleukin-1beta-induced paracrine growth factor for human breast cells. J Endocrinol 2003; 177: 65-81.
- 22. Goulet F, Poitras A, Rouabhia M, Cusson D, Germain L, Auger FA. Stimulation of human keratinocyte proliferation through growth factor exchanges with dermal fibroblasts in vitro. Burns 1996; 22: 107-12.
- 23. Rheinwald JG, Green H. Cell serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 1975; 6: 331-43.
- 24. Wang CS, Goulet F, Lavoie J, et al. Establishment and characterization of a new cell line derived from a human primary breast carcinoma. Cancer Genet Cytogenet 2000; 120: 58-72.
- 25. Wang CS, Goulet F, Tremblay N, Germain L, Auger FA, Têtu B. Selective culture of epithelial cells from primary breast carcinomas using irradiated 3T3 cells as feeder layer. Pathol Res Pract 2001; 197: 175-81.
- 26. Wang CS, Goulet F, Auger F, Tremblay N, Germain L, Tetu B. Production of bioengineered cancer tissue constructs in vitro: epithelium-mesenchyme heterotypic interactions. In Vitro Cell Dev Biol Anim 2001; 37: 434-9.
- 27. Berthod F, Germain L, Li H, Xu W, Damour O, Auger FA. Collagen fibril network and elastic system remodeling in a reconstructed skin transplanted on nude mice. Matrix Biol 2001; 20: 463-73.
- 28. Warburg E. Versuche an überlebendem carcinomgewebe. Biochem Stschr 1923; 142: 317-33.
- 29. Boyce ST, Supp AP, Harriger MD, Greenhalgh DG, Warden GD. Topical nutrients promote engraftment and inhibit wound contraction of cultured skin substitutes in athymic mice. J Invest Dermatol 1995; 104: 345-9.
- 30. Young DM, Greulich KM, Weier HG. Species-specific in situ hybridization with fluorochrome-labeled DNA probes to study vascularization of human skin grafts on athymic mice. J Burn Care Rehabil 1996; 17: 305-10.
- 31. Supp DM, Wilson-Landy K, Boyce ST. Human dermal microvascular endothelial cells form vascular analogs in cultured skin substitutes after grafting to athymic mice. FASEB J 2002; 16: 797-804.
- 32. Berthod F, Sahuc F, Hayek D, Damour O, Collombel C. Deposition of collagen fibril bundles by long-term culture of fibroblasts in a collagen sponge. J Biomed Mater Res 1996; 32: 87-94.
- 33. Berthod F, Germain L, Guignard R, et al. Differential expression of collagens XII and XIV in human skin and in reconstructued skin. J Invest Dermatol 1997; 108: 737-42.
- 34. Black AF, Berthod F, L’Heureux N, Germain L, Auger FA. In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. FASEB J 1998; 12: 1331-40.
- 35. Cotsarelis G, Sun TT, Lavker RM. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 1990; 61: 1329-37.
- 36. Lavker RM, Sun T-T. Heterogeneity in epidermal basal keratinocytes: morphological and functional correlations. Science 1982; 215: 1239-41.
- 37. Michel M, Török N, Godbout M-J, et al. Keratin 19 as a biochemical marker of skin stem cells in vivo and in vitro: keratin 19 expressing cells are differentially localized in function of anatomic sites, and their number varies with donor age and culture stage. J Cell Sci 1996; 109: 1017-28.
- 38. Fradette J, Germain L, Seshaiah P, Coulombe PA. The type I keratin 19 possesses distinct and context-dependent assembly properties. J Biol Chem 1998; 273: 35176-84.
- 39. Germain L, Michel M, Fradette J, Xu W, Godbout MJ, Li H. Skin stem cell identification and culture: a potential tool for rapid epidermal sheet production and grafting. In: Rouabhia M, ed. Skin substitute production by tissue engineering: clinical and fundamental applications. Austin: R.G. Landes Publishers, 1997: 177-210.
- 40. Michel M, L’Heureux N, Auger FA, Germain L. From newborn to adult: phenotypic and functional properties of skin equivalent and human skin as a function of donor age. J Cell Physiol 1997; 171: 179-89.
- 41. Damour O, Braye F, Foyatier J, et al. Cultured autologous epidermis for massive burn wounds: 15 years of practice. In: Rouabhia M, ed. Skin substitute production by tissue engineering: clinical and fundamental applications. Austin: R.G. Landes Publishers, 1997: 23-45.
- 42. Auger FA. The role of cultured autologous human epithelium in large burn wound treatment. Transpl Impl Today 1988; 5: 21-4.
- 43. Green H, Barrandon Y. Cultured epidermal cells and their use in the generation of epidermis. News Physiol Sci 1988; 3: 53-6.